
1

A declarative based tool for reasoning about CISCO
IOS firewall configurations

Shams Karim Valibhai

Abstract—One of the mandatory tasks assigned to computer
network administrators is to keep unwanted or malicious traffic
outside the network. Because of this, firewalls became a vital
component in any computer network connected to the Internet.
However, configuring and maintaining a firewall is a complicated
and error-prone process mostly due to the design model used
in conventional firewalls, where the ordering between firewall
rules matters. To simplify these tasks, we propose a low-level
abstraction of a router, that is a simplification of a CISCO
IOS device, that contains the concepts of access-lists, rules and
policies existent in these devices. This is accompanied by a
semantic allowing both packet filtering and address translation.
We then capitalize on the MIGNIS firewall specification language
proposed by Ado et al [1] that is simple and powerful enough
to specify firewall configurations and its semantic is immune to
the relative ordering of rules, and prove a sound translation
from this model to our low-level abstraction thus entailing both
simple specification and easy verification of firewall policies. We
also provide conditions over the policies for this translation to be
complete. Finally, we developed a tool that translates MIGNIS
configurations into real CISCO IOS configurations.

Index Terms—Firewall, Cisco IOS, MIGNIS, Network Security,
Firewall semantics, Network Address Translation (NAT)

I. INTRODUCTION

THE Internet can be defined as a network of networks,
many of which are private and should not be accessible

to everyone. One popular method to achieve this privacy is
the use of a firewall. At its most basic definition, a firewall
functions as a packet filter, allowing and dropping packets
according to a configuration. They are usually placed at the
border between a private network, with trusted users, and an
untrusted public network like the Internet. It is also possible
to implement firewalls directly on Internet hosts, like personal
computers and smartphones.

When placing a firewall at the border of a network, the most
immediate location is the network gateway, since all traffic
leaving the network passes there. A gateway is usually one of
two devices, either a router or a server running an operating
system like Linux. While the latter has its use cases, the former
is the most commonly used.

The configuration of the firewall may not be a simple
task. A network administrator must take several requirements
in consideration when configuring a firewall and overlaps
between requirements often happen. The order in which the
rules are inserted is often important in firewall configuration,
adding complexity to the process.

Having a difficult time maintaining a firewall does not just
result in wasted time. When dealing with a complex configu-
ration, it is possible for small mistakes to result in significant
security risks. As such, providing network administrators with

a tool to help with this process will not only save time, but
also reduce the chance of a configuration mistake.

One family of helpful tools includes those that verify and
check a firewall configuration for mistakes, warning about
unintended behaviors. [2] and [3] are two examples of tools
that do so with a graphical approach, while [4] follows a non-
visual approach. In [5], an expert system-like tool allows users
to verify Cisco access list configurations.

The other family of tools consists of those that help design
and apply a firewall configuration. The MIGNIS semantic [1]
is part of the second family. It offers an order-independent
and simple to read syntax which applies to both connectivity
and NAT functionalities. This semantic is currently used
in the MIGNIS tool [6], offering a translation to iptables
commands. An indispensable aspect of such a tool is that
the translation is theoretically proven to comply with the
used semantics. While this tool is compatible with most
Linux distributions, it does not serve any purpose for the
configuration of firewalls in routers.

A. Objective
The objective of this work is to provide network adminis-

trators with a tool to assist in the configuration of firewall
and NAT functionalities in routers. This tool must, while
simplifying the process, ensure the higher level semantic is
followed precisely by the router.

To achieve this, we will make use of the existing MIGNIS
semantics, which are well defined and NAT-aware. Our goal
will be to translate these semantics into Cisco IOS commands,
due to the widespread use of Cisco routers.

B. Related Work
The subject of firewall configuration has been researched

through several different approaches. One possible approach
is to create a firewall design model that, by design, attenuates
or fixes the problems in conventional firewall such as The
Structured Firewall Design [7]. Other examples include the
Netfilter-like model in [8], the Model Definition Language [9],
the High Level Firewall Language [10], Shorewall [11], FLIP
[12] and a XML-based language [13] by Cuppens et al.

A different approach consists in using a graphical interface
to help visualize and define the firewall policies. firewalld
[14] is an open-source project that provides a simple way to
configure firewall policies (in iptables on a Linux machine.
It achieves this by combining high-level abstractions like
services (which describe a set of ports and protocols) with
a clean graphical interface. Another graphical tool is Firewall
Builder [15]. This tool targets several different firewalls, from
iptables to CISCO ASA, including CISCO IOS. The tool also
contains features that try to check for redudancy in rules.

2

II. FIREWALL AND NAT IN CISCO IOS
We will start by going over the relevant CISCO IOS

features and define an abstraction of a low-level router, that
is a simplification of a CISCO IOS router. Considering that
this abstraction will be used to match the MIGNIS semantics
present in [1], we will follow an approach as similar to it as
possible. In the following definitions and examples, sa(p) and
da(p) will denote, respectively, the source and destination
addresses of a packet, including port information if relevant.
prt(p) will also denote the protocol in the packet’s header.

A. IP access lists

Access lists (ACL) are lists of rules with the main purpose
of allowing and discarding packets. They are identified using
either a number or a name. IOS provides two types of ACLs,
standard and extended. The former type only allows source
address matching and is protocol agnostic, while the latter is
protocol aware and makes use of both source and destination
addresses. Due to this difference, we will use named extended
ACLs throughout the remainder of this work.

Listing 1. Extended access list example.
i p a c c e s s− l i s t e x t e n d e d example 1

10 permit i p host 192.168.1.50 any
20 permit t c p 192.168.1.0 0.0.0.255 any eq f t p t e l n e t
30 deny udp 192.168.1.0 0.0.0.255 range 1

10000 1 0 . 0 . 0 . 0 0 . 2 5 5 . 2 5 5 . 2 5 5

Each rule in an extended ACL has a well defined syntax, which
can be seen in Listing 1. Rules are made of five mandatory
parameters: (i) Entry number: a positive integer placed at the
start of each rule that defines the ordering of rules inside an
access list. (ii) Action: the action, permit or deny, to take if a
packet matches the rule in question. (iii) Protocol: the protocol
to match packets against, transport layer UDP, TCP, . . . , or
network layer IGMP, ICMP, OSPF, Keyword ip applies to
any network protocol. (iv) Source Address: a network address
or block (defined using a network address followed by a
wildcard mask) that matches the source address of the packet
being inspected. The keyword host can be placed before the
address when referring to a single host; keyword any can also
be used in cases where any source address serves. If TCP or
UDP were specified for the rule in question, it is also possible
to define intervals of ports. (v) Destination Address: same as
the source address parameter, but for the destination fields of
the packet.

It is important to note that, if a packet is not matched by
any of the visible rules in an ACL, it hits a final, implicit,
deny ip any any rule.

B. Zone-based firewall

The Zone-based Firewall (ZBFW) is a Cisco IOS feature
providing a stateful firewall which can inspect traffic between
all router interfaces, as well as local router traffic. It is not
available on all base IOS images, so a security license may
be needed to access it.

Zones are a fundamental concept in the ZBFW. Each
interface can be assigned to a zone and one zone can support
multiple interfaces. Firewall rules are applied, independently,
to each directed pair of zones. The router itself is also
represented by a zone, named self.

Firewall rules are defined using a policy-map, which is a
structure that applies policies (pass, inspect, drop to specified
classes of traffic, By default, a policy-map contains a catch-all
policy which drops all traffic, so all packets flowing through
the firewall are dropped, unless explicitly allowed through. The
inspect policy allows a packet to flow through the firewall and
opens a pinhole for returning traffic.

For the purpose of this work, using a single ACL inside
a class-map is enough to classify all relevant traffic, which
is then applied an inspect policy. Listing 2 shows how the
access-list in Listing 1 would be used to control traffic from
zone1 to zone2.

Listing 2. ZBFW configuration example..
i p a c c e s s− l i s t e x t e n d e d example 1

10 p e r m i t i p h o s t 1 9 2 . 1 6 8 . 1 . 5 0 any
20 p e r m i t t c p 1 9 2 . 1 6 8 . 1 . 0 0 . 0 . 0 . 2 5 5 any eq f t p t e l n e t
30 deny udp 1 9 2 . 1 6 8 . 1 . 0 0 . 0 . 0 . 2 5 5 r a n g e 1 10000

↪→ 1 0 . 0 . 0 . 0 0 . 2 5 5 . 2 5 5 . 2 5 5

c l a s s−map t y p e i n s p e c t match−any example cmap
match a c c e s s−group name example 1

p o l i c y−map t y p e i n s p e c t example pmap
c l a s s t y p e i n s p e c t example cmap

i n s p e c t
c l a s s c l a s s−d e f a u l t

d rop l o g

zone−p a i r s e c u r i t y zone1−zone2 s o u r c e zone1 d e s t i n a t i o n
↪→ zone2

s e r v i c e−p o l i c y t y p e i n s p e c t example pmap

C. Network Address Translation

IOS provides two mutually exclusive groups of commands
to implement address translation: legacy NAT and NVI.

NVI was introduced to IOS in order to provide a domain-
free NAT solution. It allows translations between all NAT-
enabled interfaces, offering a symmetrical approach, unlike
legacy NAT.

Translation rules in IOS can be of two kinds: static or
dynamic. Static rules are always inserted as source address
translation rules, but they work on both ways of traffic. Listing
3’s first line shows an example of such rule. This translation
can be triggered in two different ways. A source NAT from
192.168.1.50:80 to 85.10.10.10:8080 or a destination NAT
from 85.10.10.10:8080 to 192.168.1.50:80.

Dynamic rules are source NAT only and mostly used for
masquerading purposes. Listing 3 presents a masquerade NAT
rule in its second line. This rule requires the creation of an
ACL, which will match all traffic that should be translated.
The overload keyword specifies that interface g1/0’s address
should be used for the translation.

Listing 3. Static and dynamic NAT entries.
i p n a t s o u r c e s t a t i c t c p 1 9 2 . 1 6 8 . 1 . 5 0 80 8 5 . 1 0 . 1 0 . 1 0 8080
i p n a t s o u r c e l i s t a c l n a t 1 i n t e r f a c e g1 / 0 o v e r l o a d

D. Connection tracking

Both features we have presented are stateful, which means
their behavior changes according to previous events.

The firewall, ZBFW, needs to keep track of open connec-
tions so it can allow returning traffic through, implementing
the inspect option. While there is no public documentation
stating the information kept by the firewall, we assume it stores
the minimum it requires to function: the addresses and ports

3

of the hosts on both ends of the connection in addition to
protocol information.

On the other hand, the NAT service needs to store the
addresses of both hosts, as well as the addresses they are
translated to/from and any protocol information.

E. Order of operation

Given that IOS is very rich in features, it is necessary to
establish an order in which operations are made over packets.
It is important to account for all features we selected and
acting on packets, considering our objective. The operations
taken into consideration are: NVI NAT, ZBFW, interface ACLs
and routing decisions. This order was infered from multiple
public sources. Figure 1 shows how the previous operations
act upon packets.

Fig. 1. Order of operations for the relevant features in a Cisco IOS router.

There are several traffic flows that we must take into
consideration. Each of these flows travels through features in
a different order:

1) Forwarded traffic: INGRESS ACL → DNAT → FIRE-
WALL → SNAT → EGRESS ACL

2) Host generated traffic: DNAT → FIREWALL→ SNAT →
EGRESS ACL

3) Host destined traffic: INGRESS ACL→ DNAT → FIRE-
WALL → SNAT

It is important to note that, for all non-forwarded traffic,
we will only consider traffic which goes through DNAT and
SNAT unchanged. That is, we decided to only consider these
flows under the condition that no translation occurs. We will
not consider also any traffic from the router to itself. These
decisions were prompted by the lack of public documentation
explicitly referring how NAT and the firewall interact with
this class of traffic.

F. Low-level Abstraction of a Router

Having presented IOS and its most relevant features, we
will now give a formal abstract model and a formal semantics
of a low-level router, that is a simplified version of a Cisco
IOS router. Considering this model will be used to match the
MIGNIS semantics present in [1], we will follow an approach

as similar to it as possible. In the following definitions and
examples, sa(p) and da(p) will denote, respectively, the
source and destination addresses of a packet, including port
information if relevant. prt(p) will also denote the protocol in
the packet’s header.

1) State abstraction: We will start by abstracting the con-
nection tracking components in IOS. In the firewall, each con-
nection should be represented at least by a tuple (hA, hB , prt)
where hA and hB are the addresses of both hosts in the
connection and prt is information about the protocol being
use between the hosts. If the protocol in question uses ports
(UDP or TCP), that information is included in hA and hB .
A set of these tuples, sfw, represents the state of our abstract
firewall.

As with the firewall, the state kept by the NAT feature
can also be represented by a set of tuples, snat. However, in
snat we need at least to account for the translated addresses
hence storing more information (src, dst, src′, dst′, prt). In
these tuples, src and dst represent the source and destinations
addresses of the initial packet while src′ and dst′ represent
the addresses of the reply packet. prt represents the protocol.

Ideally, we want to consider only one set of tuples for our
abstraction of state. While the transition from a tuple in sfw
to a tuple in snat is simple, the problem is that snat does not
need to keep information about all active connections. This
is due to the fact that the NAT service only needs to keep
information about connections where packets are translated,
while the firewall needs to track all connections. Because of
this, our global state s is populated with tuples from both
sets. From the NAT state, snat, we will include every tuple,
since those are the ones which hold more information. Tuples
from sfw are only included if the connection they represent is
not in snat, which means NAT is not used. These tuples are
transformed from (hA, hB , prt) to (hA, hB , hB , hA, prt)
in order to match the ones from snat.

Definition 1. A packet p belongs to a connection in s if one
of the following conditions holds true:

(i) (sa(p), da(p), src, dst, prt(p)) ∈ s
(ii) (src, dst, sa(p), da(p), prt(p)) ∈ s

This relation is denoted as p `s src, dst, where src and dst
represent the source and destination addresses of the p′, the
expected reply to p.

2) Access lists and address translation: As we saw in
Section II-A, both firewall and NAT features in IOS are
implemented using access lists. Considering this, we provide
an abstraction for access lists and their entries, which we will
refer to as rules.

In the following definitions, we will use the concept of
address ranges. A range is defined as a set of IP addresses
accompanied by a set of ports. When checking if an address
addr is part of an address range n, each component of addr is
matched against its corresponding set in n. If the set of ports
in n is empty, or addr does not specify a port, only the IP
address needs to be matched.

Definition 2. A basic rule is defined as a tuple (n1, n2, φ, t),
where n1 and n2 are address ranges, φ represents a stateful

4

operation over a packet and t, the target of the rule, is either
accept or drop.

As an example, we can use the ACL in Listing 1
and, from its second entry, generate the following basic
rule: (192.168.1.0/24:∗, ∗:{21, 23}, tcp, accept), where ∗
matches any IP address or port. We will now define how a
packet matches a basic rule.

Definition 3. A packet p matches, in state s, a basic rule
ri = (n1, n2, φ, t) if sa(p) ∈ n1, da(p) ∈ n2 and φ(p, s).
We denote this match with the expression p, s |=r ri.

Definition 4. Let R = [r1, r2, ..., rn] be a list of rules. A
packet p matches R in state s, with target t, if

∃i≤n : ri = (n1, n2, φ, t) ∧ p, s |=r ri ∧ ∀j<i p, s 6|=r rj

This match is denoted by p, s |=R t. Conversely, if a packet
does not match any rule in a list, we use the expression
p, s 6|=R.

While a basic rule can represent any ACL entry, it does
not account for translation operations, like the one represented
in Listing 3. To represent such commands, it is necessary to
differentiate between static and dynamic entries.

Definition 5. A static translation rule is defined as a tuple
(la, ga, φ), where la and ga are ranges of addresses and φ
is a stateful operation over a packet.

We can use, as an example, Listing 3 to build the static
rule (192.18.1.50:80, 85.10.10.10:8080, tcp). A packet can
match these rules in two different ways, since they are used
for both source and destination translations.

Definition 6. A packet p matches, in state s, a static transla-
tion rule ti = (la, ga, φ) if:

(i) sa(p) ∈ la ∧ φ(p, s), denoted by p, s |=t ti, snat;
(ii) da(p) ∈ ga ∧ φ(p, s), denoted by p, s |=t ti, dnat.

Static translation rules have a deterministic ordering and can
be considered as being part of a list.

Definition 7. Let T = [t1, t2, ..., tn] be a list of static
translation rules. A packet p matches T , in state s, if:

(i) ∃i≤n : ti = (la, ga, φ)∧ p, s |=t ti, snat∧∀j<i p, s 6|=t
tj , denoted by p, s |=ST ga;

(ii) ∃i≤n : ti = (la, ga, φ)∧ p, s |=t ti, dnat∧∀j<i p, s 6|=t
tj , denoted by p, s |=DT la.

The case where any of the presented conditions is not satisfied
is denoted by, respectively, p, s 6|=ST or p, s 6|=DT .

Dynamic NAT rules can only be used for source address
translation. However, due to being implemented differently to
static rules, they allow for a more fine-tuned packet selection.
Like with static rules, dynamic rules in IOS can be considered
as part of a list, with a deterministic ordering.

Definition 8. A dynamic translation rule is defined as a
tuple (n1, n2, φ, t), where n1 and n2 are address ranges,
φ represents a stateful operation over a packet and t is the
range of addresses used for translation.

Definition 9. A packet p matches a dynamic translation rule
di = (n1, n2, φ, t), in state s, if sa(p) ∈ n1, da(p) ∈ n2 and
φ(p, s). We denote this match with the expression p, s |=d di.

Definition 10. Let D = [d1, d2, ..., dn] be a list of dynamic
translation rules. A packet p matches D, in state s, if:

∃i≤n : di = (n1, n2, φ, t) ∧ p, s |=d di ∧ ∀j<i p, s 6|=d dj

We denote this match with p, s |=D t, using p, s 6|=D for the
cases where no match is found.

The previous definitions allow us to define our low-level
router abstraction that is a simplified version of a IOS router.
This model will take into account both ingress and egress
ACLs, the ACLs used between each directed pair of zones
in the ZBFW and all possible NAT entries.

Definition 11. A low-level router F , with n external inter-
faces, is composed of the following lists of rules:

(i) 2n lists of basic rules, Iid, where d ∈ {in, out} and
i ∈ {1, ..., n}. These represent the access lists in each
interface.

(ii) A list of static translation rules, T , and a list of dynamic
translation rules, D.

(iii) (n+1)2 lists of basic rules, F io , where i, o ∈ {1, ..., n}∪
{l}. These represent the rules between each zone in
the firewall. A list F xy applies to all traffic entering in
interface x and leaving through interface y. The self zone
is represented by the letter l.

3) Semantics: In Table I we present the semantics for how
our low-level router F deals with a packet p in state s. To help
distinguish this semantics from similar ones that will appear
throughout this work, we use the term ll, standing for low-
level. Throughout this section we also use the expressions
si(p) and di(p), which denote, respectively, the ingress and
egress interfaces of a router, according to its source and
destination addresses. Symbol L is used to denote all addresses
assigned to the router’s interfaces as well as any loopback
interface. This definition allows us to distinguish local from
non-local traffic.

The first three rules (DEstll, DNewll and DNATll) apply
to packets that go through the pre-routing NAT module.
This relation is denoted by (s, p) �δll p̃, where p is the
original packet and p̃ is the same packet after going through
the pre-routing translation module, in state s. Each different
rule defines a set of required conditions for the transition to
occur. Rule DEstll applies to packets belonging to an already
established connection, using information in s to perform the
translation. In this case, the destination address of the packet
is changed to the source address of the expected reply. On
the other hand, rules DNewll and DNATll apply to packets
which do not belong to an established connection. The former
also adds the condition that no match is found in the static
translation table, T , meaning packet p goes unchanged through
this transition. The latter implies that a match was found in T .
Rules in T are of the form (la, ga, φ) and relation p, s |=DT t
means a match was found between the global address, ga,
of a rule and the destination address of the packet being

5

p `s src, dst
(s, p) �δll p[da 7→ src]

[DEstll]
p 0s p, s 6|=DT
(s, p) �δll p

[DNewll]

p 0s p, s |=DT t dst ∈ t
(s, p) �δll p[da 7→ dst]

[DNATll]

p `s src, dst
(s, p, p̃) �σll p̃[sa 7→ dst]

[SEstll]
p 0s p̃, s 6|=ST p̃, s 6|=D

(s, p, p̃) �σll p̃
[SNewll]

p 0s p̃, s |=ST t src ∈ t
(s, p, p̃) �σll p̃[sa 7→ src]

[SNATsll]

p 0s p̃, s 6|=ST p̃, s |=D t src ∈ t
(s, p, p̃) �σll p̃[sa 7→ src]

[SNATdll]

sa(p) /∈ L da(p̃) /∈ L i ∈ si(p) o ∈ di(p̃)
p, s |=Iiin accept (s, p) �δll p̃ p `s ∨ p̃, s |=F i

o
accept

(s, p, p̃) �σll p
′ p′, s |=Ioout

accept

s
p,p′−−−→ll s] (p, p′)

[Forwardll]

sa(p) /∈ L da(p) ∈ L i ∈ si(p)
p, s |=Iiin accept (s, p) �δll p : [DNewll,DEstll]

p `s ∨ p, s |=F i
l
accept (s, p, p̃) �σll p : [SNewll, SEstll]

s
p,p−−−→ll s] (p, p)

[Inputll]

sa(p) ∈ L da(p) /∈ L o ∈ di(p)
(s, p) �δll p : [DNewll,DEstll] p `s ∨ p, s |=F l

o
accept

(s, p, p̃) �σll p : [SNewll, SEstll] p, s |=Ioout
accept

s
p,p−−−→ll s] (p, p)

[Outputll]

TABLE I
SEMANTICS FOR THE LOW-LEVEL ROUTER.

matched. When such match occurs, the destination address
is then translated to the local address, la, of the same rule.

The four following rules (SEstll, SNewll, SNATsll and
SNATdll) apply to packets on the post-routing NAT module,
denoted by (s, p, p̃) �σll p′, where p represents the original
packet and p̃ represents the packet after going through the
pre-routing NAT module. Rule SEstll follows the same logic
as DEstll, using the information in state s to translate the
packet. Unlike with destination NAT, in source NAT we need
to check both static and dynamic translation rules, causing
a small difference in the definition of rule SNewll and the
existence of an additional rule, SNATdll, for when a dynamic
translation rule is matched. From SNATsll and SNATdll one
can also note that static translation rules take precedence over
dynamic ones.

Finally, the last three rules (Forwardll, Inputll and Outputll)

result in the state transition s
p,p′−−→ll s

′, which denotes a
transition from state s to s′ and that packet p was accepted
by the firewall and transformed into p′ as the result of address
translations. Each rule applies to one of the flows described

earlier in Section II-E. In all mentioned rules, state s′ is
defined as the result of the operation s](p, p′). This operation
adds the connection established by packet p, translated to p′,
to state s. The new connection can be represented by the
tuple (sa(p), da(p), da(p′), sa(p′), prt(p)). State s remains
unchanged if the tuple already exists, which means the con-
nection was established previously.

We can start by looking at rule Forwardll since it’s the most
complex one. For a packet p to be accepted by the firewall and
translated to p′ the following conditions must be met:
• p, s |=Iiin accept, it must be accepted by the inbound

ACL placed at the ingress interface;
• (s, p) �δll p̃, the packet must go through the pre-routing

NAT module. We denote the resulting packet as p̃, even
if no translation occurred;

• p `s ∨ p̃, s |=F i
o
accept, it must either belong to an

established connection or have its translated version, p̃,
be explicitly accepted in F io , the list of rules applied to
traffic flowing from interface i to interface o;

• (s, p, p̃) �σll p
′, it must go through the post-routing NAT

module. The resulting packet is denoted as p̃;
• p′, s |=Ioout

accept, the packet accepted by the post-
routing NAT module, p′, must be accepted by the out-
bound ACL placed at the egress interface.

The two remaining rules follow a similar logic. It is worth
remarking that we restrict NAT translations to the Forwardll
rule and force all other flows to be unaffected by any address
translation. The syntax used to enforce this behavior is shown
in (s, p) �δll p : [DNewll,DEstll], where we mean that packet
p is accepted as p by δ through rule DNewll or DEstll.
This decision was motivated by the unpredictability and lack
of documentation concerning NAT for locally generated or
addressed traffic.

III. MIGNIS

In [1], the authors present the MIGNIS tool. Its purpose is
to assist in the configuration of iptables, a firewall and
NAT utility available in most Linux distributions. MIGNIS’
main feature is the translation from a firewall specification
language, defined by the authors, to iptables compatible
commands. To achieve the purpose of this work, we will make
use of the same specification language, which we will denote
as the MIGNIS language.

The MIGNIS language was designed in a way to avoid
some of the existing problems in traditional firewall design.
It can be described as a declarative language, where the order
between rules does not matter. Rules are also very simple to
read and interpret, allowing any reader to easily understand
the purpose of each rule.

A. Syntax and Semantics

The four types of rule available in MIGNIS syntax are:

n1 / n2 | φ (DROP rule)
n1 > n2 | φ (ACCEPT rule)
n1 > [n2] nt | φ (DNAT rule)
n1 [nt] > n2 | φ (SNAT rule)

6

The name given to the rules is descriptive enough to under-
stand their purpose, but we will take a closer look at the syntax
of each rule. A DROP rule forbids all traffic from n1 to n2, as
long as φ is satisfied. It is important to note that this rule takes
priority over any other rule in a MIGNIS configuration and
even applies to packets in established connections. In practice,
this means we can block incoming traffic from a malicious host
even if the connection was started by a host in our network.
In case any NAT occurs, we consider n1 and n2 as the real
addresses for the hosts communicating. In other words, n1
and n2 are to be checked after destination NAT has occurred
and before source NAT occurs. An ACCEPT rule allows n1
to establish a connection with n2, if φ holds. This rule also
implicitly allows n2 to communicate with n1, as long as n1 is
the one starting the connection. Rules DNAT and SNAT follow
the same logic, combining it with NAT operations. Rule DNAT
allows n1 to establish a connection with nt by addressing n2,
as long as φ is satisfied. Rule SNAT allows n1 to establish a
connection with n2, if φ holds, and applies a source address
translation from n1 to nt to all traffic in this flow.

The semantics for the MIGNIS language are presented in
Table II. For simplicity, we use a similar notation as the
one in Section II-F. A set of MIGNIS rules is defined as
a configuration, denoted by C. If a RULE in C matches a
packet p in state s, this is denoted by p, s |=C RULE. If the
rule in question implies address translation (DNAT and SNAT
rules), we also include the target address nt in the notation.
These cases are denoted by p, s |=C RULE(nt). If a packet p
in state s does not match a specific rule, we use the notation
p, s 6|=C RULE.

p, s |=C ACCEPT p, s 6|=C DROP

(s, p) �hl p
[ACCEPThl]

p, s |=C DNAT(nt) dst ∈ nt p[da 7→ dst], s 6|=C DROP, SNAT

(s, p) �hl p[da 7→ dst]
[DNAThl]

p, s |=C SNAT(nt) src ∈ nt p, s 6|=C DROP, DNAT

(s, p) �hl p[sa 7→ src]
[SNAThl]

p, s |=C DNAT(nt) dst ∈ nt p̃ = p[da 7→ dst] p̃, s 6|=C DROP

p̃, s |=C SNAT(n′t) src ∈ n′t
(s, p) �hl p̃[sa 7→ src]

[DSNAThl]

p 0s (s, p) �hl p′

s
p,p′−−−→hl s] (p, p′)

[Newhl]

p `s src, dst p̃ = [da 7→ src] p̃, s 6|=C DROP p′ = p̃[sa 7→ dst]

s
p,p′−−−→hl s

[Esthl]

TABLE II
MIGNIS LANGUAGE SEMANTICS.

In this table we present two new relations. (s, p) �hl p′

denotes that packet p is accepted as p′ by a firewall in state s.
Four different rules lead to this relation: ACCEPThl, DNAThl,
SNAThl and DSNAThl. The semantics present in those rules
follow the already explained logic for the MIGNIS language.
It is worth noticing that, in each of the mentioned rules, we
always check if the packet does not match a DROP rule

in the MIGNIS configuration, since that would always take
precedence. Rule DSNAThl applies to packets matching both
a DNAT and an SNAT rule in the configuration.

The other relation is s
p,p′−−→hl s

′, which denotes the fire-
wall’s state transition from state s to state s′, while accepting
packet p as p′. This relation is a result of the rules Newhl
and Esthl. The first one applies to packets that do not belong
to any active connection and are accepted by the firewall with
relation (s, p) �hl p′. This rule implies a state change, denoted
by s] (p, p′). The second rule, Esthl, applies to packets in
established connections. In this situation, the only requirement
is that the packet, after destination NAT, does not match any
DROP rule in the MIGNIS configuration.

IV. FROM MIGNIS TO CISCO IOS

Having presented both the low-level firewall abstraction
and the high-level MIGNIS language, we now offer a
translation from a MIGNIS configuration to IOS commands.
To achieve this, we will define an intermediate-level firewall,
with similarities to the other two firewalls. This firewall
will act as a middle step in our translation, splitting the
translation into two: one from the MIGNIS semantics to our
intermediate semantics, and another from this to the low-level
router abstraction. We then translate the low-level router rules
to CISCO IOS commands.

A. Intermediate Firewall

Definition 12. An intermediate firewall FI is composed by 6
sets of rules {SD1

, SSTT , SDYN , SD, SA, SD2
}. Sets SD1

, SD
and SD2 contain basic rules with target drop while set SA
contains basic rules with target accept. Set SSTT contains
static translation rules and set SDYN contains dynamic trans-
lation rules. All these rules follow the definitions established
in Chapter II-F.

One main difference between this firewall and the low-level
one is the use of sets instead of lists. This requires us to
define how a packet matches a set, since our previous low-
level definitions concern lists of rules.

Definition 13. Let S = {r1, r2, ..., rn} be a set of basic rules.
We define that packet p matches set S, in state s, with target
t if:

∃ri ∈ S : ri = (n1, n2, φ, t) ∧ p, s |=r ri

This relation is denoted by p, s |=ilS t. If no match occurs, we
use p, s 6|=ilS .

Definition 14. Let S = {t1, t2, ..., tn} be a set of static
translation rules. We define that packet p matches set S, in
state s, with target t if:

(i) ∃ti ∈ S : ti = (la, ga, φ)∧ p, s |=t ti, snat, denoted by
p, s |=ilS ga, snat

(ii) ∃ti ∈ S : ti = (la, ga, φ)∧ p, s |=t ti, dnat, denoted by
p, s |=ilS la, dnat

In case one of the previous conditions is not satisfied, we write,
respectively, p, s 6|=ilS snat or p, s 6|=ilS dnat.

7

Definition 15. Let S = {d1, d2, ..., dn} be a set of dynamic
translation rules. We define that packet p matches set S, in
state s, with target t if:

∃di ∈ S : di = (n1, n2, φ, t) ∧ p, s |=d di
This relation is denoted by p, s |=ilS t. If no match occurs, we
use p, s 6|=ilS .

p `s src, dst
(s, p) �DNAT

il p[da 7→ src]
[DEstil]

p 0s p, s 6|=ilSSTT
dnat

(s, p) �DNAT
il p

[DNewil]

p 0s p, s |=ilSSTT
t, dnat dst ∈ t

(s, p) �DNAT
il p[da 7→ dst]

[DNATil]

p `s src, dst
(s, p, p̃) �SNAT

il p̃[sa 7→ dst]
[SEstil]

p 0s p, s 6|=ilSSTT
snat p, s 6|=ilSDY N

(s, p, p̃) �SNAT
il p̃

[SNewil]

p 0s p, s |=ilSSTT
t, snat src ∈ t

(s, p, p̃) �SNAT
il p̃[sa 7→ src]

[SNATsil]

p 0s p, s 6|=ilSSTT
snat p, s |=ilSDY N

t src ∈ t
(s, p, p̃) �SNAT

il p̃[sa 7→ src]
[SNATdil]

sa(p) /∈ L da(p̃) /∈ L
p, s 6|=ilSD1

(s, p) �DNAT
il p̃ p `s ∨ p̃, s 6|=ilSD

p `s ∨ p̃, s |=ilSA
(s, p, p̃) �SNAT

il p′ p′, s 6|=ilSD2

s
p,p′−−−→il s] (p, p′)

[Forwardil]

sa(p) /∈ L da(p) ∈ L
p, s 6|=ilSD1

(s, p) �DNAT
il p : [DNewil,DEstil]

p `s ∨ p, s 6|=ilSD
p `s ∨ p, s |=ilSA

(s, p, p̃) �SNAT
il p : [SNewil, SEstil]

s
p,p−−−→il s] (p, p)

[Inputil]

sa(p) ∈ L da(p) /∈ L
(s, p) �DNAT

il p : [DNewil,DEstil]

p `s ∨ p, s 6|=ilSD
p `s ∨ p, s |=ilSA

(s, p, p̃) �SNAT
il p : [SNewil, SEstil] p, s 6|=ilSD2

s
p,p−−−→il s] (p, p)

[Outputil]

TABLE III
INTERMEDIATE FIREWALL SEMANTICS.

In Table III we present the semantics associated with our
intermediate level firewall. We can see many similarities
to our low level firewall. Firstly, we split NAT rules into
two kinds, static and dynamic. The second similarity is the
inability that, after DNAT and before SNAT have occurred,
we can not drop packets in established connections. This is
an important difference from the MIGNIS semantics, where
such drop is possible. Finally, the last similarity is that we do

not consider traffic flows where NAT occurs and the router is
one of the endpoints of the communication.

B. Translating from MIGNIS to the intermediate firewall

Table IV defines the translation between rules in a MIGNIS
configuration C and rules in an intermediate firewall FI .

n1 > n2 | φ
(n1, n2, φ, accept) ∈ SA

n1 / n2 | φ
(n1, n2, φ, drop) ∈ SD1

, SD, SD2

n1 > [n2] nt | φ ∧ nt [n2] > n1 | φ ∧ n2 6= ε ∧ n1 = ∗
(n1, nt, φ, drop) ∈ SD1

(n1, nt, φ, accept) ∈ SA (nt, n1, φ, accept) ∈ SA
(nt, n2, φ) ∈ SSTT

n1 [nt] > n2 | φ ∧ nt = ε

(n1, n2, φ, accept) ∈ SA (n1, n2, φ, ε) ∈ SDYN

TABLE IV
TRANSLATION FROM A MIGNIS CONFIGURATION TO AN INTERMEDIATE

FIREWALL CONFIGURATION.

The translations in Table IV, besides the ACCEPT one, are
not immediate. We will start by looking at the DROP one,
which adds a drop rule to all drop sets in FI . The reason
behind this decision is the behavior of the intermediate firewall
towards packets in established connections. As we can see
in Table III, packets belonging to established connections are
immune to rules in SD, which contradicts the higher level
MIGNIS semantics. Our attempt to fix this is to drop the
packet at SD1

, before any DNAT, or at SD2
, after all SNAT.

This solution works when p̃ = p (no DNAT) or p̃ = p′ (no
SNAT), but fails when a packet is translated twice. As a result,
we will need to forbid any drop rules that apply to the return
flow of a double NAT connection. This constraint is necessary
to achieve the soundness of the translation, and is enforced by
condition (i) of Definition 16.

The first NAT translation only accepts DNAT and SNAT
pairs. This approach was motivated by the semantics of static
translation rules SSTT (Definition 14), that implements any
DNAT as a rule that also serves as an SNAT. This is another
difference between the intermediate semantic and the MIGNIS
semantics, since the latter allows for non-symmetrical NAT
rules (Definition 17).

One other important detail is the drop rule added to SD1
,

which serves to block direct connections between n1 and nt. If
this rule was not added, n1 could establish direct connections
with nt as a result of rule n1 > [n2] nt | φ. Again, this
carries implications in the completeness of our translation, but
is required if we are to maintain its soundness (condition (i)
of Definition 18).

The final translation deals with all SNAT rules where nt is
empty (represented by ε). It represents all masquerade SNAT
rules, which are the only ones we implement as dynamic
translations.

We can now define our requirements for a translation to be
sound and complete. The necessity of these requirements is

8

related to the differences between the MIGNIS and the low-
level semantics. While MIGNIS comes with very flexible se-
mantics, this is not matched by our low-level router abstraction
(and consequently our target implementation CISCO IOS). To
achieve soundness, we will require a MIGNIS configuration
C to be safe and nat-complete.

A safe configuration tackles the previously presented prob-
lems where our semantics can not drop a packet that is both
part of an established connection and that goes through a
double NAT. We achieve this by forbidding drop rules that
could possibly match a packet on the reply flow of a double
NAT conversation (condition (i) of Definition 16). A safe
configuration is also free of local to local rules (condition (ii)
of Definition 16). This restriction is necessary since we do not
consider this kind of packets in our intermediate semantics.

Definition 16. A MIGNIS configuration C is safe iff:

(i) For every possible double NAT (both source and desti-
nation address translation) flow, there is no DROP rule
trying to drop traffic in its reply direction. In terms of
syntax, we can define this restriction in the following
way: for every pair of rules n1 > [n2] nt | φ and
n′1 [n′2] > n′t | φ′ in C, we define n1 ∩ n′1 = na and
nt ∩ n′t = nb. If na 6= ∅, nb 6= ∅ and there exists a
packet p for which φ(p, s) and φ′(p, s) both hold, then
any host in na can initiate a double NAT connection
with any host in nb. Therefore, we require that, for every
nx / ny | φ′′ in C, nx ∩ nb = ∅ or ny ∩ na = ∅.

(ii) There is no ACCEPT, DNAT or SNAT rule where both
endpoints are local addresses. This can be syntactically
enforced by checking that for every n1 > [nt] n2 | φ ,
n1 [nt] > n2 | φ or n1 > n2 | φ rules, in C, it holds
true that n1 ∩ L = ∅ or n2 ∩ L = ∅.

Nat-completeness is also necessary for a sound translation.
This constraint forces every NAT rule in a MIGNIS configu-
ration to match one of the translations in Table IV. With this,
we are sure that there are no untranslated NAT rules. This is
critical to achieve soundness because a high-level NAT rule
without an intermediate-level equivalent could cause a similar
packet to be treated in different ways.

Definition 17. A MIGNIS configuration C is nat-complete
iff each non-masquerade SNAT rule is accompanied by its
equivalent (opposite direction) DNAT rule and vice-versa.
Additionally, all non-masquerade SNAT rules must use a
wildcard as the destination address and DNAT ones must use a
wildcard as the source address. Syntactically, we can enforce
that for each nt [n2] > n1 | φ rule, where n2 6= ε, n1 should
be ∗ and there must be another n1 > [n2] nt | φ rule, and
vice-versa.

When it comes to the completeness of our translation, we
require several more constraints on our configuration C.

A well-formed MIGNIS configuration (Definition 18) covers
several combinations of rules that could affect the complete-
ness of a translation.

The first case (i) concerns the drop rule inserted in SD1

when a DNAT rule is translated. To achieve completeness, we

do not allow any other rule that would try to accept a packet
matching the already placed drop rule.

The second case (ii) relates to our aggressive translation
of high-level DROP rules. In order to avoid accidentally
dropping traffic, we need to check if any of the DROP rules is
not indirectly dropping a DNAT packet before its destination
address is translated or an SNAT packet after its source address
has been translated. We recall that, intuitively, the addresses
used in a DROP rule refer to the real addresses of endpoints
and that the previous cases would result in the DROP rule
taking effect when at least one of the addresses in the packet
is translated.

Finally, condition (iii) restricts NAT rules to non-local
traffic, since our intermediate semantics does not contemplate
translated packets in non-forward rules.

Definition 18. A MIGNIS configuration C is well-formed iff:
(i) For every DNAT rule between na and nb, there must be

no other DNAT, SNAT or ACCEPT rule that also allows
connections from any subset of na to any subset of nb.
Syntactically, this rule can be expressed as follows. Let
n1 > [n2] nt | φ be any of the DNAT rules in C. We
require that n1 ∩ n′1 = ∅ or nt ∩ n′2 = ∅ for each
DNAT (n′1 > [n′2] n

′
t | φ′), SNAT (n′1 [n′t] > n′2 | φ′)

or ACCEPT (n′1 > n′2 | φ′) rule in C. This condition is
verified for all DNAT rules in C;

(ii) For every DROP rule, na / nb | φ, in C, there must be no
DNAT (n1 > [n2] nt | φ′) or SNAT (nt [n1] > n2 | φ′)
rules where na∩n1 6= ∅, nb∩n2 6= ∅ and φ(p, s)∧φ′(p, s)
for some packet p and state s.

(iii) Every DNAT or SNAT rule in C must not use any local
address as an endpoint. This is syntactically expressed
by: for every n1 > [nt] n2 | φ or n1 [nt] > n2 | φ rule,
it must hold true that n1 ∩ L = ∅ and n2 ∩ L = ∅.

Another necessary condition for completeness is reply-
awareness. This constraint is related to the conditions (i)
and (ii) in the definition of well-formedness, which exist
because of the translation of DNAT (i) and DROP (ii) rules
indirectly dropping traffic. A reply-aware configuration applies
this logic to traffic on the return flow of an already established
connection. This makes it so that the return traffic is not
accidentally dropped.

Definition 19. A MIGNIS configuration C is reply-aware iff:
(i) For every ACCEPT rule, n1 > n2 | φ, in C, there must

not be another rule indirectly dropping its reply traffic.
This means there can be no DNAT rule (nb > [nx] na |
φ′) where na∩n1 6= ∅, nb∩n2 6= ∅ and φ(p, s)∧φ′(p, s).

(ii) For every DNAT rule, n1 > [n2] nt | φ, in C, there
must not be any other rule indirectly dropping its reply
traffic. In terms of syntax, we can say that there must not
exist any DROP rule (nb / na | φ′) where na ∩ n1 6= ∅,
nb∩n2 6= ∅ and φ(p, s)∧φ′(p, s), for some packet p and
state s. Additionally, a DNAT rule (nb > [nx] na | φ′)
where na ∩ n1 6= ∅, nb ∩ nt 6= ∅ and φ(p, s) ∧ φ′(p, s),
for some packet p and state s, is also forbidden.

(iii) For every SNAT rule, n1 [nt] > n2 | φ, in C, there must
not be any other rule indirectly dropping its reply traffic.

9

Syntactically, this can be expressed by saying that there
must not exist any DROP rule (nb / na | φ′) where
na∩nt 6= ∅, nb∩n2 6= ∅ and φ(p, s)∧φ′(p, s), for some
packet p and state s. DNAT rules (nb > [nx] na | φ′)
where na ∩ nt 6= ∅, nb ∩ n2 6= ∅ and φ(p, s) ∧ φ′(p, s),
for some packet p and state s, are also forbidden.

Our final constraint is nat-consistency, which removes am-
biguity from a configuration, not allowing a packet to match
both a translating and non-translating rule at the same time.

Definition 20. A MIGNIS configuration C is nat-consistent iff,
for any packet p and state s we have that p, s |=C ACCEPT
iff p, s 6|=C DNAT and p, s 6|=C SNAT.

We now propose a Lemma that makes use of both the
translation in Table IV and the previous definitions to establish
a relation between rules in our high-level and intermediate-
level semantics. These relations are a key part in proving the
soundness and completeness of the translation.

Lemma 1. Let C be a MIGNIS configuration and FI an
intermediate firewall. It holds true that:

(i) if p, s |=ilSSTT
nt, snat, then p, s |=C SNAT(nt)∧nt 6= ε;

(ii) if p, s |=ilSSTT
nt, dnat, then p, s |=C DNAT(nt) ∧ nt 6=

ε;
(iii) p, s |=ilSDY N

nt iff p, s |=C SNAT(nt) ∧ nt = ε;
(iv) p, s 6|=ilSD

, p, s 6|=ilSD2
iff p, s 6|=C DROP;

(v) if p, s 6|=ilSD1
, then p, s 6|=C DROP;

Additionally, if C is nat-complete:
(vi) if p, s |=C SNAT(nt)∧nt 6= ε, then p, s |=ilSSTT

nt, snat;
(vii) if p, s |=C DNAT(nt) ∧ nt 6= ε, then p, s |=ilSSTT

nt, dnat.
If C is well-formed:

(viii) if p, s |=C DNAT, then p, s 6|=ilSD1
;

(ix) if p, s |=C SNAT(nt), then p[sa 7→ src], s 6|=ilSD2
, where

src ∈ nt.

In Theorem 2, we formally prove the soundness and com-
pleteness of the translation in Table IV, along with the nec-
essary constraints. We note that the (i) clause of the theorem
concerns the soundness of the translation. This means that an
il flow will always be captured by a hl flow. Such behavior is
fundamental when evaluating the translation from a security
standpoint as it guarantees that we are not ignoring any
potential malicious flow just by considering the hl abstraction.
On the other hand, the (ii) clause shows the completeness of
the translation, which is important from a functionality stand-
point, but does not affect the security aspect. An incomplete
translation, would result in some of the hl flows missing their
il counterparts.

Theorem 2. Let FI be the intermediate firewall obtained from
applying the translation in Table IV to a safe and nat-complete
MIGNIS configuration, C. We have that, for any packets p, p′

and states s, s′:

(i) if s
p,p′−−→il s

′, then s
p,p′−−→hl s

′;
(ii) if C is also well-formed, reply-aware, nat-consistent and

s
p,p′−−→hl s

′, then s
p,p′−−→il s

′.

C. From the intermediate to low-level firewall

We can now present the translation from an intermediate
firewall FI to a low-level router F with n interfaces.

Definition 21. Let FI be an intermediate firewall made up by
sets {SD1

, SSTT , SDYN , SD, SA, SD2
} and let F be a low-

level router made up by lists of basic rules Iid, where d ∈
{in, out} and i ∈ {1, ..., n}, list of static translation rules
T , list of dynamic rules D and lists of basic rules F io , where
i, o ∈ {1, ..., n}∪{l}. The translation from FI to F is defined
as follows:

(i) Let Iiin, for i ∈ {1, ..., n}, be any possible sorting of set
SD1

and add basic rule (∗, ∗, T rue, accept) at the end
of the list;

(ii) Let Iiout, for i ∈ {1, ..., n}, be any possible sorting of set
SD2 and add basic rule (∗, ∗, T rue, accept) at the end
of the list;

(iii) Let F io , for i, o ∈ {1, ..., n}∪{l}, be any possible sorting
of set SD followed by any possible sorting of set SA and
add basic rule (∗, ∗, T rue, drop) at the end of the list;

(iv) Let T be any possible sorting of the set SSTT ;
(v) Let D be any possible sorting of the set SDYN .

Because of the similarities between both firewalls, the
translation is very simple. It is important to remark that the
F io lists in F are purposefully overpopulated. The only reason
this is done is to simplify both the translation and the proofs
present in this work. We can propose an algorithm to simplify
and make the lists more efficient.

Proposition 3. Let F be a low-level router with n interfaces
and sn(intf) to denote the subnet of interface intf . We can
define, for i, o ∈ {1, ..., n} ∪ {l}:

F io = {r | r = (n1, n2, φ, t) ∈ F io ∧ n1 ∩ sn(i) 6= ∅
∧ n2 ∩ sn(o) 6= ∅}

We can then say that p, s |=F i
o
t iff p, s |=

F i
o
t.

Another important aspect of the translation is the transition
from sets to lists. While the latter have defined ordering and
imply determinism, the former could lead to non-determinism.
For example, with a MIGNIS firewall C one could have
p, s |=C SNAT(nt) ∧ p, s |=C SNAT(n′t) while nt ∩ n′t = ∅.
To tackle this disparity, we present the following definition.

Definition 22. A MIGNIS configuration C is considered
deterministic if p, s |=C n1 [nt] > n2 | φ ∧ p, s |=C p, s |=C
n′1 [n′t] > n′2 | φ′, then we have that nt = n′t. The same must
hold true for any pair of DNAT rules. A syntactic approach to
this definition is to check if n1∩n′1 = ∅∨n2∩n′2 = ∅∨nt = n′t.

We can also extend this definition to our intermediate level
firewall.

Definition 23. An intermediate firewall FI is deterministic if,
for each pair of rules r, r′ ∈ SSTT , where r = (n1, n2, φ, t)
and r = (n′1, n

′
2, φ
′, t′), if p, s |= r, dnat ∧ p, s |= r′, dnat,

then t = t′. Additionally, let p, s |=il SNAT(t) denote either
p, s |=ilSSTT

t, snat or p, s |=ilSDY N
t. Then we also require

that if p, s |=il SNAT(t) ∧ p, s |=il SNAT(t′), then t = t′.

10

Proposition 4. Let C be a MIGNIS firewall and FI be an
intermediate firewall obtained from the translation of C.
• if C is deterministic then FI is deterministic.
• if FI is deterministic and C is nat-complete, then C is

deterministic.

We now present a Lemma that, similarly to Lemma 1, is
used to establish a relation between rules in the il configuration
and the ll configuration.

Lemma 5. Let F be the low-level router generated from the
translation of intermediate firewall FI . We have, for any state
s and packets p, p̃, p′, that:

(i) (s, p) �δll p̃ ⇒ /⇐∗ (s, p) �DNAT
il p̃;

(ii) (s, p, p̃) �σll p
′ ⇒ /⇐∗ (s, p, p̃) �SNAT

il p′;
Where ⇐∗ only holds if FI is a deterministic intermediate
firewall.

In Theorem 6, we prove the conditions for the soundness
and completeness of the translation from the intermediate
configuration to a low-level one. Like in Theorem 2, clause (i)
is the one that is important from a security point of view, since
it is the one that requires the existence of an il flow for any
ll flow.

Theorem 6. Let F be the low-level router obtained from
applying the translation in Definition 21 to an intermediate
firewall FI . We have that, for any packets p, p′ and states
s, s′:

(i) if s
p,p′−−→ll s

′, then s
p,p′−−→il s

′;

(ii) if FI is deterministic and s
p,p′−−→il s

′, then s
p,p′−−→ll s

′.

D. Implementation

Our implementation of the translations presented throughout
this work is available as a Python program. This program is
an extension of the already developed MIGNIS tool, making
use of its already existing code structure and adding most IOS
related code in a separate file. In the rest of this section, we
will also refer to our implementation as MIGNIS.

After parsing the configuration file with the firewall rules,
MIGNIS looks for any rule, or combination of rules, that
could compromise the soundness and completeness of the
translation. In other words, MIGNIS verifies if the provided
configuration meets all conditions required in Theorem 2 and
Theorem 6. There is one thing to note about this verification,
concerning the nat-completeness of a configuration. Due to the
overly restrictive nature of this definition, we made it so that
MIGNIS does not check if the destination of a SNAT rule, or
the source of a DNAT rule, is equal to ∗. This change can
lead to translations that are not sound, but we warn the user
in such cases.

Regarding the MIGNIS rules, the accepted syntax expands
upon the one presented in Section III-A. A user can define
a rule including both a destination and source translation
(n1 [nt] > [n′t] n2 | φ). Such rule is equivalent to the pair
of rules n1 > [n′t] n2 | φ and n1 [nt] > n2 | φ, but becomes
much easier to interpret. The φ component of a rule can only
be used to restrict a rule to a certain transport protocol (UDP
or TCP) or network protocol. When writing a rule, it is also

possible to use the alias of an interface to refer to its entire
subnet.

The transformation of a low-level rule into a real IOS
command can be found in the Appendix A.

V. CONCLUSION

Firewall specification languages have been studied and im-
proved over time, in attempts to improve both their readability
and ease of use. Throughout this work we looked at a few
different approaches to this subject, focusing especially on
MIGNIS. Due to its declarative nature, the language allows the
configuration of a firewall through rules that do not depend on
their ordering. In addition to this, MIGNIS rules have a very
simple and explicit syntax. Both these features make it so that
MIGNIS configurations are easy to read and to check and
reason about potential security issues.

Our contribution to this problem was to expand the existing
MIGNIS software and make it compatible with Cisco IOS
routers. To achieve this, we presented formal definitions and
semantics for both MIGNIS, the high-level language, and a
low-level abstraction of a router, that is a simplification of
Cisco IOS for NAT and packet filtering. We then proved the
correctness and completeness of the translations used between
both languages. Our proof consisted in showing that, given
our proposed translation, a low-level flow implies a high-level
one, and vice-versa. With this proof, we can write rules in the
high-level language, MIGNIS, and be confident that our low-
level router will allow no more flows than the ones allowed
by the high-level semantics, while abstracting all the low-
level details. The proposed translation was implemented using
Python, making use of the already existing MIGNIS software.

REFERENCES

[1] P. Adão, C. Bozzato, G. Dei Rossi, R. Focardi, and F. L. Luccio,
“Mignis: A semantic based tool for firewall configuration,” In CSF14,
pp. 351–365, 2014.

[2] F. Mansmann and W. Cheswick, “Visual analysis of complex firewall
configurations,” In VizSec12, pp. 1–8, 2012.

[3] R. Boutaba, “PolicyVis: Firewall Security Policy Visualization and
Inspection,” System, pp. 1–16, 2008.

[4] A. El-Atawy, T. Samak, Z. Wali, E. Al-Shaer, F. Lin, C. Pham, and S. Li,
“An automated framework for validating firewall policy enforcement,”
In POLICY07, pp. 151–160, 2007.

[5] P. Eronen and J. Zitting, “An expert system for analyzing firewall rules,”
In NordSec01), p. 100107, 2001.

[6] secgroup, “Mignis.” [Online]. Available:
https://github.com/secgroup/Mignis

[7] M. G. Gouda and A. X. Liu, “Structured firewall design,” Computer
Networks, vol. 51, no. 4, pp. 1106–1120, 2007.

[8] A. Jeffrey and T. Samak, “Model checking firewall policy configura-
tions,” In POLICY 2009, no. 1, pp. 60–67, 2009.

[9] Y. Bartal, A. Mayer, K. Nissim, and A. Wool, “Firmato,” ACM Trans-
actions on Computer Systems, vol. 22, no. 4, pp. 381–420, 2004.

[10] “High Level Firewall Language.” [Online]. Available:
https://www.cusae.com/hlfl

[11] “Shorewall.” [Online]. Available: http://www.shorewall.net/
[12] B. Zhang, E. Al-Shaer, R. Jagadeesan, J. Riely, and C. Pitcher, “Speci-

fications of a high-level conflict-free firewall policy language for multi-
domain networks,” In SACMAT07, p. 185, 2007.

[13] F. Cuppens, N. Cuppens-Boulahia, T. Sans, and A. Miège, “A Formal
Approach to Specify and Deploy a Network Security Policy,” Formal
Aspects in Security and Trust, pp. 203–218.

[14] firewalld.org project, “firewalld.” [Online]. Available:
https://firewalld.org/

[15] NetCitadel, “Firewall Builder.” [Online]. Available:
http://fwbuilder.sourceforge.net/

11

APPENDIX

• A basic rule (n1, n2, φ, t) is translated into: t φ∗ n∗1 n∗2
This command is placed inside the context:
i p a c c e s s− l i s t e x t e n d e d a c l [name]

where [name] depends on whether the basic rule is in
Iid or F io and specifies the target interfaces. n∗1 is the IOS
representation of n1, which follows the formats shown in
Listing 1, likewise for n∗2. If φ is empty, then φ∗ assumes
the value ip, otherwise φ∗ = φ.

• A static translation rule (la, ga, φ), in T , is translated
into:
ip nat source static φ la ga

This command is executed at a global configuration con-
text, separating it from any specific interface or interface
pairing. In this case, φ is an optional parameter in the
IOS command, allowing it to be empty or assume values
udp or tcp.

• A dynamic translation rule (n1, n2, φ, t), in D, is
translated into:
i p n a t s o u r c e l i s t a c l n a t [num] i n t e r f a c e [i n t f]

↪→ o v e r l o a d

This command is also executed at a global configuration
context. The acl_nat_[num] part matches an access-
list implementing the basic rule (n1, n2, φ, accept). The
restrictions to φ are the same as the ones presented for
basic rules, due to the similarity in implementation.

In addition to the above translations, MIGNIS also runs
commands that apply the translated rules to the respective
interfaces or pair of zones.

