
Applying Embedded Systems and Sensor
Technologies to Trampoline Gymnastics

Diogo Ferreira Tribolet de Abreu

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisors: Prof. Carlos Manuel Ribeiro Almeida

Prof. Rui Manuel Rodrigues Rocha

Examination Committee

Chairperson: Prof. António Manuel Raminhos Cordeiro Grilo

Supervisor: Prof. Carlos Manuel Ribeiro Almeida

Member of the Committee: Prof. José Manuel de Sousa de Matos Rufino

June 2018

Declaration

I declare that this document is an original work of my own authorship and that it fulfills all the

requirements of the Code of Conduct and Good Practices of the Universidade de Lisboa.

i

Acknowledgments

During the entire process of this thesis, many people gave me good advice and helped me make it as

good as possible.

First of all, I thank both my supervisors for guiding me the whole way and not letting me ever

loose focus on the final goal. Professor Carlos Almeida who was responsible for giving a first good

impression of embedded systems and sensor technologies, not to mention his incredible attention for

detail while revising this thesis. Professor Rui Rocha aided me significantly on the more practical side,

developing hardware and software, and provided me with a great working space and resources in the

Tagus Park campus.

Also I thank Sporting Clube de Portugal for letting me use their facilities to test my prototype. To all

the coaches and athletes, specifically Tiago Duarte (coach), Luis Santos (coach), Tiago Costa (athlete),

Pedro Ferreira (athlete), Diogo Ganchinho (athlete), Duarte Fernandes (athlete), Tiago Lopes (athlete)

and Ricardo Santos (athlete) for taking the time to test the system and to give their honest opinion on

ways to improve it.

To all my friends and colleagues, mostly those from Instituto Superior Técnico, not only for helping

during this thesis but also throughout the whole course.

A very special thanks to my girlfriend Mariana Raposo who put up with me through this entire

journey and tirelessly helped me to write this thesis. Without her it would have been a lot harder.

A final thanks to all my family, especially to my parents Margarida and Miguel Abreu, for providing

and teaching me everything I know and love, Trampoline Gymnastics and Engineering. Without them

I wouldn’t be the person I am today.

iii

Abstract

At the highest level of sports, the difference between ending in first or second place can be very small.

This is particularly true for the sport of Trampoline Gymnastics, where jumping a little higher and

more centered on the trampoline can have a huge impact in the final score. By utilizing Sporting

Technologies (STs) in training, coaches and athletes can identify hidden problems and develop new

training methods, which would be impossible otherwise. In the case of Trampoline Gymnastics, two

parameters were chosen to be measured: the Time of Flight (TOF) and the Horizontal Displacement

(HD).

At the time that this work was started, not much research had been done in this area and most

of it implicated alterations to the athlete’s and/or the trampoline’s behavior. Also, there were no

commercial products available that measured both parameters.

The designed architecture uses a grid of infrared beams (transmitters and receivers) under the

trampoline bed that wirelessly send the TOF and HD to be stored in a database. A program with a

Graphical User Interface (GUI) was created to control the system and view the data. Based on this, a

functioning prototype was developed and tested in a “real-world” scenario.

Experiments were conducted in Sporting Clube de Portugal, where national team level athletes and

coaches tried the system. The general consensus was that the system provided enough accuracy for

measuring both the TOF and HD, being a helpful tool to improve their performance.

Keywords: Sporting Technologies, Trampoline Gymnastics, Time of Flight, Horizontal Displace-

ment, Infrared Beam Module Transmitter, Infrared Beam Module Receiver

v

Resumo

Ao mais alto ńıvel do desporto, a diferença entre acabar em primeiro ou segundo pode ser muito

reduzida. Isto é especialmente verdade na Ginástica de Trampolins, onde saltar ligeiramente mais alto

e mais no centro do trampolim pode ter um enorme impacto na nota final. Ao utilizar Tecnologias de

Desporto (TD) durante o treino, treinadores e atletas podem identificar problemas e desenvolver novos

métodos de treino, o que de outra forma seria imposśıvel. No caso da Ginástica de Trampolins, dois

parâmetros foram escolhidos para serem medidos: o Time of Flight (TOF) e Horizontal Displacement
(HD).

Quando esta tese foi iniciada, não existia muita investigação feita nesta área e na maioria dos

casos implicava alterações no comportamento do atleta e/ou trampolim. Para além disso, não estavam

comercializados nenhuns produtos que medissem ambos os parâmetros.

A arquitectura desenvolvida usa uma grelha de infravermelhos (transmissores e recetores) posi-

cionada debaixo da cama do trampolim que envia sem fios o TOF e o HD para serem guardados numa

base de dados. Um programa com uma interface gráfica foi criado para controlar o sistema e visualizar

os dados. Baseado nisto, um protótipo funcional foi criado e testado num cenário real.

Foram feitas experiências no Sporting Clube de Portugal, onde atletas e treinadores da selecção

nacional testaram o protótipo. A opinião geral foi que o sistema tinha precisão suficente para medir o

TOF e o HD de forma a ser uma ferramenta útil para melhorar os seus desempenhos.

Palavras-Chave: Tecnologias de Desporto, Ginástica de Trampolins, Time of Flight, Horizontal Dis-
placement, Módulo Transmissor de Infravermelho, Módulo Recetor de Infravermelho

vii

Contents

Abstract v

Resumo vii

List of Tables xi

List of Figures xiii

List of Listings xv

Acronyms xvii

Glossary xix

1 Introduction 1

1.1 Motivation . 3

1.2 Goals . 3

1.3 Challenges . 5

1.4 Thesis Structure . 5

2 The State of Sensor Technologies Applied to Trampoline Gymnastics 7

2.1 Existing Products . 8

2.2 Other Measuring Systems for Trampoline . 9

2.3 Sensor Technology Comparison . 15

2.4 Inter-Sensor Communication Comparison . 18

2.5 I2C Primer . 20

3 System Architecture and Requirements 23

3.1 Requirements . 24

3.2 Architecture . 25

4 Hardware and Software Design and Implementation 35

4.1 IRM-Tx Design and Implementation . 36

4.2 IRM-Rx Design and Implementation . 40

4.3 GC Design and Implementation . 42

4.4 APS Design and Implementation . 49

4.5 Final System Design and Implementation . 53

5 Testing and Results 55

5.1 Trampoline Bed Behavior Characterization . 56

5.2 “Real World” Testing . 59

ix

Contents

5.3 Limit Testing . 60

6 Conclusions and Future Work 61

6.1 Future Work . 63

Bibliography 65

A Hardware Bill of Materials (BOM) A-1

B Code and Flowcharts B-1

C WebApp Graphical User Interface (GUI) Screenshots C-1

D Infrared Beam Grid (IR-GRID) Configuration D-1

x

List of Tables

2.1 Comparison of motion capture technologies based on [8] 10

2.2 Comparison between various sensing technologies [39][41][1][3] 18

2.3 General Comparison between Serial Communication Protocols [12][26][47][30][31][23] 19

3.1 Functional and Non-Functional System Requirements . 24

5.1 Results from “real world” testing of the system. 59

A.1 IRM-Tx Hardware BOM . A-2

A.2 IRM-Rx Hardware BOM . A-3

A.3 GC Hardware BOM . A-4

A.4 APS Hardware BOM . A-4

A.5 Complete System Hardware BOM . A-5

xi

List of Figures

1.1 Olympic Eurotramp Trampoline Structure . 3

1.2 Trampoline bed with different scoring areas highlighted (based on [14]) 4

1.3 General Diagram of System Architecture . 4

2.1 Images of the Time Measurement Device by Acrosport. 8

2.2 Air Time System GUI [52]. 9

2.3 Placement of the IMUs in the athlete’s body (left) to measure the limbs orientation

(right) [8]. 11

2.4 Trampoline bed deformation with time [10]. 11

2.5 Images of the system setup with the robotic arm, MOTOMAN. 12

2.6 Invention of a system for measuring Time of Flight (TOF) and location on a trampoline

bed of jumps [16]. 13

2.7 Invention for Sensor, Control and Virtual Reality System for a Trampoline [11]. 14

2.8 Invention for a Trampoline with Feedback System [53]. 14

2.9 Ultrasound Sensor working principal [40]. 15

2.10 Break Beam IR Sensor example [27]. 16

2.11 Light Grid LGS100 Serie by Pepperl+Fuchs [33]. 16

2.12 Invention for Infrared Touch Screen Gated by Touch Force [24]. 17

2.13 IR angle of reflection for near and far object using a Reflective sensor [1]. 17

2.14 PIR sensor general diagram [3]. 17

2.15 General circuit diagram for an Inter-Integrated Circuit (I2C) connection between two

devices [22]. 20

2.16 Maximum Rp as a function of Cp for Standard-mode (1), Fast-mode (2) and Fast-mode

Plus (3) [31]. 20

2.17 Example of a complete data transaction in I2C [31]. 21

3.1 Diagram of the System Architecture. 26

3.2 General Infrared Beam Grid (IR-GRID). 26

3.3 Bed deformation progression interacting with the IR-GRID (viewed from the X-axis side). 27

3.4 IR-GRID configuration. 28

3.5 Infrared Beam Module (IRM) diagram. 28

3.6 Diagram of the IRM-Tx. 29

3.7 Diagram of the Infrared Beam Module Receiver (IRM-Rx). 29

3.8 Diagram of the Grid Controller (GC). 30

3.9 Diagram of the Access Point Server (APS). 31

3.10 General mock-up of the Web Application’s main page GUI. 31

3.11 Diagram of communication between IRM-Rx and GC. 32

3.12 Diagram of communication between GC and APS. 32

xiii

List of Figures

3.13 Diagram of communication between APS and UT. 33

4.1 Diagram of a lens being used to focus the light from a LED, where D is the diameter of

the lens, F is the focal length and θ is the angle of half intensity on the LED [25]. 37

4.2 Schematic of the electrical circuit implementation for the Infrared Beam Module Trans-

mitter (IRM-Tx). 37

4.3 Hardware implementation of the IRM-Tx and all of its components (Printed Circuit

Board (PCB), lens and box). 39

4.4 Schematic of the electrical circuit implementation for the IRM-Rx. 41

4.5 Hardware implementation of the IRM-Rx and all of its components (PCB and box). . . . 42

4.6 Schematic of the electrical circuit implementation for the GC. 43

4.7 Progression of the IR beam state when an athlete lands on the trampoline bed. 45

4.8 Prototype of the GC for testing. 47

4.9 Line charts of the IRM-Rx sensor values during one jump (landing on area A4). Each

sensor has a value of “8” when its IR beam is interrupted and “0” when its IR beam is

uninterrupted. 48

4.10 Hardware implementation of the GC and all of its components (PCB and box). 48

4.11 Diagram representation of the relational database in the APS WebApp. 50

4.12 IR-GRID modules attachment to the metallic ring frame of the trampoline. 53

4.13 Picture of the hardware implementation for the complete system. 54

5.1 Picture of the GoPro point of view. The “fish eye” lens enables all trampoline bed areas

to be visible. 56

5.2 Chart of the X-axis IRM-Rx sensor values during one jump (landing on area A4). Each

sensor has a value of “8” when its IR beam is interrupted and “0” when its IR beam is

uninterrupted. 57

5.3 Charts showing the relationship between TOF and Time on Bed (TOB) values in areas

A3, A4 and A5 at the heights of less and more than two meters. The data was organized

in scatter charts and a linear regression was done in each one. 58

5.4 Chart with the distribution of the time interval between the moments when the first and

second infrared (IR) beams are interrupted. Athlete jumping on lines LX1 and LX2. . . . 60

B.1 IRM-Rx flowchart of the main() function in the software implemented in the MSP430G2553

microcontroller. B-8

B.2 IRM-Rx flowchart of the pollForTakeOff() function in the software implemented in the

MSP430G2553 microcontroller. B-9

C.1 Login page. C-2

C.2 Register page. C-3

C.3 Main application page. C-4

C.4 Main application page with New Profile overlay. C-5

C.5 Profile information page. C-6

C.6 Edit profile information page. C-7

C.7 Profile routine history page. C-8

C.8 Profile routine history page with graphical representation of routine overlay. C-9

D.1 IR-GRID configuration. D-2

D.2 All “virtual” areas that the IR-GRID configuration can differentiate. These areas are

coded into integers, as shown in Listing B.3. D-3

xiv

List of Listings

4.1 Example of a Flask view function. The URL called ‘url address’ is mapped to the

view function called viewFunctionName. The view function returns the HTML file called

‘html file name.html’ to the client who sent the request. 50

B.1 Infrared Beam Module Transmitter (IRM-Tx) software code implemented in the AT-

tiny85 microcontroller. Developed using the Arduino IDE. B-2

B.2 Infrared Beam Module Receiver (IRM-Rx) software code implemented in the MSP430G2553

microcontroller. Developed using the Code Composer Studio. B-2

B.3 Grid Controller (GC) software code implemented in the MSP430G2553 microcontroller.

Developed using the Code Composer Studio. B-4

B.4 GC software code implemented in the ESP-12E microcontroller. Developed using the

Arduino IDE. B-10

B.5 Summary of the seven most important Access Point Server (APS) Web Application (We-

bApp) view functions. B-11

xv

Acronyms

AJAX Asynchronous JavaScript And XML.

AP Access Point.

APS Access Point Server.

ATS AirTime Trampoline System.

BOM Bill of Materials.

CAN Controller Area Network.

CSS Cascading Style Sheets.

CTC Mode Clear Timer on Compare Match Mode. Glossary: CTC.

FGP Federação de Ginástica de Portugal.

FIG Fédération Internationale de Gymnastique.

GC Grid Controller.

GPIO General Purpose Input and Output.

GUI Graphical User Interface.

HD Horizontal Displacement. Glossary: HD.

HTML Hypertext Markup Language.

HTTP Hypertext Transfer Protocol.

I2C Inter-Integrated Circuit.

IMUs Inertial Measurement Units.

IR Infrared.

IR-GRID Infrared Beam Grid.

IRM Infrared Beam Module.

IRM-Rx Infrared Beam Module Receiver.

IRM-Tx Infrared Beam Module Transmitter.

ISR Interrupt Service Routine.

xvii

Acronyms

LAN Local Area Network.

LED Light Emitting Diode.

LPM Low Power Mode.

MOSFET Metal Oxide Semiconductor Field Effect Transistor.

PCB Printed Circuit Board.

PIR Sensors Pyroelectric Infrared Sensor.

PLA Polylactic Acid.

RPi Raspberry Pi.

RS-485 RS-485.

SoC System on Chip.

SQL Structured Query Language.

STs Sporting Technologies.

SYN Synchro Score. Glossary: SYN.

TD Tecnologias de Desporto.

TMD Time Measurement Device.

TOB Time on Bed. Glossary: TOB.

TOF Time of Flight. Glossary: TOF.

UI User Interface.

URL Uniform Resource Locator.

USCI Universal Serial Communication Interface.

UT User Terminal.

WebApp Web Application. Glossary: WebApp.

WSGI Web Server Gateway Interface.

xviii

Glossary

CTC Clear Timer on Compare Match (CTC) Mode refers to a mode of operation of Timer0 in the

ATTINY85 microcontroller. In this mode the counter starts at zero and increments until it reaches

a certain user-defined value. When it reaches the desired value it automatically resets the counter

to zero and starts incrementing again.

Execution is a measure of the overall perfectionism of an athlete’s routine. It refers to the straightness

of the legs, torso, “travelling”, etc..

HD Horizontal Displacement is a measure of the location where an athlete lands on the trampoline

bed after each skill. There are 11 different areas on the trampoline bed (see Figure 1.2) and

depending on which of them the athlete lands on after each jump a deduction of 0.0 (A5), 0.1

(A4 and A6), 0.2 (A1, A3, A7 and A9) or 0.3 (A0, A2, A8 and A10) points is given. The sum of

all deductions is then subtracted to an initial score of 10.0 points resulting in the HD score.

SCL is the serial clock line in the I2C protocol.

SDA is the serial data line in the I2C protocol.

SYN Synchro Score is a component of the final score of a Synchronized Trampoline Routine. It refers

to the degree at which a pair of athletes (jumping in seperate trampolines) fall on their trampo-

line bed at the same time, after each skill.

Synchronized Trampoline Routine is a Trampoline Routine executed by two athletes side-by-side on

two seperate trampolines. The final score includes a parameter called Synchro Score.

TOB Time on Bed is the measured time that an athlete spends on the trampoline bed before taking

off and performing a new jump in the air..

TOF Time of Flight is the measured time that an athlete spends in the air. This value does not count

with the contact time spent on the trampoline bed. Typical values of Senior Men range between

17.000 and 20.000 seconds for a full trampoline routine [18].

Trampoline Routine is a sequence of 10 consecutive jumps/skills executed on the trampoline by an

athlete.

WebApp is a type of computer program based on the client-server structure. The client part is nor-

mally a web browser that is used to make requests to the server. The server contains all the code

of the Web Application and responds to the client’s requests. It has a front-end that contains the

User Interface part of the program and a back-end which contains the databases and the code to

manage them. Examples of Web Applications are webmail, online stores, messaging services and

many others.

xix

1
Introduction

Contents
1.1 Motivation . 3

1.2 Goals . 3

1.3 Challenges . 5

1.4 Thesis Structure . 5

1

1. Introduction

Nowadays, more and more technologies are being used in the sports world. These technologies

are applied in various aspects of sports: some devices are used in competition to help make judging

the sport less subjective and more accurate (e.g. Hawk-Eye system in tennis [21]), and others are

being used during training to help coaches and athletes achieve better results more efficiently (e.g.

Babolat Play [45]). The University of Ulster defines Sporting Technologies (STs) as “. . . man-made

means developed to reach human interests or goals in or relating to a particular sport . . . ” [54].

In general, the main purpose of STs during training is to gather data about the athletes perfor-

mance. This data can then be used by the coaches to improve or develop new training methods,

aiming to increase the athletes efficiency and results. In sports that use specific equipment, like cycling

and tennis, this data can be analyzed and used to develop better materials or structures and improve

existing instruments. Another important aspect of these technologies is that they must be “invisible”

to the athletes and cannot change in any way the conditions that exist during a competition. As a

paper on STs by Pervasive Computing explained, “. . . enhancing players so that they want to use sen-

sors in their training, enabling unobtrusive instrumentation so that coaches can analyze the best data

available . . . ” [9].

Trampoline Gymnastics is a competitive sport that has gained much momentum since it was in-

troduced in the Olympic Games in Sydney, 2000. Trampoline Gymnastics competitions consist of an

athlete performing two trampoline routines during the preliminaries round (where the total score

is the sum of two separate scores for each routine), and one routine in the finals (one final score).

Trampoline Routines consist of 10 different skills/jumps performed in a sequence, one after the other.

Trampoline Gymnastics has been continuously evolving and in the last years has verified the imple-

mentation of various STs. The main components of an Olympic competition trampoline are: a metallic

frame structure, as shown in Figure 1.1b, a set of metallic springs that are attached to the inner perime-

ter of the trampoline frame, and an elastic bed, as shown in Figure 1.1a. The elastic and flexibility

of the springs and bed and the rigidity of the metallic frame are the main characteristics that define

how a trampoline behaves when an athlete is jumping on it. This is basically the way the forces are

transfered from an athlete falling on the trampoline, to the floor where the trampoline is placed. As

referenced before, the properties cannot be altered in any way by any STs that want to be used.

In 2010, a new rule was created adding a new variable when scoring a trampoline routine, the Time

of Flight (TOF). This new component refers to the measured time that a trampolining athlete spends in

the air. This value does not count with the contact time spent on the trampoline bed. To measure the

TOF, devices were created that can be attached to the trampoline and differentiate between when an

athlete is in the air and when she/he touches the bed. These machines are used during competitions

and in training to help athletes understand whether they should work on jumping higher or not.

Another important component of a trampoline routine is the Horizontal Displacement (HD). This

parameter refers to the location on the bed where an athlete lands after each skill. A trampoline bed,

as shown in Figure 1.1a, has several areas bounded by red lines. The greater the number of jumps

inside the center square, the higher the score. The HD used to be included in the Execution part of the

routine score [18], but since 2017 it is a completely separate component, as defined in the 2017-2020

Trampoline Code of Points [17]. Right now the HD is is measured by the judges using video cameras,

but very recently there has been an attempt to measure this component with a machine (non-official

and not Fédération Internationale de Gymnastique (FIG) approved).

These two score components are very important because they can be measured in a very objective

way, eliminating human error. This makes them perfect candidates to be measured and analyzed using

STs.

2

1.1 Motivation

(a) Trampoline bed [14]. (b) Trampoline frame [15].

Figure 1.1: Olympic Eurotramp Trampoline Structure

1.1 Motivation

At the moment, the only STs for Trampoline Gymnastics that are commercially available are for mea-

suring TOF. These systems have many problems that are holding back a wide spread of their usage

during the training of the gymnasts.

The first problem is pricing: these machines can cost between C900 [2] and C1400 [52]. Most

clubs cannot afford a system at these prices because, unfortunately, Trampoline Gymnastics is not a big

revenue generating sport yet. Moreover, most clubs have other sports, besides Trampoline Gymnastics,

that get more investment and are more well-known. In Portugal, only the Federação de Ginástica de

Portugal (FGP) and one other club have these TOF systems for training and for competition.

The second issue is related to utilization of the system. These devices can be very difficult to mount

on the trampoline and normally are not very sturdy due to their ineffective attaching system. To work

correctly, the machine relies on precise alignment of the sensors so any impact on the trampoline

might incapacitate the system (this happens very often during competition and training). Also the

User Interface (UI) of both systems is not very user friendly and intuitive to use.

The final problem, and probably the most important one, is the utility of the machine. These

systems were designed mainly for the competition, so their output is merely quantitative (final score),

even though the main purpose of STs is to help coaches and athletes to improve their performance

in training. To fix this, these systems must deliver, in a better way, more processed data that can be

relevant for both coaches and athletes.

There is currently no machine to measure the HD of a trampoline gymnast commercially available.

However, the documents and regulation needed by the FIG are being created to allow these systems to

be used in competitions.

1.2 Goals

The main objective of this thesis is to create a functioning prototype of a system that can accurately

and precisely measure the TOF and HD of a trampoline routine.

The trampoline system must be able to detect, with millisecond resolution (as defined by the FIG

in the 2017-2020 Trampoline Code of Points [17]), the time when an athlete lands and leaves the bed.

These two moments, in each skill, are essential to be able to calculate the final TOF of the routine,

since one is only interested in the time the athlete spends in the air. This system must also be able

to determine where the athlete has landed on the bed with some degree of accuracy. Even though

there are no official FIG minimum requirements yet, it should detect in which areas, highlighted in

Figure 1.2, the athlete lands on after each skill.

The Graphical User Interface (GUI) should be intuitive and easy to understand for athletes and

3

1. Introduction

Figure 1.2: Trampoline bed with different scoring areas highlighted (based on [14])

coaches to use during training. Timing information for each jump will be recorded and in the end of a

routine the total TOF is displayed to the user. The location where a gymnast lands on the bed, in each

jump, will also be determined and displayed. The User will manually signal the system to start/stop

measuring a given routine. A simple database will also be provided to save athlete profiles and routine

(TOF and HD) information.

When finished, the system should be cheaper than the other devices for measuring TOF. It should

also be non-invasive to the trampoline, meaning that, in no way, can it alter any variables influencing

the jumpers performance. A trampoline has two main components: a moving one, which is comprised

of the springs and bed, and a static one, which is comprised of the metallic frame, shown in Figure 1.1b.

The most important part that defines “how a trampoline jumps” has to do with the flexibility/elastic

properties of the springs and the bed. This means that the system should be mounted on the static part

of the trampoline, the metallic frame, minimizing its influence on the athlete’s performance. Mounting

the machine must be very easy and it must be robust enough to withstand normal day-to-day use of

the trampoline.

The final result will be a system that is attached easily to the trampoline and will “feed” the coach

real-time data (after each routine) about TOF and HD of the athlete.

Figure 1.3 shows a general architecture of the final system. The main blocks are: a sensor system

mounted on the trampoline that detects when and where the gymnast lands on the bed; a database that

receives the data from the sensor system and stores it; a user terminal that accesses the database and

displays the information in a graphical manner. The User Terminal is also used to give the commands

to start or stop the routine measurements.

Data communication between the different blocks of the system should be wireless to avoid the

usage of long electric wires in gyms. The system should also be able to function without Internet

connection, meaning that all data storage and communication should be done locally in the gym.

Figure 1.3: General Diagram of System Architecture

4

1.3 Challenges

1.3 Challenges

The two main challenges that this project faces are: guaranteeing the resolution needed for the TOF

part and developing a new kind of sensor(s) that can calculate where the athlete has landed on the

trampoline after each skill.

The first problem has to do with the speed at which the sensor(s) can detect if a person has con-

tacted or left the trampoline bed. This means that the sensor’s measurements must be accurate to the

true value of TOF in milliseconds (as referred above in Section 1.2). To address this, the performance

of the sensors will have to be carefully analyzed and eventual computation and data transmission

times will also have to be considered. Another issue, related to the timing, is guaranteeing that the

processing of data and all final results should be finished and accessible right after the routine has

ended.

The second problem is related to the lack of systems that can measure and localize surface defor-

mations with the timing constraints needed for this project. Specifically, the challenge is to create a

sensor system that can accurately differentiate in which trampoline area an athlete lands on after each

jump (position of the deformation on the trampoline bed surface).

Furthermore, the sensor(s) chosen must be somewhat cheap and cannot change in any way the

trampoline’s elastic/flexible properties.

1.4 Thesis Structure

This thesis is organized as follows. In Chapter 2, other technologies and academic studies related to

Trampoline Gymnastics will be presented and analyzed. After that, in Chapter 3, the requirements

necessary for the desired system to work and a general architecture of the different sub-systems that

constitute it will be proposed. In Chapter 4, the hardware and software implementations of these

sub-systems will be described and the inner working of the system will be explained. In Chapter 5, the

testing and validation of the system will be discussed and which results were obtained. To terminate,

in Chapter 6, the conclusions about how the system as a whole stacks up to the previously defined

requirements will be presented. Some future work and improvements that can possibly be added to

the system will also be referenced.

5

2
The State of Sensor Technologies

Applied to Trampoline Gymnastics

Contents
2.1 Existing Products . 8

2.2 Other Measuring Systems for Trampoline . 9

2.3 Sensor Technology Comparison . 15

2.4 Inter-Sensor Communication Comparison . 18

2.5 I2C Primer . 20

7

2. The State of Sensor Technologies Applied to Trampoline Gymnastics

This chapter will focus on existing studies and systems used to measure various parameters in

Trampoline Gymnastics. Some of the referred systems are actual products that are being sold and used

both in training and competitions while others are academic studies or patents. This chapter will focus

more on the technology/sensor components of these projects as it will be more relevant in order to

elaborate an architecture to make the proposed system work. Also the most significant contribution of

this thesis is about the trampoline sensor system and not as much as the user terminal and the database

(although they are all important for the whole system to work as desired).

Because technology in Trampoline Gymnastics is a very specific topic, not many studies or systems

have been developed. This also reinforces the important contribution to the area that this thesis might

give.

2.1 Existing Products

As referred in the Introduction, there are already Sporting Technologies (STs) that are used in Tram-

poline Gymnastics. The two main products that are being used during training and competition are:

the AirTime Trampoline System (ATS) by Trampoline Timing Systems [52] and the Time Measurement

Device (TMD) by Acrosport [2]. Both of these devices are very similar as they measure the TOF of a

trampoline routine and can also be used to measure the synchro score during a Synchronized Trampo-

line Routine. This thesis will focus only on Individual Trampoline so this feature will not be explored,

although this system can be easily adapted to also measure the synchro score in the future.

2.1.1 Time Measurement Device (TMD)

The TMD is comprised of three pairs of infrared (IR) beam emitters and receivers. These are attached

under the trampoline bed onto the metallic frame (the receiver is attached on the opposite side of the

emitter). Figure 2.1 shows an image of the whole system and how it is mounted on the trampoline.

(a) The whole TMD system [2]. (b) TMD system mounted on the trampoline frame
(receiver side) [18].

Figure 2.1: Images of the Time Measurement Device by Acrosport.

The system works by detecting when one of the three beams is interrupted, caused by the defor-

mation of the trampoline bed when an athlete lands on it. By being able to detect the moments when

an athlete leaves and lands on the trampoline bed, the machine can then calculate the Time of Flight

(TOF) of each skill that the athlete executes. The product can register the moment when an athlete

lands and leaves the trampoline bed with an accuracy of 1 millisecond.

As seen in Figure 2.1a the user only interacts with the TMD using a low resolution LCD Display and

some physical buttons to control the machine. It can only store data from one routine at a time and

display the information about each jump individually. It is also important to refer that this product is

FIG approved.

8

2.2 Other Measuring Systems for Trampoline

2.1.2 Air Time System (ATS)

The ATS system is comprised of two (or three, for competitions) industrial 24VDC sensors that are

also attached to the trampoline frame below the bed. Unfortunately a detailed description of the

components in the system is not available and there isn’t much information about how the system

works. The user interacts with a GUI that runs on Windows, as can be seen in Figure 2.2. The ATS has

two versions, one for competition and one for training.

Figure 2.2: Air Time System GUI [52].

For the training version, the system can store information of different athletes in a database located

in a personal computer. It also has the functionality to set specific TOF goals for each athlete.

The competition alternative has the ability to add the starting list (athletes order for performing)

and associate the TOF score to each of them accordingly to the FIG code of points.

The main specifications of this systems are that it has 1 millisecond resolution and has a USB

computer interface. This product is also FIG approved.

2.1.3 Summary

These two products are very similar in what they can do, still several different aspects can be identified.

The most relevant difference, in my point of view, is the user experience. The ATS includes a GUI that

displays information graphically and makes it easier for users to control the system. It also includes

a database for storing the athlete’s routine information so it can be consulted in the future. The only

problem is that the database is located in the user’s computer, limiting the flexibility and security of

the system.

On the other hand, the TMD only has a small LCD screen with physical buttons that can only display

text information to the user. The only advantage of the TMD is the price: for two trampolines the ATS

is about C1400, while the TMD is about C900.

2.2 Other Measuring Systems for Trampoline

In this section the systems described are not commercially available and are not used during competion

(not FIG approved). Some of these systems do not directly measure the parameters defined in the

trampoline code of points [17], like TOF or HD, but they do measure other relevant factors related to

the practice of Trampoline Gymnastics.

9

2. The State of Sensor Technologies Applied to Trampoline Gymnastics

2.2.1 Automated Classification of Trampoline Motions Based on Inertial Sensor
Input

This title refers to a Master’s Thesis submitted by Heike Brock in Saarland University [8]. The purpose

of the thesis is to be able to identify and classify different trampoline skills using inertial sensors (to

measure, for example, acceleration or rotation). I will be focusing mainly on which sensors were used

to capture the motion on the trampoline.

There are many different systems to capture the human body’s motion. The most used systems are:

optical systems (marker-based or marker-less), mechanical systems, magnetic systems and inertial

systems. All of these alternatives provide different information formats and use different setups to

capture motion.

Optical systems use images from several cameras to get a three-dimensional position of the human

body. Some of these systems use special markers that very distinctively reflect light, attached to the

subject, to help the cameras locate the points of interest in the movement. The main problem with

these marker-based systems is that they can be very expensive and complex to setup. Others don’t use

any markers and take advantage of powerful computer vision algorithms to track the subject. These

marker-less systems have the advantage that almost no setup is needed. The main problem is that

computer vision algorithms are still not very accurate and require very powerful computers to process

them.

Mechanical systems use a type of physical exoskeleton, attached to the body, to track the precise

motion of various joints used in movement. The main problem with this system is that it restricts the

movement of the actor, limiting her or his performance.

Magnetic systems use magnetic sensors attached to the subject’s body and a fixed magnetic field

generator. By measuring the variations in the sensor’s values within the field, the system is able to

precisely pin point the location of the person inside the field. The main problem with this system is

that metallic objects can seriously interfere with the results, like wiring, lights or computers. Also,

these magnetic sensors have to be tethered to a central processing unit via long wires which limits a

lot the actor’s movements.

Inertial systems use small inertial sensors that are attached to the body and gather orientational

and dynamic data (not positional) of the motion that can be fed into biomechanical models to infer the

precise movement of the subject. These sensors can contain an array of “sub-sensors” like accelerom-

eters and gyroscopes. The main problem with this system is that the biomechanical models must be

very precise for it to work well.

Table 2.1: Comparison of motion capture technologies based on [8]

Table 2.1 shows some of the most important parameters, relevant to Trampoline Gymnastics, that

10

2.2 Other Measuring Systems for Trampoline

were used to compare different motion capture systems. Given the particular nature of Trampoline

Gymnastics, technologies that significantly limit the athlete’s movements cannot be used. This dis-

cards mechanical and magnetic systems. Moreover, because of the speed and capture volume needed,

optical systems present many disadvantages compared to other technologies. These technologies re-

quire a very complex setup to be able to acquire a big volume of data, their measurements are highly

influenced by outdoor lighting and marker occlusion that can occur many times (given the many twists

and turns that an athlete performs). In conclusion, given the requirements, the study found that iner-

tial sensors were the best candidate to successfully capture Trampoline skill motion.

Ten Inertial Measurement Units (IMUs) were attached at key points in the athletes body, as can be

seen in Figure 2.3. Each inertial sensors contained three accelerometers, three rate gyroscopes and

three magnetometers. All of the data gathered by the system can then be analyzed and used to classify

specific motions of the athletes body.

Figure 2.3: Placement of the IMUs in the athlete’s body (left) to measure the limbs orientation (right) [8].

By repeatedly testing the system and gathering large quantities of data, motion templates can be

generated that are then used to infer which skills are being performed in real-time. Also, using the

equations for movement, many important variables can be calculated (angular velocity, acceleration,

torque, linear momentum, force, etc.) that are then associated with specific motions that the human

body performs.

2.2.2 Sports System Monitoring Intensity of Trampoline Jump

This work [10] was conducted by researchers from Coimbra University, in an effort to develop a system

to determine the TOF of an athlete jumping on a trampoline.

To achieve this, the researchers used a HCSR04 ultrasound sensor and a MSP430 microcontroller

to measure the distance between the floor and the trampoline bed. The HCSR04 sends an ultrasound

signal towards the trampoline bed, which then bounces back and reaches the ultrasound sensor. The

time interval between the emission of the ultrasound signal and the reception of the echo can be used

to calculate the distance to the trampoline bed. This process is repeated over and over again showing

the progression of the distance between the floor and the bed of the trampoline as an athlete jumps.

Figure 2.4: Trampoline bed deformation with time [10].

11

2. The State of Sensor Technologies Applied to Trampoline Gymnastics

As shown in Figure 2.4, there are two key time intervals that are important to differentiate. The

first is the interval between moments (3) and (4). This represents the time elapsed for the entire skill,

since the moment the athlete lands on the bed (3), until the moment the athlete returns again to the

bed after she or he performed the desired skill. The second time interval is between moments (1)

and (2), and this corresponds to the true TOF of the skill. It is the time since an athlete leaves the

trampoline bed until the moment she or he lands on the bed after executing the desired skill. This

means that the true TOF corresponds to the time interval between (3) and (4) minus the time the

athlete spends on the bed of the trampoline.

To test the accuracy of the system, a robotic arm, MOTOMAN, was used to simulate the movement

of an athlete falling on the bed. Figure 2.5a shows a photograph of the setup with the system hardware

below the MOTOMAN. Figure 2.5b shows the distances that were used to simulate when an athlete is

in the air, so there isn’t any bed deformation (MOTOMAN at 54.2 centimeters), and when the bed is

at maximum deformation (MOTOMAN at 32.2 centimeters).

(a) System setup [10].
(b) Distance representation of the system setup
[10].

Figure 2.5: Images of the system setup with the robotic arm, MOTOMAN.

The tests that were conducted simulated two landings executed with a TOF of 2.6 seconds. What

varied was the speed at which the simulated athlete was falling. Three speeds were chosen, 80 mm/s,

160 mm/s and 240 mm/s. The system was programmed to interpret that there was a deformation on

the trampoline bed when the MOTOMAN was at less than 50 centimeters from the sensor. Also a C#

program was developed to create a Graphical User Interface (GUI) to control the system and display

the desired information via a serial interface.

After the three tests the main conclusion was that as the speed increases so does the error. For the

first test, at 80 mm/s, the error was 0.28 seconds. For the second test, at 160 mm/s, the error was

0.337 seconds. Finally for the third test, at 240 mm/s, the error was 0.356 seconds.

12

2.2 Other Measuring Systems for Trampoline

2.2.3 Trampoline System for Measuring TOF and the Location on a Trampoline
Bed of Jumps

The following description relates to a patent filed by Eurotramp (German trampoline manufacturer)

and describes a system that can measure the TOF and detect where an athlete lands on the trampoline

bed after each skill [16].

Figure 2.6: Invention of a system for measuring TOF and location on a trampoline bed of jumps [16].

Figure 2.6 shows an illustration of the various components of the system. The most important

parts to notice are the cubic blocks that are positioned underneath the four legs of the trampoline

(Figure 2.6: 8). These blocks are to be implemented as force sensors in the form of pressure sensors

or strain gauges.

When an athlete is jumping on a trampoline with this system, there are two states that sensors must

detect. The first is when the athlete is in the air executing the skill and the force applied on the plate

is only that of the weight of the trampoline. The second is when the athlete lands on the trampoline

bed and transferring her or his energy through the trampoline and in to the sensors. By distinguishing

these two time intervals the system can calculate the TOF of the jump.

To be able to detect where the athlete has landed on the trampoline bed the system uses the

difference in force applied between the four plates underneath the trampoline legs. In theory, when

and athlete lands on the middle of the trampoline bed, the forces should be equal on all four sensors.

But as the athlete lands farther away from the center, the forces applied will be greater on the sensors

closer to where the athlete landed.

This system has a central processing unit (Figure 2.6: 9) that processes the data from the sensors

and outputs the value for TOF and the location where the athlete landed on the trampoline bed. This

data can then be converted into a TOF and Horizontal Displacement (HD) score and displayed on a

user terminal like a smartphone, tablet or a computer (Figure 2.6: 10).

2.2.4 Other Applications or Technologies for Measuring Trampoline Parameters

Many patents have been filed for several different technologies applied in Trampolining. Figure 2.7

shows an image of the patent for a Sensor, Control and Virtual Reality System for a Trampoline [11].

The present invention aims to display an avatar of the athlete during a trampoline exercise. The

system includes a computer module (Figure 2.7: 30) to process the data which is sent by the sensors,

a trampoline as a platform for the user to perform the skills on (Figure 2.7: 22) and a sensor module

able to detect the users movements (Figure 2.7: 220, 21 ,17, 12, 19, 13).

The sensor module can be a composition of various sensing modules attached to the user or to the

trampoline or even remotely mounted. The document describing the patent does not specify exactly

which sensors are used.

13

2. The State of Sensor Technologies Applied to Trampoline Gymnastics

Figure 2.7: Invention for Sensor, Control and Virtual Reality System for a Trampoline [11].

Another interesting invention is from a patent publication of a Trampoline with Feedback System

[53]. The general diagram can be seen in Figure 2.8.

Figure 2.8: Invention for a Trampoline with Feedback System [53].

The system consists of a plurality of sensors that can be attached to the frame and/or to the mat

of the trampoline. These sensors can be piezoelectric, proximity sensors, accelerometers, motion de-

tectors or any other type. These devices gather information about when someone touches the bed and

even track the movements of a user around the mat. The feedback signals transmitted from the sensors

are fed into a controller that can then actuate using LEDs or sounds.

2.2.5 Summary

By analyzing these systems we can conclude that most of them are not intended for Olympic competi-

tive Trampoline Gymnastics during training or competitions.

First of all some of the systems use sensors attached to the bodies of athletes to be able to gather

the intended data. This is true for the system in section 2.2.1 that uses inertial sensors strapped to the

jumper and the patent represented in Figure 2.7, which also included the possibility for sensors to be

attached on the users body. The main disadvantage of this is that the extra gear limits and alters the

motion of the athletes while executing very technical skills, which can compromise the jumper’s safety.

The second reason is that some of these systems rely on altering essential properties of the tram-

poline. This can be seen in the patent represented by Figure 2.8 that includes the possibility to attach

sensors to the bed of the trampoline. The elastic properties of the trampolines (springs and bed) are

of the utmost importance to the performance of the athlete. By altering the feel and characteristics of

these components seriously compromises the ability for the jumpers to perform. The patent described

in section 2.2.3 shows a very complete solution for the problem that needs to be solved. The main

drawback of this system is that the force sensors absorb some of the force that would normally be

applied on the floor where the trampoline was mounted on. This creates a dampening effect that may

14

2.3 Sensor Technology Comparison

lower the jumping height that the athletes can achieve on that trampoline. It is also important to refer

that not all the skills performed on the trampoline are perfectly vertical, which means that not all of

the force is applied vertically on the force sensors. This may lead to unreliable results in terms of the

HD score.

The work done by Batalha M, Umbelino V and Amaro JP [10] is very good in the sense that it can,

theoretically, calculate the TOF of the jumps without altering in any way the athlete’s performance.

One problem is its lack of accuracy and resolution due to the hardware and the time it takes for the

ultrasound waves to physically hit the bed and echo back. Another big problem is the fact that this

system does not present a solution for measuring the HD or the location where the skill lands on the

trampoline bed.

2.3 Sensor Technology Comparison

As explained in Chapter 1, the main objective of this work is to create a sensor system technology

that can measure the TOF and HD of an athlete during a Trampoline Routine. As previously referred,

the system cannot be, in any way, invasive to the athletes performance by interfering with her or his

mobility or with the properties of the trampoline. Given these limitations, the sensor must be able to

detect an object’s presence and position on a surface at a distance (without contact). This basically

means detecting the “when and where” of the deformation on the trampoline bed.

Based on my knowledge of sensor systems and with some research, the simplest to use and cheap-

est sensor technologies that can detect an object’s presence or distance are ultrasonic and infrared

systems. Technologies based on cameras were not included because to have a system with millisecond

resolution, the cameras would have to film at least at 1000 frames per second. These equipments are

expensive and the computer vision algorithms would be very processing intensive. Another problem

with these solutions would be their dependency on color and lighting conditions in the gym where

the system would be used. These factors cannot be controlled in a real life scenario. Given these

limitations these systems were considered impractical to solve the proposed problem.

Ultrasonic Sensors work the same way as bats use sonar to detect prey. The general idea is that

an ultrasound is emitted by a source, being then reflected by the objects that it encounters. The time it

takes for the echo to return to the source gives a good estimate of the distance of that particular object

(the speed is previously known). The emitted sound wave has frequencies in the ultrasound range,

which is inaudible to humans. Figure 2.9 illustrates the working principle of an ultrasound sensor.

Figure 2.9: Ultrasound Sensor working principle [40].

Infrared Sensors work by detecting IR light from natural (passive) or artificial (active) sources.

The main active IR sensors are the break beam and the reflective configurations. The most common

passive IR sensor is the Pyroelectric Infrared (PIR) Sensors.

Break Beam IR Sensors work by having an IR emitter directly pointed at a receiver. This type of

15

2. The State of Sensor Technologies Applied to Trampoline Gymnastics

device can detect when an object is positioned between the emitter and receiver, blocking the beam.

Usually the emitter pulses the IR light so that it is not confused with the ambient IR radiation. With

this technology two of the most important features are the width of the IR beam and the angle at which

the sensor can detect IR light. For the IR sensor, the angle can be managed using physical blockers or

just by selecting the right sensor with the best characteristics. The IR beam width can be controlled

using lens systems that collimate light or by using highly concentrated IR lasers (dangerous for health).

Figure 2.10 shows an application of Break Beam IR sensor technology.

Figure 2.10: Break Beam IR Sensor example [27].

An advanced iteration of this system is achieved by combining several beams into an array that can

detect and identify the shape of an object. Pepperl+Fuchs [34] produces light grid sensors that use

this principle to detect the shape of packages that goes through the array. This is done by monitoring

in real-time which beams are and aren’t being interrupted by the object. This system has a range of

between 0.3 and 6 meters with a maximum height of 3 meters. Figure 2.11 shows an image of the

system being used to detect the shape of a car door.

Figure 2.11: Light Grid LGS100 Serie by Pepperl+Fuchs [33].

A patent filed by James L. Levine, Susan A. Luerich and Duane Scott Miller [24], takes this concept

a step further by configuring the IR beam arrays into a two-dimensional grid that is integrated as a

touchscreen. The invention refers to a touch-sensitive display with a plurality of IR beams placed in

front of it. The sensors are configured in two sets of arrays, one for the X-axis and one for the Y-axis.

These are paired with the corresponding IR emitters. By triangulating which beams are broken in

both the X and Y axis, the device can determine the location of the touch event. Figure 2.12 shows a

diagram of the intended invention.

16

2.3 Sensor Technology Comparison

Figure 2.12: Invention for Infrared Touch Screen Gated by Touch Force [24].

Reflective IR Sensors take advantage of the reflective properties of IR light. It works in a very

similar way to ultrasound sensors. The difference is that instead of measuring the time that the signal

takes from traveling to an object, it detects the angle of the reflected IR light. Figure 2.13 shows an

example of how the angle of IR light changes with distance.

Figure 2.13: IR angle of reflection for near and far object using a Reflective sensor [1].

PIR Sensors work by detecting the natural radiation of IR light caused by warm bodies, analyzing

changes in total amount of IR radiation compared to the ambient reference. These sensors include two

IR detectors that are used to sense moving objects that pass in front of the PIR sensor. This is done by

measuring the difference in IR radiation detected by each of the detectors. Normally a Fresnel Lens is

used to increase the detection area of the device. Figure 2.14 shows a general diagram of how a PIR

sensor works.

Figure 2.14: PIR sensor general diagram [3].

2.3.1 Comparisons

Table 2.2 shows a general comparison between the previously explained sensor technologies. The

parameters chosen for comparison were those deemed more important for the requirements needed

to solve the proposed problem.

As referred in the goals, the price is a very important factor in the final system. The prices in

Table 2.2 were based on the cost of several component in the Sparkfun website [44]. Given this re-

quirement, the PIR and Reflective IR sensor are not the most suitable choices as it would require several

of each device to cover the whole area of the trampoline bed. We can also see that the Ultrasound and

the Reflective IR sensors rely on the bouncing of signals to function. This can be very problematic

17

2. The State of Sensor Technologies Applied to Trampoline Gymnastics

Table 2.2: Comparison between various sensing technologies [39][41][1][3]

because the shape of trampoline bed when deformed is very irregular, which could cause unwanted

echoes to influence the data gathered. Another issue with the Ultrasound sensor is it’s dependency

on the speed at which sound travels. This means that for distances above 340 millimeters it will take

more than 1 millisecond just for the signal to travel towards the object and back.

Given all of these factors, the best solution is to use IR beams, specifically in a array configuration.

It is a low-cost system that is able to detect the position of an object in a wide area. The idea would

be to use two IR arrays to form a grid-like structure with two axis and place it below and parallel to

the trampoline bed. This application would be similar to the patent filed by James L. Levine, Susan

A. Luerich and Duane Scott Miller [24] but in a much larger scale. In this case it isn’t a finger that

interacts with the IR grid but the deformation caused by an athlete landing on the trampoline bed.

2.4 Inter-Sensor Communication Comparison

The trampoline mounted sensors will need to send data through to a common central controller so a

communication protocol needs to be chosen. Completely wireless communication has the advantage

of using less hardware (wires in particular) and being easy setup. The main problem with this solu-

tion is that the sensors would need to be powered by batteries and would need to be charged every

now or then. Given that the system is suppose to be mounted on the trampoline for long periods of

time, charging the sensors every “x” mount of days or hours, is completely unpractical. Seeing that

powering the system with batteries isn’t feasible, the best solution is to use wires to feed power to the

sensors. Because wires will already need to be used for power, it only makes sense to also use a wired

communication protocol between the sensors as it is simple to implement, reliable and cheap.

To keep the price point and complexity of the system as low as possible, a serial protocol was

chosen. The most important features chosen to compare protocols, for the desired application, were:

number of signal lines, possible network size, data rate, overall complexity of implementing the soft-

ware and hardware and the approximate price to make a working prototype between two nodes. The

protocols chosen for comparison were: Controller Area Network (CAN), Inter-Integrated Circuit (I2C),

RS-485 and as a baseline a solution with parallel wires, one for each module in the network, was also

taken into consideration. Table 2.3 summarizes this comparison.

Because of the the size of the trampolines, the serial protocol must be able to deal with relatively

18

2.4 Inter-Sensor Communication Comparison

Table 2.3: General Comparison between Serial Communication Protocols [12][26][47][30][31][23]

large distances (at least 10 meters). This requirement is accomplished by all of the chosen protocols

although the distance that can be achieved sometimes depends on data rate or bus capacitance. In

terms of data rate, all of the protocols can achieve enough speed to send the necessary data to the

central module. If we assume that there are ten nodes in the network and all of them must send 1 byte

(on/off state of the sensor) in less than 1 millisecond then that would mean a minimum of 80 kbits per

second would be needed. Of course there is all of the processing behind the protocol that also takes

up some time during the process.

Then there is the question of the physical/hardware complexity of the protocols. All use only

2 wires for communication, except the parallel solution where every node in the network has an

individual signal wire that converges on the central processing node. Looking at software complexity

the hardest protocol is the CAN because it includes many complex features that may not be necessary

for the application at hand. The easiest protocols to implement would be the I2C and the parallel

solution. The first because it is simple, easy to understand and has many support and documentation

online, and the second because it simply needs the master to check the signal level of every wire to

know the sate of all the sensors in the network. Finally in terms of overall cost, the cheapest solutions

are the I2C and the parallel wires solution as they only need to use a generic microcontroller. All of

the hardware configurations in the above Table 2.3 were based on using the generic MPS430G2553

microcontroller. This decision was done due to the availability of the microcontroller in the lab, it’s low

cost, high processing power and energy efficiency and because it has a large support community online.

The prices of these different solution were based on the costs of the components in the Sparkfun [44]

and Microchip [28] online shops.

Given all these limitations and analyzing the characteristics of all the protocols the most appropriate

one for the application at hand is the I2C. This is mainly because of its simplicity to implement, good

and abundant online documentation and it is one of the cheapest to develop working prototypes. Most

of the other protocols offer better features but they can be considered “overkill” in terms of what is

19

2. The State of Sensor Technologies Applied to Trampoline Gymnastics

needed to solve the proposed problem. These better features make them more time consuming to

understand and to implement. The parallel wires solution in theory seems very appealing but due to

the high number of wires necessary, in practice, it would be what is called a “living hell”!

2.5 I2C Primer

In the I2C protocol there are two main bidirectional wires, serial data (SDA) and serial clock (SCL),

that are used to transmit information between the devices connected to the bus. Devices can usually

be both transmitters and receivers of data. There are also masters, which generate the clock and

always initiate the data exchange, and slaves which respond to the masters’ requests. Each device

is also identified in the network by a unique 7 or 10 bit software programmable address. There are

4 speed modes defined in the I2C specification [31]: Standard-mode at 100 kbps, Fast-mode at 400

kbps, Fast-mode Plus at 1 Mbps and High-speed mode at 3.4 Mbps.

Figure 2.15: General circuit diagram for an I2C connection between two devices [22].

In I2C the SDA and SCL lines are open-drain, which means that the master or slave device can only

drive them to be LOW (ground) or open. As shown in Figure 2.15, there are termination resistors Rp

connected to Vcc that pull these lines HIGH (Vcc) when they are left open. Depending on which speed

mode the network is operating at, certain timing requirements must be guaranteed. This depends

mainly on the total capacitance Cp (wires and device pins) that bus has. One of the main factors that

increases bus capacitance is the length of the wires. To counteract this effect, the Rp must be sized

correctly so that the timing requirements are met. Figure 2.16 shows how the maximum Rp allowed

decreases with the increase of Cp (increase in wire length).

Figure 2.16: Maximum Rp as a function of Cp for Standard-mode (1), Fast-mode (2) and Fast-mode Plus (3) [31].

The I2C protocol allows for clock stretching. This happens when a device needs to slow down the

clock so it holds the SCL line LOW for more time before letting it rise HIGH again.

Figure 2.17 shows a complete I2C transaction between one master and one slave. All data ex-

changes are initiated by the master. They begin with a START condition and end with a STOP condi-

tion. A START condition occurs when there is a transition of the SDA line from HIGH to LOW while

the SCL line is HIGH. A STOP condition occurs when there is a transition of the SDA line from LOW

20

2.5 I2C Primer

to HIGH while the SCL line is HIGH. When the devices on the bus, that are not involved in the trans-

action, detect a START condition, they remain silent until a STOP condition occurs. After every byte

transmitted, an acknowledge (ACK) bit must be transmitted by the receiver. The ACK is positive when

the receiver holds the SDA line LOW during the HIGH period of the ninth clock pulse. If more than

one master is transmitting in the bus, an arbitration process occurs. During the HIGH period of the

clock pulse, if the value in the SDA line does not correspond to what that master transmitted then it

means that another master with a “higher” priority is transmitting.

After the master generates a START condition it sends the 7 bit slave address. The eighth bit

indicates if the master wishes to READ (logic “one”) or to write (logic “zero”) data to the slave. After

the data is transfered the master can generate a STOP condition or generate a repeat START condition

to initiate a transaction with a new slave.

Figure 2.17: Example of a complete data transaction in I2C [31].

21

3
System Architecture and Requirements

Contents
3.1 Requirements . 24

3.2 Architecture . 25

23

3. System Architecture and Requirements

In this chapter a proposed architecture for the system will be presented. Before being able to

elaborate a specific architecture, the system requirements need to be well defined. These will be

divided into functional and non-functional requirements. The first type relates to the actual behavior

of the components when the system is being used, while the latter defines specific criteria that can be

useful for evaluating the system’s performance.

3.1 Requirements

Table 3.1: Functional and Non-Functional System Requirements

Table 3.1 shows all the requirements, divided into type and parameter/component, that the system

needs to meet to achieve all the desired goals. The requirements are also classified by their “degree

of necessity” in the system, which refers to the importance of meeting a particular requirement in the

final prototype.

24

3.2 Architecture

The main non-functional requirements are related to the accuracy and resolution of the trampoline

sensor system. The measurement of Time of Flight (TOF) must have millisecond resolution or else

it will not comply with the Fédération Internationale de Gymnastique (FIG) requirements [17]. The

measurement of Horizontal Displacement (HD) must be able to differentiate with 100% accuracy in

which of the highlighted areas (see Figure 1.2) the athlete landed on, within 10 centimeters of each

side of the area lines. This requirement was defined by consulting national team level athletes and

coaches. Both of these requirements are mandatory (“Must Comply”) in the final system. Another

non-functional requirement that is important is related to the price of the machine. As referred in

Section 1.2, the goal is to make a system that is cheaper than previous similar technologies, so a

requirement of being able to manufacture the machine for less than C300 was defined as “Must Com-

ply”. This value was obtained by consulting coaches from five different national clubs to understand

what would be a reasonable price for the system (not including the user terminal). The average price

obtained was C600. Given that in hardware products it is usual for the selling price to be double of

that to produce the product, the C300 maximum cost to manufacture was reached. Finally, to make the

system as easy to assemble and as unobstructive as possible, the connection between the user terminal

and the sensor system must be wireless.

The main functional requirement has to do with the user terminal, as it is where most of the

interaction with the user will take place. The User Interface (UI) should clearly display the TOF and

HD of the routine in a graphical and intuitive manner. The interface must also have the functionality

to manage routine information in the athletes database (Save, Delete, . . .). It will also be from the

terminal that the user controls the system by commanding it to start or stop the measurement of a

routine. All of these requirements are defined as “Must Comply”.

In the next section a solution that attempts to meet all the requirements, as shown in Table 3.1,

will be presented. The architecture of the whole system and of each individual component will be

explained in more detail.

3.2 Architecture

By analyzing the system requirements that needed to be met and by comparing the different sensors

that are available today, an architecture was elaborated and is generally represented in Figure 3.1. The

system can be divided into three separate main components: the Infrared Beam Grid (IR-GRID) (in

red), the Access Point Server (APS) (in gray) and the User Terminal (UT) (in black). Each one of these

will now be explained in further detail.

3.2.1 IR-GRID

As shown in Figure 3.2a, the IR-GRID is comprised of a two-dimensional grid of Infrared Beam Module

(IRM) containing a X-axis and Y-axis. Each IRM is comprised by an emitter and a receiver of infrared

(IR) beams. IR light was chosen because it is relatively cheap to buy hardware that uses it and it is

invisible to the human eye. This property avoids distracting athletes while jumping if they ever look

at the beams. All the data created by the IRMs is sent to the Grid Controller (GC) to be processed.

The IR-GRID will be attached, beneath and parallel to the trampoline bed, onto the metallic frame, as

shown in Figure 3.2b.

The idea behind the IR-GRID is that the deformation of the trampoline bed, caused when an athlete

lands, will interrupt some of the IR beams. Depending on where the athlete lands on the trampoline

bed, different beams will be interrupted at different moments in time. The closer the IRM is to where

the athlete landed on, the sooner the deformation of the trampoline bed will interrupt its beam. This

means that the first beams to be interrupted, from each one of the axis, are the ones closest to where

25

3. System Architecture and Requirements

Figure 3.1: Diagram of the System Architecture.

(a) General IR-GRID diagram. (b) Trampoline bed with integration of IR-GRID be-
low the surface.

Figure 3.2: General IR-GRID.

the athlete landed. By having a 2D grid, the system can analyze the chronological order of events

on the X-axis and on the Y-axis to obtain a point in 2D space that corresponds to the origin of the

deformation on the trampoline bed. When the athlete is in the air, no beams are interrupted. The

moment the athlete lands on the bed, the deformation will start interrupting some of the IR beams,

first the ones closest, then the ones farthest. As the deformation of the bed increases (athlete falling

deeper) more and more beams become interrupted, until the point of maximum deformation. At this

point the highest number of beams interrupted is reached. This number can be equal to all of the

IRMs or not. This process is clearly illustrated in Figure 3.3. The progression of events seen from the

Y-axis is similar, as the deformation of the trampoline bed can be approximated to a conical shape.

When the athlete starts leaving the bed, the process is symmetrical. The beams farthest from where

the athlete landed are the first ones to stop being interrupted. This description of how the deformation

of the trampoline bed, caused by an athlete landing on it, interacts with the IR-GRID is only a theory.

It is important to refer that the point the system is actually measuring is the lowest point of the

deformation of the trampoline bed, indicated in Figure 3.3. This point is the center of pressure applied

by the gymnast when impacting the trampoline bed, which should be in the middle of both feet and

slightly in front of the heel. Further tests will prove if the theory is correct or not.

26

3.2 Architecture

(a) Minimum bed deformation with one IR beam
interrupted.

(b) Medium bed deformation with three IR beam
interrupted.

(c) Maximum bed deformation with five IR beam
interrupted.

Figure 3.3: Bed deformation progression interacting with the IR-GRID (viewed from the X-axis side).

The IR-GRID is also able to calculate the TOF of each skill by measuring the time between when

the first beam of any IRM is interrupted (athlete landed) and when all the beams in the IR-GRID stop

being interrupted (athlete in the air).

The resolution of the IR-GRID for detecting where an athlete lands on the trampoline bed is directly

proportional to the number of IRMs on each axis. It is similar to a touch screen, the higher the

number of pixels, where the higher the resolution. Although the system needs to have good resolution,

in practical terms, what is actually needed is only to detect in which of the areas, highlighted in

Figure 1.2, the athlete lands on. Inside each area the system doesn’t need to know where the athlete

actually is. Given this optimization, the minimum number of IRMs is 10, as shown in Figure 3.4 (six

IRMs in the X-axis and four in the Y-axis). During the rest of this thesis many references to the IR-GRID

will be made. To help visualize and understand how the system works use Figure D.1, in Appendix D.

Olympic trampolines have eleven different areas with different HD scores when an athlete lands on

them. Delimiting these areas are four vertical lines (LX1, LX2, LX3 and LX4) and two horizontal lines

(LY1 and LY2). To determine whether an athlete landed on one side or the other of the trampoline

lines, there must be one IRM equally distanced from and on each side of the line. This can be seen

clearly in Figure 3.4. Some IRMs can be used in common for two trampoline lines, like for example

the IRM between LX1 and LX2. If the areas in the trampoline bed formed a perfect grid there would

be one X-axis IRM and one Y-axis IRM for each one of the areas. But because this in not the case and

some areas are bigger than others, there are some that have more than one X-axis IRM and/or more

than one Y-axis IRM, like for example in area A5. This would mean that in theory, this IR-GRID could

be able to differentiate more areas than those that exist in the trampoline. But, as explained before, it

doesn’t matter where the athlete has exactly landed inside the same area as the score deduction is the

same.

The positioning of the IRMs is limited by the dimensions and structure of the trampoline and by

the dimensions of the areas. The distances between the IRMs in the X-axis are defined by the need to

have an IRM at equal distance between lines LX1 and LX2 and one at equal distance between lines LX3

and LX4. In the Y-axis the distances between the IRMs were defined by the structure of the trampoline

itself that limited where the hardware could be attached to the metallic frame.

27

3. System Architecture and Requirements

Figure 3.4: IR-GRID configuration.

The IRMs are all connected to the GC via an Inter-Integrated Circuit (I2C) bus and are powered by

ground and positive lines. For more information about I2C refer to Section 2.4 and Section 2.5. The

GC is connected to the power grid via a transformer.

3.2.2 IR Beam Module (IRM)

The IRMs are the basic building blocks of the IR-GRID. Each one is responsible for producing an IR

beam and detecting whether it is interrupted or not by the trampoline bed. To produce the IR beam, the

IRM has a submodule called the Infrared Beam Module Transmitter (IRM-Tx). To detect the presence

of the beam there is a second submodule called the Infrared Beam Module Receiver (IRM-Rx). The

beam produced by the IRM-Tx should be narrow enough to only hit its corresponding IRM-Rx and not

interfere with other neighboring IRM-Rx.

All the IRM-Tx are powered by a common power supply that connects to the GC. All the IRM-Rx

are also powered by a common power supply that is also connected to the GC. This solution was

chosen over using batteries to avoid the trouble of charging all the modules every “x” amount of days,

requiring mounting and dismounting the system several times. All the IRM-Rx are also connected to

the GC via an I2C bus. This common bus is used to send data relative to the state, interrupted or not,

of the corresponding IR beam. Figure 3.5 shows a basic diagram of an IRM.

Figure 3.5: IRM diagram.

28

3.2 Architecture

3.2.2.A IR Transmitter (IRM-Tx)

As mentioned before, the IRM-Tx must emit a narrow beam of IR light (so it does not interfere with its

neighboring IRM-Rx modules) with enough power to be detected on the other side of the trampoline,

which has 520 centimeters on the X-axis and 305 centimeters on the Y-axis (Figure 1.1a). Another

important factor is that the IR light from the transmitter must be clearly distinguishable from the other

IR sources, like the sun. The easiest way to solve this is by pulsating the IR Light Emitting Diode (LED)

at a certain frequency so it can easily be distinguished from the ambient IR light [43].

Given these requirements, the IRM-Tx must contain a modulating circuit to pulse the light, an IR

light source with enough power to emit a strong beam and a lens to concentrate the IR radiation into

a narrow beam. Figure 3.6 shows a simple diagram of the components needed for the IRM-Tx.

Figure 3.6: Diagram of the IRM-Tx.

3.2.2.B IR Receiver (IRM-Rx)

As said before, the IRM-Rx must be able to detect the pulsed IR beam and differentiate it from other

IR sources. It will sense if the beam is broken or not (athlete on or off the bed). This module must

have an I2C interface to send data, relative to the state of the IR beam, through the I2C bus to the GC.

It must also have a processing unit to implement the I2C protocol and to perform any calculations on

the data read from the IR sensor.

Given these requirements, the IRM-Rx must contain an IR receiver/sensor that can detect a specific

frequency of modulation and a microcontroller with an I2C interface. Figure 3.7 shows a diagram of

the components in the IRM-Rx.

Figure 3.7: Diagram of the IRM-Rx.

3.2.3 GRID Controller (GC)

The GC is the main component in the IR-GRID and connects it to the rest of the system. It must

have a I2C interface to gather the data from the sensors in the IRM-Rx, related to the state of the IR

29

3. System Architecture and Requirements

Figure 3.8: Diagram of the GC.

beams. This information is processed by a processing unit that will output the TOF and the trampoline

area where the athlete landed on (which translates into a certain HD value) after every jump that is

performed on the trampoline. The GC must also have a wireless module to send data to the APS. The

GC will send the HD and TOF data of every skill that is performed on the trampoline to the APS, but

only the most recent jump is stored at any given time. The GC is connected to the power grid via a

transformer. A power supply circuit then regulates the power supply lines that go to the IRM-Rx and

the IRM-Tx. Figure 3.8 shows a diagram of the components in the GC.

3.2.4 Access Point Server (APS)

The APS is the “middle man” between the user and the IR-GRID. It must have a wireless module to

communicate between the GC and the UT. The main idea is to configure the APS as an Access Point

(AP) so that both the IR-GRID and UT can connect to it, creating a small Local Area Network (LAN).

The APS contains two distinguishable databases: a small one to store the TOF and HD data of

the most recent skill performed on the trampoline and a larger one to save coach profiles, athlete

profiles and routine data performed on the trampoline by a certain athlete. The main idea here is that

a gym can contain one or more coaches, a coach can teach one or more athletes and each athlete will

have a history of saved routines with the corresponding HD and TOF data for each skill. The recent

skill database is only written by the GC and is read by the UT. The coach/athlete/routine database

is only managed by the UT. When a user commands the system to start a routine, the UT reads and

temporarily stores 10 different skills from the recent skill database. If the user then chooses to store

the routine, the data from the 10 skills is transfered to the APS and stored in the coach/athlete/routine

database.

One way to easily implement these requirements with a wireless protocol is to develop a Web

Application (WebApp) that runs on the APS. This means that the APS must also host a web server. The

front-end will provide an UI to display and manage the data stored on the databases in the back-end.

The recent skill database only sends its data to the front-end. The coach/athlete/routine database

sends and receives data from the front-end. Figure 3.9 shows a general diagram of the APS.

3.2.5 User Terminal (UT)

The UT represents a “window” into the entire system. As referred above, it will serve as a Web Client

to the WebApp implemented in the APS and as the Graphical User Interface (GUI) for the user. This

30

3.2 Architecture

Figure 3.9: Diagram of the APS.

means that it will send requests for information to the APS. The main function of the UT is to display

the data stored in the APS in a simple and graphical manner and to send the user’s commands of

START and STOP of the routine. The most important data displayed in the UT is the TOF and HD

information of the most recent skill. Secondarily, it will also serve as a way for the users to manage

the coach/athlete/routine database.

Because all the data is centralized in the APS, there is a lot of flexibility for the UT. It can be used

by any device with a web browser (tablet, smartphone, laptop, etc.) and with wireless capabilities.

Figure 3.10 shows a mock-up of the Web Application’s main page GUI, implemented in the APS.

As defined in the system requirements (Table 3.1), the TOF and HD are displayed in a simple and

graphical way, enabling easy analysis by the athlete and the coach. In the lower right corner there is

an interface to choose in which athlete profile the coach wishes to save the routine and to remove an

existing profile if needed. The buttons to send the START and STOP commands to the APS are also

highly visible. This mockup serves only to give a general idea about how the main page of the GUI

should look like and function.

Figure 3.10: General mock-up of the Web Application’s main page GUI.

3.2.6 System Connectivity

The global system is comprised of many modules and sub-modules that need to communicate with

each other. As defined in Table 3.1, some connections will be wired and some wireless. The most

important communication channels are between: the various IRM-Rx and GC; the GC and APS; the

APS and UT.

31

3. System Architecture and Requirements

3.2.6.A IRM-Rx – GC

In this connection data flows between all the IRM-Rx and the GC in the IR-GRID. As referred before

this channel uses the I2C protocol to communicate. For more information about the I2C protocol refer

to Section 2.4 and Section 2.5. The GC sends a request for data to each IRM-Rx. One at a time,

each IRM-Rx responds with a message containing the state (interrupted or not) of its corresponding

IR beam. To guarantee that the GC can detect changes in the IR-GRID with a resolution of at least 1

millisecond (as defined in Table 3.1), this exchange between all of the IRM-Rx and the GC must be

done at least once every millisecond. Figure 3.11 shows a diagram of the communication between a

IRM-Rx and the GC.

Figure 3.11: Diagram of communication between IRM-Rx and GC.

3.2.6.B GC – APS

The GC sends the final information about each jump to the APS. This data contains the TOF value and

the HD area (one of the 11 represented in Figure 3.4) from the most recent skill. For future reference,

for the rest of this document HD data refers to the trampoline are where an athlete has landed on.

The actual HD score is calculated in the APS. The APS does not need to send any data to the GC so

this channel is essentially one way. The APS will be positioned somewhere in the gym and the GC will

be attached to the trampoline that is possibly very far away from it. To avoid having many long wires

laying around on the floor, a Wi-Fi connection was chosen.

This wireless protocol was chosen because of its relative low price, high availability and high com-

patibility with many other devices on the market. Figure 3.12 shows a simple diagram of the commu-

nication between the GC and the APS.

Figure 3.12: Diagram of communication between GC and APS.

3.2.6.C APS – UT

This channel of communication works as a simple server-client Internet protocol. As previously re-

ferred, the APS contains a Web Application that manages the databases. The UT is a client that will

use the application with a web browser and send or request certain commands or information.

This connection will be bidirectional. The APS sends data related to the HD and TOF of the most

recent skill, previously stored routine data and athlete profile data. The UT will issue the START and

STOP commands to the APS and will be used to manage the databases, in terms of deleting or editing

existing profiles. The UT also sends information of new coach or athlete profiles to be stored in the

APS.

32

3.2 Architecture

Once again, to avoid long cables in the gym and to give more flexibility to the user, a wireless

connection was chosen and the preferred protocol is again Wi-Fi. Figure 3.13 shows a simple diagram

of the communication between the APS and the UT.

Figure 3.13: Diagram of communication between APS and UT.

33

4
Hardware and Software Design and

Implementation

Contents
4.1 IRM-Tx Design and Implementation . 36

4.2 IRM-Rx Design and Implementation . 40

4.3 GC Design and Implementation . 42

4.4 APS Design and Implementation . 49

4.5 Final System Design and Implementation . 53

35

4. Hardware and Software Design and Implementation

This chapter will focus on describing how the proposed architecture in Chapter 3 was designed

and implemented, both in hardware and software. There will also be reference to some initial tests

that were done in order to validate and help to decide about certain design choices. The specific

electrical components and software frameworks were chosen based on the requirements that needed

to be met (see Table 3.1): price, availability, documentation, laboratory resources and prior knowledge

on the subject. There are four main components that were developed: the hardware and software for

the Infrared Beam Module Transmitter (IRM-Tx); the hardware and software for the Infrared Beam

Module Receiver (IRM-Rx); the hardware and software for the Grid Controller (GC); and the software

for the Web Application (WebApp) in the Access Point Server (APS). The Graphical User Interface

(GUI) of the WebApp runs on the User Terminal (UT) but the actual implementation is in the APS.

4.1 IRM-Tx Design and Implementation

As described before, the IRM-Tx generates an infrared (IR) beam that is received on the other side

of the trampoline by the corresponding IRM-Rx. The main requirements for the IRM-Tx are that

the generated beam needs to be narrow enough not to affect IR sensors other than the on from its

corresponding IRM-Rx, it needs to be pulsed in order to be distinguishable from natural IR light sources

and it needs to have enough power to reach an IR receiver at 520 centimeters on the X-axis and 305

centimeters on the Y-axis. In Figure 3.4 it is shown that the minimum distance between any two IRM-

Rx is 52 centimeters which means that the diameter of the IR beam formed at the distance of any

IRM-Rx must be smaller that 52 centimeters.

Given these requirements, in terms of hardware, what is needed is (1) a circuit to produce a pulsed

signal, (2) an IR led with a relatively small emission angle, (3) a lens to focus the IR light even

more and (4) a box that can correctly encapsulate the entire module. The software for the IRM-Tx is

dependent on the hardware implementation.

4.1.1 IRM-Tx Hardware Design

The frequency chosen for the pulsated signal was 38kHz which is one of the most widely used frequen-

cies for these types of applications and there is a large availability of cheap IR receivers for this specific

frequency. There are two basic circuit solutions for creating a pulsating signal. The first solution is to

use a hardware timer like the NE555 Timer from Texas Instruments [49], which uses external resis-

tors and capacitors to control the frequency and duty cycle of the output signal. The second solution

is to use a simple microcontroller and program it to create the desired signal on one of its General

Purpose Input and Output (GPIO) pins. The latter option was chosen because it offers more flexibility

and adaptability: for example, if in the future other frequencies need to be used to pulse de IR beams

it is easy to change the microcontroller’s programming to do so. The microcontroller used was the

ATtiny85 [7] because of its large availability, good online documentation and low price.

In terms of the IR light source the component chosen was the TSAL6100 [55]. This Light Emitting

Diode (LED) was used due to its low price, high availability and relatively low angle of half intensity.

The angle of half intensity is the angle where the intensity of the light emitted is half of that at 0 degrees

(straight ahead). In the case of the TSAL6100, this angle is 10 degrees to each side, meaning that at

520 centimeters the beam formed by the IR light would have a diameter of about 183.4 centimeters and

at 305 centimeters in would have a diameter of 107.6 centimeters. Given the configuration illustrated

in Figure 3.4, these numbers are not acceptable, as the IR light from one IRM-Tx would affect the IR

receivers neighboring its corresponding IRM-Rx. To solve this problem, a focusing lens was used to

decrease the emitting angle of the IRM-Tx. Figure 4.1 shows a simple diagram of how the lens is used

to focus the light emitted from a LED.

36

4.1 IRM-Tx Design and Implementation

Figure 4.1: Diagram of a lens being used to focus the light from a LED, where D is the diameter of the lens, F is the focal length
and θ is the angle of half intensity on the LED [25].

The simplest lens shape that achieves the desired effect is a plano-convex lens or an asymmetric

double-convex lens. The minimum ratio between the lens diameter D and the focal length F is given by

Equation 4.1a. As mentioned before, the angle of half intensity of the TSLA6100 is 10 degrees, forcing

the ratio between D and F to be greater than or equal to 0.352. Obviously, the diameter and the focal

length of the lens must also have reasonable values so that the IRM-Tx is small enough to be attached

to the trampoline. Given the limitations of the structure of the metallic frame of the trampoline, the

diameter of the lens should not be greater than 50 millimeters and the focal length should not be

greater than 60 millimeters (Equation 4.1b and Equation 4.1c).

D

F
≥ 2 ∗ tan(θ), (4.1a)

D < 50 millimeters, (4.1b)

F < 60 millimeters . (4.1c)

Based on the availability, price and dimension requirements referred above, the best option found

was to use the same lenses that are used in the Google Cardboard Virtual Reality project [19]. These

are asymmetric double-convex lenses having a diameter of 25 millimeters and a focal length of 45

millimeters. This means that they have a D to F ratio of 0.56 which meets all of the requirements in

Equation 4.1a, Equation 4.1b and Equation 4.1c.

After analyzing all of the main components needed for the IRM-Tx, the electric circuit, illustrated

in Figure 4.2, was designed.

Figure 4.2: Schematic of the electrical circuit implementation for the IRM-Tx.

In the top left corner of Figure 4.2 is the voltage regulating part of the circuit. It uses a linear

voltage regulator to convert the higher voltage that is fed into the IRM-Tx to a more usable 5V. The

exact value of voltage that will be used to power the system will be determined later. Moreover there

37

4. Hardware and Software Design and Implementation

are two decoupling capacitors (C1 and C2) connected to the VCC pin of the ATtiny85 that are used

to suppress noise in the power supply lines. Typically, there is a ceramic capacitor (C1) with a small

value between 0.01µF and 0.1µF to short high frequency noise away from the microcontroller and a

electrolytic capacitor (C2) with a higher value between 10µF and 100µF to smooth out lower frequency

oscillations in the power lines [4]. These capacitors should be positioned as close as possible to the

power supply pins of the microcontroller. There is also a switch to turn on or off the power supply to

the IRM-Tx.

Connected to the decoupling capacitors is the ATtiny85 microcontroller, which generates the 38kHz

signal. It is powered by VDD(5V) and the output signal is generated at PB0. This signal is then fed

into the LED power circuit in the top right corner of Figure 4.2. This circuit uses a N-Channel Metal

Oxide Semiconductor Field Effect Transistor (MOSFET) to supply current to the TSAL6100 LED. A

transistor is used because the ATTiny85 cannot safely supply enough current to the TSAL6100 LED for

the IR beam to reach a distance of 520 centimeters. The amount of current needed was determined

using a testing prototype of Figure 4.2 and will be described in subsection Subsection 4.1.3. The R1

resistor is used to reduce the current surge when the microcontroller drives the MOSFET from “off” to

“on”. The R2 resistor is a “pull-down” resistor used to ensure the MOSFET is “off” when the PB0 pin’s

logic level is not defined (floating) and to discharge the accumulated charge caused by the capacitance

between the Gate and the Source of the MOSFET. The R3 resistor is used to limit the amount of

current needed for the TSAL6100 LED.

In the bottom part of Figure 4.2 are the RJ11 female connectors, used to receive and relay the

power supply signals from and to the neighboring IRM-Tx. Although these connectors have four pins,

only two are needed to transmit VDD(12V) and ground. RJ11 connectors were chosen because they

are cheap, they provide a solid asymmetrical connection (no danger of switching the wires) and they

do not require any special tools to crimp the connectors to the wires.

4.1.2 IRM-Tx Software Design

In terms of software, what is needed is a program that will switch the logic value of the PB0 pin

between “high” and “low” every 13.15µs (half a period for a frequency of 38kHz). This is accom-

plished using the Timer0 in Clear Timer on Compare Match (CTC) Mode. In this mode the counter

starts at zero and increments until it reaches a certain user-defined value called the Counter Compare

Value. When it reaches the desired value it automatically resets the counter value to zero and starts

incrementing again. Timer0 is also defined to be in toggle mode, which enables the microcontroller

to automatically toggle the logic value of a specific pin every time the counter reaches the desired

value. In this case, the associated pin was PB0. Timer0 was set to use the CPU clock frequency with

no prescalar. The ATtiny CPU was programmed to run at 8MHz, which means that Timer0 increments

the counter every 1/8000000 = 0.125µs. This in turn means that the Counter Compare Value must be

approximately 13.15/0.125 ≈ 105. The resulting code is shown in Listing B.1 (Appendix B).

4.1.3 IRM-Tx Prototyping, Testing and Final Implementation

Even though the main components have all been defined, there are still some parameters that need to

be tested to be correctly determined, including the IR beam diameter at 520 centimeters (where it is

greater), the 38kHz signal and the value of R3, which in turn determines the amount of current needed

for the IR beam to reach 520 centimeters. In order to test these parameters, the circuit in Figure 4.2

was implemented on a small breadboard using through-hole electronic components and with the R3

resistor being substituted by a potentiometer. The breadboard was encased in a 3D printed box with a

socket for the lens.

38

4.1 IRM-Tx Design and Implementation

The first thing to check was whether the program on the ATtiny85 created a correct 38kHz square

wave form. After checking the signal in all ten microcontrollers that are needed for the entire system

(as described in Chapter 3), it was noted that not all the frequencies were the same and could have a

deviation of about 3% to either side of 38kHz. This is probably due to small differences between the

chips, temperature, voltage and in the factory clock calibration, as described in the ATtiny85 datasheet

[7]. Consequently, there was a need to adjust the value of the counter compare value for each indi-

vidual microcontroller in order to obtain a signal with a frequency as close as possible to 38kHz. This

calibration allowed the frequency deviation to be limited at ±0.6%.

The next test was to determine the value of the R3 resistor and the diameter of the IR beam at 520

centimeters. To achieve this a simple IR receiver circuit was implemented on a small breadboard using

a TSOP4838 IR sensor. This circuit will be further described in Section 4.2. At this time the objective

of the receiver circuit was to simply detect or not the presence of the IR beam generated by the IRM-Tx

prototype. The transmitter and the receiver were aligned at a distance of 520 centimeters facing each

other and there was a multimeter attached to LED to measure the current that was being drawn. Ac-

cording to the TSAL6100 datasheet [55], the maximum allowed forward continuous current is 100mA

or 200mA at a 50% duty cycle. This means that while adjusting the potentiometer’s resistance, the

current read on the multimeter should not exceed 100mA (the multimeter only shows the average

current). The potentiometer’s resistance started at its maximum value and was gradually decreased

until the receiver detected a consistent presence of the IR beam. The resulting resistance was 22Ω,

providing approximately 160mA of current to the LED (an average of 80mA). After verifying that the

sensor detected a consistent IR signal, the receiver was moved sideways to check where it stopped

receiving IR signal. By doing so, the diameter of the IR beam at 520 centimeters was measured to be

approximately 43 centimeters. This value is within the desired requirements as it ensures that each

IRM-Tx only affects its corresponding (directly in front) IRM-Rx and offers some degree of “wiggle

room” such that they do not need to be perfectly aligned to work.

Based on the schematic in Figure 4.2 and on the tests with the breadboard prototype, a Printed

Circuit Board (PCB) layout was developed. The main requirements for the PCB were that it needed

to be as small as possible (prioritizing a smaller length) and the TSAL6100 LED should be placed in

one of the extremities of the PCB. The final PCB with all of the electrical components soldered to it is

shown in Figure 4.3a, measuring 25 millimeters in length and 41 millimeters in width.

(a) IRM-Tx PCB with all electri-
cal components soldered to it.

(b) IRM-Tx PCB inside the bottom
part of the IRM-Tx box with the
lens.

(c) Full IRM-Tx box encapsulating
the IRM-Tx PCB and the lens.

Figure 4.3: Hardware implementation of the IRM-Tx and all of its components (PCB, lens and box).

To encapsulate the IRM-Tx PCB, a box was designed and 3D printed using Polylactic Acid (PLA)

material. This box needed to have a support for both the TSAL6100 LED and the lens in order to ensure

proper alignment between them. It also needed to have openings for the RJ11 female connectors

and for the ON/OFF switch. The final version of the box and how the PCB fits inside it is shown

in Figure 4.3b and Figure 4.3c, measuring 46 millimeters in width, 66 millimeters in length and 30

39

4. Hardware and Software Design and Implementation

millimeters in height.

Another important requirement for the system was to keep the cost of production as cheap as

possible. Table A.1 (Appendix A) shows the IRM-Tx Bill of Material (BOM) which was based on

ordering the minimum quantities needed of each component from the cheapest supplier. The total cost

of the materials for each IRM-Tx is 5.20C.

4.2 IRM-Rx Design and Implementation

As described before, the IRM-Rx receives the IR beam emitted by the IRM-Tx and sends it’s current state

(receiving or not receiving) to GC via Inter-Integrated Circuit (I2C). The main hardware requirements

for the IRM-Rx are that it needs to be able to sense IR light at 38kHz and not be influenced by natural

IR sources, it must have a microcontroller to communicate via I2C with the GC and it must have a way

to visually indicate to the user whether it is aligned or not with it’s corresponding IRM-Tx.

Given these requirements, what is needed is (1) a 38kHz IR sensor, (2) a microcontroller with I2C

compatibility to send information to the GC, (3) a LED that indicates whether the IRM-Rx is aligned

or not and (4) a box to encapsulate de electronics. In terms of software, what is needed is a program

that reads the signal from the IR sensor and transmits that information via I2C to the GC.

4.2.1 IRM-Rx Hardware Design

The IR receiver chosen was the TSOP4838 from VISHAY [56]. This electrical component is comprised

of an IR sensor and a control circuit to filter all frequencies except 38kHz, all in one package. It has

three pins in total: one for the supply voltage; another for ground; and a third one for the output

signal. The TSOP4838 works as a binary digital sensor in the sense that it can only output two values,

either “high” when it is not receiving a 38kHz IR signal, or “low” when it is. There are many variants of

TSOP4838 receivers but the main differences have to do with the receiving frequency and the IR code

protocols that they support. Given that, for this application, the IR receiver is only used to indicate

whether or not an IR signal is being received (no data needs to be transmitted), the main factors for

choosing which TSOP4838 to use were price, availability and size.

In terms of the microcontroller, the model selected was the MSP430G2553 from Texas Instruments

[48]. The main reasons for choosing this particular microcontroller was the fact that there is a Develop-

ment Kit called the MSP430 LaunchPad [50] that comes with a MSP430G2553, and because it has an

Universal Serial Communication Interface (USCI) module that has a full I2C protocol implementation

compliant with the I2C specification [31]. This microcontroller is also relatively cheap, easily available

to purchase and has good documentation online. By having a development kit for the MSP430G2553

it was easier to test and develop a functioning prototype.

After analyzing all of the main components needed for the IRM-Rx, the electric circuit, illustrated

in Figure 4.4, was designed.

In the top right corner of Figure 4.4 is the voltage regulating part of the circuit. It uses a linear

voltage regulator to convert the higher voltage that is fed into the IRM-Tx to a more usable 3.3V. The

exact value of voltage that will be used to power the system will be determined later. Moreover there

are two decoupling capacitors (C1 and C2) connected to the VCC pin of the MSP430G2553 that are

used to suppress noise in the power supply lines. The circuit also includes a switch to turn on or off

the power supply to the IRM-Rx.

In the bottom part of Figure 4.4 is the TSOP4838 IR receiver which has its OUT pin connected to

the MSP430G2553 microcontroller via the GPIO pin 2.3. Also connected to this line is a LED with a

current limiting R1 resistor. When the TSOP4838 is receiving IR light, the OUT pin is pulled “low”,

allowing current to flow through the LED and turning it on. When there is no IR light being received,

40

4.2 IRM-Rx Design and Implementation

Figure 4.4: Schematic of the electrical circuit implementation for the IRM-Rx.

the OUT is pulled “high”, turning the LED off. Given that the main function of this LED is to give the

user a visual indication if the IRM-Tx and IRM-Rx are aligned, it was implemented independently from

the microcontroller. In other words, even if the microcontroller is not working correctly, it will not

influence the LED’s behavior. The R2 resistor serves as a “pull-up” in order to maintain the RST pin

“high” to avoid the microcontroller from hardware restarting.

In the top left part of Figure 4.4 are the RJ11 female connectors, used to receive and relay the

power supply signals and the SCL and SDA lines from and to the neighboring IRM-Rx. The SCL and

SDA lines are connected to pins 1.6 and 1.7 of the MSP430G2553, respectively.

To facilitate comprehension, the MSP430G2553 will hereafter be referred to as MSP430, and the

TSOP4838 sensor as TSOP sensor.

4.2.2 IRM-Rx Software Design

In terms of software, what is needed is a program that reads the binary digital value in pin 2.3 and

sends it via I2C to the GC. Based on the architecture defined in Chapter 3, the IRM-Rx is used as a slave

in the I2C bus that only sends one byte of data when the master (GC) requests it. Based on examples

provided by Texas Instruments on how to use the USCI module as I2C, the code shown in Listing B.2

(Appendix B) was developed.

The program starts by calibrating the CPU clock to 16MHz, setting pin 2.3 as an input, setting pins

1.6 and 1.7 to their I2C functions as SCL and SDA, respectively, and configuring the MSP430’s USCI B

module in slave mode with a unique address (each IRM-Rx will be programmed with a different I2C

address).

Most of the time the MSP430 is in Low Power Mode (LPM) with the system interrupts enabled.

When the master wants to read the value of the TSOP sensor, it sends a START condition followed by

the desired slave’s address byte (the eighth bit is “1” to indicate a READ operation). When the slave’s

USCI B detects that a START condition and its own address was sent on the bus, it sets USCI B START

detection interrupt flag (UCSTTIFG), triggering the corresponding Interrupt Service Routine (ISR) in

function USCIAB0RX ISR(). Given that only one byte of data will be transmitted, the UCSTTIFG is im-

mediately set to “0”. After this, the USCI B enters slave transmitter mode and waits for new data to

be put on the UCB0TXBUF register by setting the USCI B transmit interrupt flag (UCB0TXIFG), therefore

triggering the corresponding ISR in function USCIAB0TX ISR(). The value of pin 2.3 is represented by

the binary value of the fourth bit in the P2IN register. The result from the AND operation between

register P2IN and BIT3 constant (0b00001000) is then copied to the UCB0TXBUF register so that it can

be transmitted on the SDA line of the I2C bus. When the TSOP sensor is receiving an IR signal from

41

4. Hardware and Software Design and Implementation

the IRM-Tx, pin 2.3 will be “low” and the value put on the UCB0TXBUF will be 0b00000000, in binary,

or 0x00, in hexadecimal. When the TSOP sensor is not receiving an IR signal pin 2.3 will be “high”

and the value put on the UCB0TXBUF will be 0b00001000, in binary, or 0x08, in hexadecimal.

4.2.3 IRM-Rx Prototyping, Testing and Final Implementation

Before creating a PCB of the electrical circuit represented in Figure 4.4, a breadboard version using

through-hole electronic components was developed in order to perform some tests. The first test, which

was already partly described in Subsection 4.1.3, was to check if the IRM-Rx could consistently receive

the IR signal from the IRM-Tx at the distances of 305 and 520 centimeters and if the indicating LED

was working as designed. The second test was to simply check if the program and the I2C bus were

also functioning as designed. This was done by using code examples provided by Texas Instruments,

where the MSP430 LaunchPad was the master, and the IRM-Rx was the slave. More tests relating to

the I2C bus were performed while designing and implementing the GC.

After passing all the tests, a PCB layout was developed, based on Figure 4.4. The main requirements

for the PCB were that it needed to be as small as possible (prioritizing a smaller length) and the

TSOP sensor should be placed in one of the extremities of the PCB. The final PCB with all of the

electrical components soldered to it is shown in Figure 4.5a, measuring 33 millimeters in length and

41 millimeters in width.

(a) IRM-Rx PCB with all electri-
cal components soldered to it.

(b) IRM-Rx PCB inside the bottom
part of the IRM-Rx box.

(c) Full IRM-Rx box encapsulating
the IRM-Rx PCB.

Figure 4.5: Hardware implementation of the IRM-Rx and all of its components (PCB and box).

To encapsulate the IRM-Rx PCB, a box was designed and 3D printed using PLA material. This box

needed to have openings for the TSOP4838, for the RJ11 female connectors, for the ON/OFF switch

and for the LED. The final version of the box and how the PCB fits inside it is shown in Figure 4.5b and

Figure 4.5c, measuring 46 millimeters in width, 38 millimeters in length and 27 millimeters in height.

Another important requirement for the system was to keep the cost of production as cheap as

possible. Table A.2 (Appendix A) shows the IRM-Rx BOM which was based on ordering the minimum

quantities needed of each component from the cheapest supplier. The total cost of the materials for

each IRM-Rx is 5.12C.

4.3 GC Design and Implementation

As described before, the GC receives the sensor readings from the IRM-Rx, processes the data, cal-

culates the Time of Flight (TOF), determines in which trampoline area the athlete landed on (which

translates into an Horizontal Displacement (HD) score) and sends these values via Wi-Fi to the APS.

This is done for every jump performed on the trampoline. The main hardware requirements for the GC

are that it must have a microcontroller to communicate via I2C with the IRM-Rx and process the re-

ceived data, Wi-Fi capabilities and a way to visually indicate to the user whether the system is working

correctly or not.

42

4.3 GC Design and Implementation

Given these requirements, what is needed is (1) a microcontroller with I2C compatibility to receive

information from the IRM-Rx, (2) a LED that indicates whether the system is working correctly or not,

(3) a Wi-Fi module connected to the microcontroller to send the HD data and TOF score to the APS and

(4) a box to encapsulate the electronics. In terms of software, the GC must be able to read the values of

all the IRM-Rx and do the necessary processing every millisecond. This is required because the system

needs to have a TOF resolution of one millisecond. It must also have a program that configures the GC

as a Wi-Fi client and sends the HD and TOF data to the APS.

4.3.1 GC Hardware Design

The microcontroller chosen was the same as the one in the IRM-Rx, the MSP430G2553 from Texas

Instruments [48]. The reasons are the ones explained in Subsection 4.2.1. The Wi-Fi module chosen

was the ESP-12E [42], which is based on the ESP8266EX System on Chip (SoC) [13] and integrated

in the NodeMCU Development Kit V1.0 [59]. This module was chosen due to its very cheap price,

high availability, extensive documentation online and easy to use Arduino libraries. To send the jump

data from the MSP430 and the NodeMCU, a serial connection was made between the two. To facilitate

comprehension, the ESP-12E/NodeMCU Development Kit will hereafter be referred to as ESP module.

After analyzing all of the main components needed for the GC, the electric circuit, illustrated in

Figure 4.6, was designed.

Figure 4.6: Schematic of the electrical circuit implementation for the GC.

In the top area of Figure 4.6 is the voltage regulating part of the circuit. It uses a linear voltage

regulator to convert the higher voltage that is fed into the GC to a more usable 3.3V. The exact value

of voltage that will be used to power the system will be determined later. Moreover, there are two

decoupling capacitors (C1 and C2) connected to the VCC pin of the MSP430G2553 that are used to

suppress noise in the power supply lines. Switch 1 is used to turn on or off the power supply to the

GC. Connected to this switch is a barrel jack that is used to connect the AC-DC power supply that will

power the entire system.

In the bottom part of Figure 4.6 is the MSP430G2553 microcontroller. Connected to pin 1.0 is a

LED with a current limiting R1 resistor. This LED was used for debugging during development and,

in the future, for the user to know if the system is working correctly or not. The R2 resistor serves

as a “pull-up” in order to maintain the RST pin “high” and avoid the microcontroller from hardware

restarting. Connected to pins 1.6 and 1.7 (SCL and SDA lines) are resistors R3 and R4, respectively.

These resistors serve as a “pull-up” for the I2C lines, as both SCL and SDA are open-drain, which means

43

4. Hardware and Software Design and Implementation

that they need to be externally pulled “high” when a digital “1” needs to be transmitted. In the left

part of the circuit is the NodeMCU, which is connected to the MSP430’s TX pin 1.2 via the RX pin 4.

In the top right part of Figure 4.6 are the RJ11 female connectors. One is used to connect the

power lines to the IRM-Tx and the other is to connect power and I2C lines to the IRM-Rx. In the bottom

right part of Figure 4.6 are switches 2 and 3 that turn on or off the IRM-Rx and IRM-Tx, respectively.

4.3.2 GC Software Design

In terms of software, what is needed is a program that constantly reads the state of the IRM-Rx sensors

and depending on how those values change over time (while the athlete is jumping), can calculate the

TOF and HD data for each jump performed. There will also need to be a program that defines the GC

as a Wi-Fi client and sends the relevant jump data to the APS. The first part of the software needed

will be implemented on the MSP430 and the second part on the ESP module.

The most approximate depiction of how the trampoline bed deforms when an athlete lands on it

is a conical shape where the vertex corresponds to the center of pressure (location where the athlete

landed on) and the base width and height increase until the point of maximum deformation. This

progression of deformation is depicted in Figure 3.3, viewed from the X-axis. The increase in base

width of this cone is what interrupts the IR beams at different moments in time depending on how

close they are to the vertex (closer IR beams are interrupted first). Theoretically, this means that by

determining which IR beam, in both the X-axis and Y-axis, was interrupted first, the system can know

in which area the athlete landed on. During the take-off phase of the jump, the progression of the

deformation of the trampoline bed is the inverse. By analyzing the states of the IRM-Rx sensors, the

GC must also be able to determine when the athlete leaves and lands on the trampoline bed in order

to determine the TOF of the jump. This can be easily done by simply detecting when any IR beam is

interrupted (athlete just landed on the bed) and when all IR beams are uninterrupted (athlete just left

the bed). All this sensor reading and data processing must be executed in less than one millisecond as

determined in the requirements on Table 3.1.

In order to verify if this theory is a close description of how the trampoline bed deforms, some

preliminary tests were performed. Using two pairs of IRM-Rx and IRM-Tx, in positions X1 and X2

(see Figure D.1), and a slow motion camera (to view the LED state in the IRM-Rx), the idea was to

check if there was discernible difference in the IR beam interruptions between jumping on areas A3 or

A4. After performing the test, it was found that the trampoline bed does indeed behave as theorized.

For example, when the athlete landed on area A3, the first IR beam to be interrupted was the one in

position X1 and the second was one in position X2. Similarly, when the athlete left the trampoline bed,

the last IR beam to become uninterrupted was the one in position X1.

One very important characteristic that was unexpectedly found, is the fact that, during the defor-

mation of the trampoline bed, the IR beams can become uninterrupted for some time. This is mainly

due to the fact that when the trampoline bed stretches enough, the light from the IR beams can pass

through the springs and the bed and reach the IRM-Rx sensors. There are six phases for the behavior

of an IR beam: (1) the athlete is in the air and the beam is uninterrupted, (2) right after the athlete

lands on the trampoline bed the beam is interrupted; (3) some time after, the beam can become un-

interrupted while the bed reaches its maximum deformation; (4) the trampoline bed starts to reverse

the deformation and the beam can continue to alternate between uninterrupted and interrupted; (5)

right before the athlete leaves the bed the beam becomes interrupted once again; (6) when the athlete

leaves the bed, the beam becomes uninterrupted during the rest of the time that the athlete is in the

air. This process is illustrated in Figure 4.7 (phase 4 is not represented), where the green LED shows

when the beams are interrupted (LED off) or not interrupted (LED on).

Because of this uncertainty of states during the deformation of the trampoline bed (phases 3 and

44

4.3 GC Design and Implementation

(a) Phase (1). (b) Phase (2). (c) Phase (3).

(d) Phase (5). (e) Phase (6).

Figure 4.7: Progression of the IR beam state when an athlete lands on the trampoline bed.

4), it is harder for the GC algorithm to differentiate between when the athlete is on the trampoline bed

or in the air. To solve this problem, the algorithm needed to leverage the fact that, during any jump,

the time spent on the bed of the trampoline is always less than the time in the air. One should also

note that, the higher someone jumps, the less time they spend on the bed. The proposed solution was

to use a timer to check when the IR beams stopped being interrupted for a pre-defined amount of time

in order to be certain that the athlete has definitely left the trampoline bed. This time interval needed

to be bigger than the maximum amount of time that anyone could spend on the trampoline bed while

jumping, but lower than the minimum TOF that an athlete needs to perform any trampoline skill. This

way the algorithm could differentiate between when the IR beams are uninterrupted and the athlete

is on the trampoline bed (less than the pre-defined time) or when the IR beams are uninterrupted and

the athlete is in the air (more than the pre-defined time).

Based on all this information, the code implemented on the MSP430 and shown in Listing B.3

(Appendix B) and the code implemented on the ESP module and shown in Listing B.4 were developed.

The corresponding flowcharts are shown in Figure B.1 and Figure B.2 (Appendix B).

Starting with the MSP430 code, the program begins by configuring the necessary components: CPU

clock calibrated to 16MHz; timer0 sourced from the ACLK with the VLO at 12kHz; pin 1.0 as output;

USCI B in I2C master mode with pin 1.7 as SDA and pin 1.6 as SCL at 400kHz speed (maximum speed

supported); and USCI A in UART mode with pin 1.1 as RX and pin 1.2 as TX at a 115200 baud rate.

After this, the program enters an infinite loop, polling all of the IRM-Rx sensor values, using the

I2C bus. This polling process is divided into two “for” loops, corresponding to the IRM-Rx in the X-axis

and in the Y-axis. As described above, the program is searching for the first IR beam to be interrupted

45

4. Hardware and Software Design and Implementation

in each axis, which will indicate that an athlete has landed on the trampoline bed and the HD area

where the athlete landed on. When an IR beam is interrupted (RXData == 8) the program saves the

corresponding IRM-Rx I2C address by leaving the “for” loop of the corresponding axis, preserving the

iterator value (x or y). It then starts to only poll the IRM-Rx from the remaining axis to search for the

first beam to be interrupted in that axis. In the case of the Y-axis for loop, when an IR beam is found

to be interrupted, it stores the value of the counter from timer0 (TA0R), which will be translated into

the TOF in the ESP module, and the actual I2C address of the Y-axis IRM-Rx (currentAddr). When it

finds the first IR beam to be interrupted in each axis (foundXFlag and foundYFlag are set) the program

sends the HD area code and TOF data (areaCodeList[x][y] and tofInClockCycles) via the serial

connection to the ESP module. The values in the areaCodeList[6][4] vector correspond to the areas

shown in Figure D.2, which will be described later in Subsection 4.4.2. The program then enters a

function called pollForTakeOff() to detect the exact moment when the athlete leaves the trampoline

bed.

In this function, the program is basically polling only one Y-axis IRM-Rx (currentAddr) to check

when it stops being interrupted for more than 400 milliseconds (the so-called pre-defined time inter-

val), meaning that the athlete has definitely left the trampoline bed. The value was chosen based on

several tests that were conducted and will be described further in this thesis. When the IR beam is

uninterrupted (RXData == 0), the program starts timer0, as there is a possibility that the athlete left the

trampoline bed. It then continues to poll the IRM-Rx such that if the IR beam is uninterrupted for 400

milliseconds (TA0R >= 4800) the athlete has definitely left the trampoline bed, if the beam becomes

interrupted again then the athlete is still on the bed and the polling must continue. For saving the TOF

counter value and checking when the athlete leaves the bed, the IRM-Rx of the Y-axis were chosen

because it has more IR beams per centimeter which means that it measures a more accurate moment

of when the athlete arrives and leaves the trampoline bed.

Also important to note, is that the Watchdog timer is used in this code to ensure that during the

I2C communication the program doesn’t freeze if anything is wrong with the I2C bus. The Watchdog

timer was defined to restart after 43 milliseconds, using the ACLK as the clock source.

In terms of the ESP module, the code developed is fairly simple as it is based on two pre-made

libraries for the ESP8266 family, the ESP8266WiFi and ESP8266HTTPClient libraries. The program

starts by opening a serial communication at 115200 baud rate and connecting to the Wi-Fi net-

work “Pi AP” created by the APS. It then enters an infinite loop waiting for the HD area and TOF

data of each jump to be sent by the MSP430. After reading this data, the program converts the

TOF, that is in timer0 cycles, into seconds and creates a message with a predefined format: “area-

Code/TOF(seconds)/jumpTmpID/trampID”. Each jump has a temporary identifier that rolls over at

100 and each GC or trampoline has a permanent identifier. This message is then sent to the APS using

a Hypertext Transfer Protocol (HTTP) POST request directed at the Uniform Resource Locator (URL)

“http://192.168.42.1:5000/post sensor”.

4.3.3 GC Prototyping, Testing and Final Implementation

Before implementing the final PCB of the electrical circuit represented in Figure 4.6, some require-

ments of the GC, which controls the entire Infrared Beam Grid (IR-GRID) system, needed to be tested.

The two main problems were the resolution of the system, which was directly related to how fast the

GC could poll/read the sensors of all ten IRM-Rx and if the theory about how the IR beams behave

when an athlete lands on the trampoline bed is correct or not. To do these tests, a prototype of the

GC was developed using the MSP430 LaunchPad Development Kit with the MSP430G2553 microcon-

troller, connected to the NodeMCU Development Kit and to a breadboard with the R3 and R4 “pull-up”

resistors and the two RJ11 connectors. This setup is shown in Figure 4.8.

46

4.3 GC Design and Implementation

Figure 4.8: Prototype of the GC for testing.

The first test was done by connecting all 10 IRM-Rx and IRM-Tx (aligning them with each other)

to the GC and using the code shown in Listing B.3. By alternating pin 1.0 between “high” and “low”,

in the beginning of the main loop, and using an oscilloscope, it was possible to determine how long

each complete main loop took (poll all ten IRM-Rx). This is the critical part of the code as it deter-

mines the granularity/resolution of the sensor system. The results showed that each main loop took

approximately 600 microseconds, meaning that each of the ten IRM-Rx I2C communications took 60

microseconds (the rest of the code isn’t significant for this measure, as each CPU clock cycle takes 62.5

nanoseconds). This value is well within the determined requirements for TOF. In terms of HD, only

further testing can determine if it is quick enough to meet the desired requirements. During this test

it was also determined that the value of the R3 and R4 “pull-up” resistors needed for the I2C bus to

function correctly was 1kΩ. Also, this test was conducted using a AC/DC voltage transformer of 12V

and 5A. The voltage measured at the furthest IRM-Tx was 6.8V, which is still within the requirements

for the chosen low dropout linear voltage regulator to function correctly.

For the second test, a new code for the MSP430 and the ESP module was developed. The main idea

of this program was to constantly read the values of all the IRM-Rx, send each reading via the serial

connection to the ESP module and then send it to the computer where a Python program would save

the data in an Microsoft Excel file. The same hardware setup as before was used but the ESP module

was connected via USB to a computer and the IR-GRID was actually mounted on the trampoline. A

GoPro camera was positioned below the trampoline in order to catch the entirety of the bed. This

camera filmed the athlete while she/he was jumping in order to validate the data from the IRM-Rx

sensors with the HD area where she/he landed after each jump. For each jump two line charts, similar

to those shown in Figure 4.9, were obtained.

These particular charts show the IRM-Rx sensor values when an athlete landed on area A4 on both

the X-axis (Figure 4.9a) and Y-axis (Figure 4.9b). Each color represents an IRM-Rx sensor where a

value of “8” means that the corresponding IR beam is interrupted and a value of “0” means that the

beam is uninterrupted (there are no intermediate values). According to the architecture described in

Subsection 3.2.1, if an athlete lands on area A4, the first IR beam to be interrupted in the X-axis should

be the one in IRM-Rx X2 and in the Y-axis should be the one in either IRM-Rx Y2 or Y3. After analyzing

the charts, we can assume that this theory was indeed correct: (1) all the sensors start with a value

of zero which means the athlete is in the air; (2) when the athlete lands on the trampoline bed the

beams start to become interrupted by a certain order, depending on where the athlete landed on; (3)

47

4. Hardware and Software Design and Implementation

(a) X-axis IRM-Rx sensors.

(b) Y-axis IRM-Rx sensors.

Figure 4.9: Line charts of the IRM-Rx sensor values during one jump (landing on area A4). Each sensor has a value of “8” when
its IR beam is interrupted and “0” when its IR beam is uninterrupted.

while the athlete is on the bed, some of the IR beams alternate between uninterrupted and interrupted;

and (4) when the athlete leaves the trampoline bed all the beams become uninterrupted in the inverse

order from when they became interrupted initially. Another insight from these tests was that, when the

athlete was on the trampoline bed, no IR beam became uninterrupted for more than 400 milliseconds.

One important note is that these tests were done with a GC resolution of 900 microseconds due to the

extra data being transfered via the serial connection from the MSP430 to the ESP module.

After passing all the tests, a PCB layout was developed, based on Figure 4.6. The main requirements

for the PCB were that it needed to be as small as possible and the RJ11 connectors should be placed

taking into account the configuration of the IR-GRID, shown in Figure D.1. The final PCB with all of

the electrical components soldered to it is shown in Figure 4.10a, measuring 54 millimeters in length

and 81 millimeters in width. In the case of the GC, the PCB was made in the Taguspark laboratory by

the author of this thesis.

(a) GC PCB with all electrical com-
ponents soldered to it.

(b) GC PCB inside the bottom
part of the GC box.

(c) Full GC box encapsulating the
GC PCB.

Figure 4.10: Hardware implementation of the GC and all of its components (PCB and box).

To encapsulate the GC PCB, a box was designed and 3D printed using PLA material. This box

needed to have openings for the two RJ11 female connectors, for the three ON/OFF switches and

48

4.4 APS Design and Implementation

for the LED. The final version of the box and how the PCB fits inside it is shown in Figure 4.10b and

Figure 4.10c, measuring 86 millimeters in width, 59 millimeters in length and 31 millimeters in height.

Another important requirement for the system was to keep the cost of production as cheap as

possible. Table A.3 (Appendix A) shows the GC BOM which was based on ordering the minimum

quantities needed of each component from the cheapest supplier. The total cost of the materials for

the GC is 9.73C.

4.4 APS Design and Implementation

The main purpose of the APS is to wirelessly bridge the user with the trampoline sensor system. It

serves as a Wi-Fi access point, creating a network to which both the GC and the UT connect to. The

APS also contains a server that has a WebApp which stores the data from the IR-GRID and displays it

in the UT.

This architecture (see Figure 3.1) was chosen over simply wirelessly connecting the UT to the GC

and having the application and data stored locally in the UT for one main reason: most trampoline

clubs don’t have the money or conditions to buy a medium spec computer and have it permanently in

the gym. This means that they will most likely use the athletes’ or coaches’ personal devices (laptop,

tablet or smartphone) as the UT. It would be imprudent to have the data and the application stored in

a personal device and being dependent on its owner to bring it every day to the gym. Having a separate

device to store the data and the application gives a lot more flexibility to the system in terms of what

the user can utilize as the UT. Another advantage is that this way it is a lot easier for the coach to take

the data with her/him to analyze outside the gym. It is worth mentioning that a cloud based service

to store the application was discarded as most clubs do not have good or any Internet connections.

The wireless technologies chosen for the system needed to meet the following requirements: reli-

able wireless communication; cheap hardware; good support and documentation online; easy way to

create a good GUI; and data storage capabilities. Taking into consideration all of these requirements,

the best options were Wi-Fi coupled with HTTP server-client based Internet protocols and WebApp

software frameworks. This means that the GC, the UT and the APS needed to have hardware with

Wi-Fi capabilities, the GC and the UT needed to be configured as HTTP clients and the APS needed

to be configured as both a Wi-Fi network Access Point (AP) and a web server containing a WebApp.

By using these technologies, the application is cross-platform, meaning that the UT can be almost any

device that has Wi-Fi and an Internet Browser (desktop computer, laptop, tablet or smartphone).

The hardware chosen for the APS is the Raspberry Pi (RPi) 3 Model B [37][38]. This device was

chosen because it is relatively cheap, it has Wi-Fi already integrated, it has a powerful CPU and it has

a lot of support and documentation online.

4.4.1 APS Software Design

In terms of the software, the back-end programming language chosen was Python [36] and the web

framework chosen was Flask [32][20]. The front-end languages used were Hypertext Markup Lan-

guage (HTML) 5 [58], Cascading Style Sheets (CSS) 3 [57] and JavaScript [29].

Flask is a Python web microframework that was developed to be extended, which means that it only

includes the essential core that all WebApps need. The developers can then choose which extensions

they want to use for their specific application, such as database engines, web form validation systems

and user authentication systems. The Flask core is dependent on two main packages, Jinja2 [6] for

the HTML templates and Werkzeug [51] for the routing, debugging and Web Server Gateway Interface

(WSGI) [35]. This last package is a specification that describes how a web server communicates with

WebApps using the Python programming language.

49

4. Hardware and Software Design and Implementation

When a client, such as a web browser (UT) or Wi-Fi enabled device (GC), sends a request, the

web server uses the WSGI protocol to encapsulate that request into several Python objects and sends

them to the Flask WebApp. The application will then look up the URL requested in the application’s

URL map to determine which function will handle it. This is done by defining routes (the association

between an URL and a function to handle it) as view functions. These functions process the necessary

data for the client’s request and return a response that usually is an HTML file to be displayed in the

client’s browser. An example of a simple view function is shown in Listing 4.1.

Listing 4.1: Example of a Flask view function. The URL called ‘url address’ is mapped to the view function called
viewFunctionName. The view function returns the HTML file called ‘html file name.html’ to the client who sent the request.

1 @app.route('/url_address ')

2 def viewFunctionName ():

3 # Other code to p r o c e s s data and other tasks

4 return render_template('html_file_name.html')

As described in Chapter 3, the application needs to have the following main features: (1) store the

TOF and HD data of the most recent jump performed; (2) store athlete profiles with relevant personal

information, routine information and a history of all saved routines performed; (3) have an interface

for creating and managing new athlete profiles; (4) display, filter and organize the history of all saved

routines performed by a certain athlete; (5) controls to start and stop the display of jump data for a

certain routine and a control to save the routine data; and (6) have a way to graphically and intuitively

display all the TOF, HD and routine data for a specific athlete. The final application that was developed

contains more features to improve the user experience, but only these six will be described here.

In order to store this data, a database system needed to be chosen. Based on the prior knowledge

of the author of this thesis, a Structured Query Language (SQL) database based on the relational

model was chosen. The database abstraction layer chosen for this application was SQLAlchemy [46],

which was adapted for Flask in the extension Flask-SQLAlchemy [5]. In order to meet the requirements

referenced above, the following relational database diagram, represented in Figure 4.11, was designed.

Figure 4.11: Diagram representation of the relational database in the APS WebApp.

The main idea behind the organization of this database is as follows:

1. There is a table for “Coach” that is characterized by a “username” (unique), a “password hash”

(unique) and a “name” to log into the application.

50

4.4 APS Design and Implementation

2. A “Coach” can have many “AthleteProfile”, where each is characterized by a “name”, a “level”

and a “birthday”.

3. An “AthleteProfile” can have a maximum of three “Routine” (in average a trampoline athlete only

has three different routines at any given time of her/his career), where each is characterized

by a “jumpList”, which contains a String with the names of every skill in the routine, and a

“routineNumber”.

4. After each jump, the GC sends the corresponding HD and TOF data to the APS, where it stores

them in the “JumpData” table, which is characterized by having a “jumpArea” and a “jumpTOF”.

This table always only has the most recent jump performed (only one record). Each new jump

overwrites the previously stored one.

5. After a routine is performed and all the TOF and HD data from each skill has been sent from

the IR-GRID to the APS and finally to the UT, the user can save that data into a table called

“ScoredRoutine”. This table is characterized by a “coachUsername”, an “athleteName” and other

routine relevant data like “tofList”, “areaList” and “hdList”. To save a routine, this data has to be

transferred from the UT back to the APS.

6. Each table’s primary key (PK) is called “id”, which is an Integer that uniquely identifies every

record in each table.

There are also other attributes for each table that were not referenced as they are not very relevant

for the main data organization objective of this specific application.

In terms of the view functions, there are seven main ones that are summed up in Listing B.5. The

login() view function has to do with displaying the login page and validating the credentials that are

submitted by the user to login. It returns the ‘login.html’ file. The appPage() view function is related

with displaying main application, which has the controls to start/stop displaying the jump TOF and

HD data to the user, save the routine data, create a new profile, . . . It returns the ‘gui.html’ file. The

getScore() view function has the objective of getting the most recent skill data from the “JumpData”

table and sending it back to the client browser to be displayed in the GUI. This transaction is done

using JavaScript, particularly Asynchronous JavaScript And XML (AJAX), which is a way to partially

update web pages asynchronously, by exchanging data with a web server “behind the scenes”, i.e.

without reloading the whole page. This view function returns a Dictionary data type that contains all

the TOF and HD data for the most recent jump performed. The postSensorJumpData() has to do with

sending the TOF and HD data of the last jump performed from the GC to the APS and storing it in the

“JumpData” table. It returns a simple String so that the GC can confirm that the data was received

by the APS. In the saveRoutine() view function, the TOF and HD data from the whole routine can

be saved when the user presses the SAVE button in the main application page. This data is stored in

the “ScoredRoutine” table along with a timestamp from the client browser. This transaction is also

done via AJAX and it returns a simple JSON text for the client browser to know that the data was

successfully received. The profilePage() view function is used for displaying the athlete’s profile page

with the data that is stored in the “AthleteProfile” table. It returns the ‘profile.html’ file. Finally,

the profileHistoryPage() view function is related with displaying, organizing and filtering all of the

routine history of a specific athlete, which means displaying all of the records stored in the “ScoredRou-

tine” table of that athlete, under the current coach login session. It returns the ‘profileHistory.html’

file.

In terms of the server used, Flask comes with an in-house development web server for prototyping,

which was capable enough for the desired application.

51

4. Hardware and Software Design and Implementation

4.4.2 APS Testing, GUI and Final Implementation

One very important part of designing a system that collects data and will be used by “everyday non-

engineering” users is the GUI. As important as gathering valid, accurate and precise data is the way the

data is presented to the end user. In fact, the way the user can visualize and organize the data is very

important in order to get practical and relevant insights that can help, in this case, the athletes and the

coaches improve their performance. Understanding this, the GUI for this application was developed

with the consulting of several international and Olympic level athletes and coaches from Portugal.

Appendix C has screenshots of all the pages in the WebApp.

Figure C.1 shows the first page the user is greeted with, containing the login interface. If the user

is not registered yet, she/he also has the option to do that. By pressing the “Register” button, the

application takes the user to the register page, shown in Figure C.2. Here, the user must introduce a

name, an unique username and a password.

After logging in, the user is taken to the main and most important page, shown in Figure C.3. In the

top-right area of the page there is a bar graph that displays the TOF of each jump performed as well as

the final total. Values in green represent jumps that have a greater TOF than the immediately previous

one and values in red have the opposite meaning. In the bottom-middle area there is a trampoline

representation that displays the location where the athlete landed on in each jump, with a small

cross. Different colors on the crosses indicate different HD deductions: green means 0.0 deduction

(i.e. no deduction), yellow 0.1, orange 0.2 and red 0.3. As explained before, there are only eleven

different areas but due to the IR-GRID configuration, the system can actually differentiate between

24 “virtual” areas that are shown in Figure D.2. Given this extra capability, the GUI can also display

the crosses on all 24 areas as it gives the user a better notion of where the athlete actually landed

on. In the bottom-right corner, there is a table that contains all the TOF and HD score information,

per jump, for the routine. It is important to remember that the total HD score shown in the table is

actually 10.0 minus the sum of the HD deduction per jump, which is how it appears in a Trampoline

competition. This decision was suggested by the consulting coaches, as they found this way (opposed

to showing the HD deduction sum) easier for training. There is also a button for the coach to add

relevant notes for the specific routine. The controls related with the athlete profile are in the top-

left corner, where the user can select which athlete will perform which routine, create a new athlete

profile and view the information of the selected athlete profile. When a athlete profile and routine is

selected, the corresponding skill names appear on the score table. In the bottom-left corner are the

main commands that are used to start/stop displaying the TOF and HD data of the jumps performed

on the trampoline and to save the routine data that was performed. When the user presses the START

button, the JavaScript code starts to poll the “JumpData” database table, every 300 milliseconds, in

order to check whether or not a new jump has been performed. When a new record is added to

the table, the application sends that data to be displayed in the GUI. After 10 different jumps, the

JavaScript automatically stops polling the server. The user can also end this process prematurely by

pressing the STOP butotn. When the SAVE button the pressed, the data on the score table is sent back

to the server and saved in the “ScoredRoutine” database table.

To create a new athlete profile, the user presses the New Profile button and an overlay appears, as

shown in Figure C.4. Here, the user can fill the athlete’s name, level and routine skill names. Each

routine column has buttons to clear, copy and paste the entire column text. This is important because

many athletes have similar routines, differing in only one or two skills between them. There is also

an autocomplete function that helps writing the names of the trampoline skills in the columns. By

pressing the Create button, a new record on the “AthleteProfile” table is added.

When the user presses the View Profile button, the profile information page, shown in Figure C.5,

is loaded. This page shows a summary of the athlete’s profile information. The top-right yellow button

52

4.5 Final System Design and Implementation

takes the user to the edit profile page, as shown in Figure C.6. Here the user can edit all the parameters

of the athlete’s profile, including deleting that specific profile.

The top-right green button in the profile page loads the profile history page, as shown in Figure C.7.

This page is very important for the coaches and athletes that want to have a more in-depth perception

of how they are performing. The right side of the page displays all the score tables of the saved

routines, with their corresponding timestamp. Even failed routines (routines with less than tens jumps

performed) can be saved and are represented with a red background. In the top-left part of the page

are the filtering and ordering options. The user can filter the data by a specific routine number (All,

R1, R2 or R3), and or by a time interval. Concerning the ordering of data, there are four options plus

a special one. The four are: order by date (from most recent to oldest), by TOF (highest to lowest), by

HD (highest to lowest) and by both, which sums the total TOF and HD of each routine and orders them

from the highest to the lowest sum. The fifth special option is one called Analyze, that attempts to help

coaches and athletes get valuable insights from their routine history. It uses the routines filtered from

the above options and makes an average of each jump’s TOF and HD scores, and calculates the mode

of the area where each jump lands on. This way the user can find patterns/tendencies that the athlete

has during the routine. For instance, one may notice that, on the last jump of the routine the athlete

has a tendency to land on area A7, getting an HD deduction of 0.2. On the top right corner of each

score table division there is a purple button that displays an overlay with the graphical representation

of the scored routine, as shown in Figure C.8.

To encapsulate the RPi, a box was 3D printed using a design available online in PLA material. In

terms of cost, as shown in Table A.4, the total is 36.62C.

4.5 Final System Design and Implementation

One last important problem needed to be solved to finalize the design of the whole system: where

and how to attach the IR-GRID to the trampoline in an universal (i.e. one fit for most Olympic sized

trampolines) and non-invasive way? The only structure where the IR-GRID could be placed without

changing the elastic/bouncing properties of the trampoline is the metallic ring frame that goes around

the trampoline and holds the springs and bed in place (see Figure 4.12a). This frame has an oval shape

with straight sides, as shown in Figure 4.12b. With this shape, the IR-GRID modules can be attached

below the ring frame. This surface is flat which guaranties that the IRM-Rx and IRM-Tx are leveled

and aligned, which is very important.

(a) Picture of the metallic ring
frame around the trampoline that
holds the springs and bed in place.

(b) 3D representation of the shape
of the metallic ring frame (side sec-
tion cut).

(c) Image of how the IR-GRID
modules are attached to the
metallic ring frame.

Figure 4.12: IR-GRID modules attachment to the metallic ring frame of the trampoline.

In terms of how to attach the IR-GRID modules, many options were considered. The main require-

ments were that modules needed to be fixed in all three dimensions, as vibrations could cause them

to misalign, and to be able to attach on any brand of Olympic sized trampolines. The first option

tested was to use 3D printed clamps that would wrap around the metallic ring frame and have latch

to mechanically attach the IR-GRID modules. This solution was very good at keeping the modules

53

4. Hardware and Software Design and Implementation

strongly fixed and aligned with each other. However, even though all Olympic trampolines have a

frame with the same shape, their sizes may vary, implying that it would be necessary to make custom

clamps for each trampoline brand and model. Another problem with this design was that the clamps

could only be positioned in some specific locations on the ring frame due to other fixtures, like the

spring hook rings that are welded on to the frame, which made configuring the IR-GRID modules, as

shown in Figure D.1, very difficult. The second solution considered was to use magnets on the IR-GRID

modules. This solution was good in terms of where the modules could be positioned, not having any

limitations due to other fixtures on the metallic ring frame. The downside was that the magnets create

most of their attracting force in the vertical direction, meaning that the vibrations of the trampoline

could cause the modules to twist and become misaligned. Besides, strong enough magnets can be

very expensive. Finally, the chosen option was to use velcro, where one side would be glued to the

metallic ring frame, on correct locations (Figure D.1), and the other side on the IR-GRID modules. This

solution offers the best characteristics of both previous options: the modules can be freely positioned

in any location of the metallic ring frame without any limitations; it is independent of the dimensions

of the ring frame shape (universal between trampoline brands); and offers enough fixing strength

across all three dimensions. The main downside of this solution is that the velcro must be glued on the

ring frame by hand without any physical guide to help the user know precisely where to position it.

Also, the IR-GRID modules are aligned and attached to the ring frame manually which can cause some

difficulties during this process. After testing this attachment method, it was found that the manual

alignment of the IR-GRID modules was not complicated, as it took about seven minutes to mount the

entire system. This is aided by the wide diameter of the IR beam which does not mandate the IRM-Tx

to be perfectly aligned with the IRM-Rx. There are many types and brands of velcro, but in average it

is relatively cheap to buy. Figure 4.12c shows a picture of how the IR-GRID modules are attached to

the metallic ring frame.

To finalize the system design, the last hardware needed were the RJ11 cables to connect all the

IR-GRID modules with the power and I2C bus lines, the RJ11 male connectors and the AC to DC

12V power supply. Table A.5, shows the final cost for the hardware of the entire system at 178.76C.

Figure 4.13 shows an image of the complete hardware implementation of the designed system.

Figure 4.13: Picture of the hardware implementation for the complete system.

Although some simple experiments were performed in order to design the system, further test-

ing needs to be conducted in order to better characterize how the system works and which are its

limitations. In the next chapter, these experiments and results will be described in more detail.

54

5
Testing and Results

Contents
5.1 Trampoline Bed Behavior Characterization . 56

5.2 “Real World” Testing . 59

5.3 Limit Testing . 60

55

5. Testing and Results

In this chapter, the main tests that were done with the complete system will be described. The main

goal was, of course, to check whether the system was working correctly, in a “real world” environment,

and if it met all the requirements proposed in Chapter 3. It was also important to characterize how

the trampoline behaves when an athlete is jumping, which variables influence that behavior and how

that limits the capabilities of the system. These experiments were mostly conducted to understand the

system’s capability of measuring the Horizontal Displacement (HD), as the Time of Flight (TOF) was

a easier problem to solve and validate. All the tests were conducted in the Sporting Clube de Portugal

Trampoline Gymnasium using an Olympic size trampoline, with the help of national team level athletes

and coaches, in order to get valuable feedback from them.

5.1 Trampoline Bed Behavior Characterization

The main variables that may influence the behavior of the trampoline and therefore the output of the

system were the jumping height, the location where the athlete lands on the bed, the athlete’s weight

and the trampoline model. Given the nature of the sport and the resources available, conducting

the experiments in a controlled environment, where all variables can be accounted for, is virtually

impossible. For instance, it is impossible for an athlete to jump at a determined height and land in

an exact spot several times in a row. Given this, some assumptions and approximations needed to be

made. Theoretically the jumping height is the variable that influences the most the way the trampoline

bed deforms when an athlete is jumping on it, so two intervals that can be easily controlled by the

athlete were considered: less than two meters and more than two meters, which will later be referred

to as “low” and “high”, respectively. To do this, a visual reference point in the gym was used to aid the

athlete at maintaining her/his height. In terms of the location where the athlete lands on, given that

the trampoline is symmetrical, only areas A0, A1, A3, A4 and A5 were tested (see Figure D.1). Even

though, the athlete weight should not influence too much the behavior of the trampoline bed, it was

always the same athlete (male), with approximately 67 kilograms, to perform the experiments. The

trampoline model used was also always the same, an Eurotramp Ultimate 4x4 Trampoline [15], which

is the latest model to be used in the Olympic Games. In order to validate the data read by the Infrared

Beam Grid (IR-GRID) sensors, during all tests, a fish-eye camera (GoPro) was positioned below the

trampoline so that it could capture all of the bed areas, as shown in Figure 5.1.

Figure 5.1: Picture of the GoPro point of view. The “fish eye” lens enables all trampoline bed areas to be visible.

This first phase of testing was to gather the Infrared Beam Module Receiver (IRM-Rx) sensor values,

while an athlete was jumping, and cross-reference that data with the video from the GoPro camera.

This experiment was already briefly explained in Subsection 4.3.3, but the main objective here was

to characterize the behavior of the trampoline bed and which variables can influence it. The IR-GRID

56

5.1 Trampoline Bed Behavior Characterization

was mounted on the trampoline frame (see Figure D.1) and the IRM-Rx sensor values were read by the

Grid Controller (GC) and sent to a computer via USB. In this test, the resolution of the system (i.e. the

time interval to read all 10 IRM-Rx sensors) was 900 microseconds. The athlete was asked to jump ten

times on areas A3, A4 and A5, at both the “high” and “low” heights. In areas A0 and A1, the athlete

was only asked to jump at less than two meters, as it can be very dangerous to jump higher on those

areas.

As described in Subsection 4.3.3, the data obtained clearly shows how the trampoline bed deforms

as the athlete lands on it. This is evident by the order in which the infrared (IR) beams are interrupted,

the first ones being those closest to the center of pressure of where the athlete lands on the trampoline

bed. After analyzing the data from all 80 jumps, one can conclude that this behavior appears to be the

same in all bed areas, in both the X and Y axis and at both jumping heights. Regarding the jumping

height, it was observed that the higher an athlete jumps, the less time she/he actually spends on the

trampoline bed. This is somewhat counter intuitive, as the bed actually deforms more (i.e. it goes

lower) as an athlete jumps higher. A probable explanation is that due to the increase in the athlete’s

falling speed, the bed actually deforms faster, which results in less time on the trampoline. Figure 5.2

illustrates these conclusions with the data from a jump where the athlete landed on area A4 and was

jumping at “low” and “high” (Figure 5.2a and Figure 5.2b, respectively). This behavior was similarly

observed in both the A3 and A5 areas.

(a) Athlete jumping at less than 2 meters of height.

(b) Athlete jumping at more than 2 meters of height.

Figure 5.2: Chart of the X-axis IRM-Rx sensor values during one jump (landing on area A4). Each sensor has a value of “8”
when its IR beam is interrupted and “0” when its IR beam is uninterrupted.

From Figure 5.2 one can see that, when the athlete was jumping low (with a TOF of 666.9 mil-

liseconds), the Time on Bed (TOB) was 420.0 milliseconds, and when the athlete was jumping high

(TOF of 1171.8 milliseconds), the TOB was 340.0 milliseconds. The relation between the TOF and the

57

5. Testing and Results

TOB can be observed more explicitly in Figure 5.3, where a linear relationship between the two can

be inferred. In the charts for areas A4 and A5 (Figure 5.3b and Figure 5.3a respectively) this is very

visible, as the coefficient of determination or R-squared value of the linear regression is 0.98556 and

0.97248, respectively. This is not so visible in the chart for area A3, where the R-squared of the linear

regression had a value of 0.8823. This is probably due to the fact that area A3 is closer to the limit

of the trampoline bed, where the springs exert non-symmetrical forces, differing a lot from when the

athlete is closer to the center of the bed (areas A4 and A5).

(a) Area A5. (b) Area A4.

(c) Area A3.

Figure 5.3: Charts showing the relationship between TOF and TOB values in areas A3, A4 and A5 at the heights of less and
more than two meters. The data was organized in scatter charts and a linear regression was done in each one.

Even though knowing how the TOB varies with the TOF is relevant to characterize the trampoline

bed’s behavior, what is most important to understand for this application is that, as an athlete jumps

higher, the TOB becomes lower, and therefore the time interval between consecutive IR beams becom-

ing interrupted also becomes lower. This is critical, as the maximum resolution of the system is 0.6

milliseconds, which means that if two consecutive IR beams become interrupted in less than that time,

the system cannot differentiate between those two events.

This effect can easily be seen in Figure 5.2, where the IR beams in both charts are interrupted

approximately in the same order, but the time interval between those events is shorter when the athlete

jumps higher (more than two meters). In average, the TOF when the athlete was jumping “low” in

area A4 was 772.29 milliseconds, and the difference between the first and second IR beam becoming

interrupted (in the X-axis) was 12.15 milliseconds. In contrast, when the athlete was jumping “high”

in area A4, the average TOF was 1240.47 milliseconds, and the difference between the first and second

IR beam becoming interrupted (in the X-axis) was in average 8.28 milliseconds. This means that an

increase of 468.18 milliseconds in the TOF resulted in a decrease of 3.87 milliseconds in the time

interval between the first and second X-axis IR beams becoming interrupted. An over-simplistic way to

interpret these results is to assume that this relationship is linear. Thus, it would be easy to calculate

that for a TOF of 2100 milliseconds (one of the highest single jump TOF that can be performed in a

routine), the time interval between the first and second X-axis IR beams becoming interrupted would be

1.18 milliseconds, meaning that the system would always be able to measure the HD when an athlete

landed in area A4. Unfortunately, this cannot be concluded as there are many other variables that

58

5.2 “Real World” Testing

influence the trampoline bed’s behavior. For example, the linearity assumed above was not formally

proved and it probably varies depending on where the athlete lands on (like landing near the edges).

Another important characteristic in the trampoline bed’s behavior is that inside the same area,

the difference in time intervals between when each IR beam is interrupted may also vary. This is

most significant when an athlete lands closer to one of the trampoline area lines. For example, if an

athlete lands on top of line LX1 (see Figure D.1), the time interval between when IR beams X1 and

X2 become interrupted is almost zero. This makes it very hard for the system to correctly determine

the correct HD score when the athlete lands very close to the lines. Given that there are no Fédération

Internationale de Gymnastique (FIG) guidelines describing the resolution, accuracy and precision of an

HD measuring machine, a 10 centimeter “gray area” to each side of the trampoline lines was defined

(see Table 3.1). When the athlete lands on this region (their feet are already touching the lines), it is

not demanded that the system correctly determine in which trampoline area the athlete actually is on.

In the experiment described above, the athlete always landed with his center of pressure more that 10

centimeters away from each line. In order to better test the system’s capability to correctly determine

the HD score when the athlete lands on the “gray area”, further experiments needed to be performed.

5.2 “Real World” Testing

After understanding the basic behavior of the trampoline bed and how it could affect the system’s

performance, it was time to test it in a “real world” scenario. To do this, the entire system, including

the IR-GRID, Access Point Server (APS) and a laptop computer as the User Terminal (UT), were setup

in an Ultimate 4x4 Eurotramp Trampoline [15] at the Sporting Clube de Portugal gymnasium. The APS

was positioned at a distance of approximately 16 meters from the IR-GRID. A GoPro camera was also

positioned under the trampoline bed in order to capture all bed areas (Figure 5.1) and validate the

HD results given by the system. This experiment was conducted during a real Trampoline Gymnastics

training session, gathering a total of 80 jumps/skills, ranging in TOF from 1.247 to 1.814 seconds.

Jumps form four different athletes were measured, who ranged in weight from 44 to 75 kilograms.

Table 5.1 shows the results from this experiment. The system, in particular the UT, was used by two

national team level coaches from Sporting Clube de Portugal.

Table 5.1: Results from “real world” testing of the system.

Each jump performed was divided into two groups: those where the athlete landed with his center

of pressure more than 10 centimeters away from any area line (outside the “gray area”) and those

where the athlete landed less than 10 centimeters of any area line (inside the “gray area”). As can

be seen in Table 5.1, the athlete’s center of pressure was outside the “gray area” in 60 jumps, and the

system correctly identified the HD area every time (accuracy of 100%). Also, the athlete landed 20

times inside the “gray area”, where in 16 of those jumps the HD area was correctly identified, in 2

jumps it was wrongly identified and in 2 other jumps the results were inconclusive (the human eye

was not able to discern in which was the correct HD area).

After the experiment, the overall consensus from the coaches was that the system met all of the

necessary requirements to be an useful tool to help athletes and coaches in a training scenario. These

requirements mainly had to do with HD and TOF accuracy and precision, intuitive User Interface (UI)

59

5. Testing and Results

and routine data management. The only issue referred by the users was that when setting up the

system for the very first time, the process was a bit complex and time-consuming. However, after

the first time and having the velcro strips attached to the trampoline frame, it was relatively quick to

mount and dismount the IR-GRID.

5.3 Limit Testing

In order to better understand the limits of the system when an athlete is jumping on the “gray area”,

a limit test was performed. The same setup as Section 5.1 was used but this time with only three

IR beams, X1, X2 and X3 (Figure D.1). Therefore, the system was able to have a resolution of 264

microseconds, instead of the 900 microseconds when using all 10 IR beams. The idea behind this

experiment was to make the athlete jump as high as he could, landing as many times as possible on

lines LX1 or LX2 and then measure the time interval between the moments when the first and second

IR beams become interrupted in each jump. After the test, a total of 50 jumps were recorded with

an average TOF of 1.208 seconds. Figure 5.4 shows the distribution of the time intervals obtained,

ranging from 0 to 6.072 milliseconds, where 0 means that the beams were interrupted in the same 264

microsecond cycle.

Figure 5.4: Chart with the distribution of the time interval between the moments when the first and second IR beams are
interrupted. Athlete jumping on lines LX1 and LX2.

Taking into consideration that the system’s resolution for differentiating between IR beam interrup-

tion events is 600 microseconds, there are only four jumps out of 50 where the time interval would be

too small for the system to detect. This means that even when an athlete lands with her/his center of

pressure inside the “gray area”, at a 1.208 second TOF, the system should be able to correctly differ-

entiate between HD areas 92% of the time. Of course there are many other variables that will affect

these results, like different trampoline bed areas and jumping height, but it is interesting to know that

the system has some resolution margin on top of the defined requirements.

60

6
Conclusions and Future Work

Contents
6.1 Future Work . 63

61

6. Conclusions and Future Work

At the highest level of sports, the difference between ending in first or second place can be very

small. This is particularly true for the sport of Trampoline Gymnastics, where jumping a little higher

and more centered on the trampoline than your opponent can have a huge impact in the final score.

This is why Sporting Technologies (STs) used in training can give coaches and athletes the edge they

need to reach their objectives faster and more efficiently. By measuring and analyzing certain param-

eters, these technologies can help coaches and athletes identify hidden problems and develop new

training methods, which would be impossible otherwise. In the case of Trampoline Gymnastics, two

parameters were chosen to be measured: the Time of Flight (TOF) and the Horizontal Displacement

(HD).

At the time that this work was started, there were no commercially available systems that could

automatically measure these two components in a way that was non-invasive, and there was almost

no prior work done in this area. An architecture was designed to meet the minimum requirements

so that the system could be useful for the athletes and coaches during training. The system is mainly

comprised of a infrared (IR) grid that is positioned under the trampoline bed and gathers data relating

to how it deforms when an athlete is jumping. This data would be used to calculate the TOF and

HD of each individual skill. As there were almost no scientific studies on modeling the behavior of a

trampoline when an athlete is jumping on it, many tests were performed in order to validate what was

theorized. The data gathered by the system is then sent to a database to be saved and visualized by

the user. A User Interface (UI) was developed to control the entire system and to manage the stored

data.

After designing, developing and implementing the hardware and software needed, a functioning

prototype of the system was created. In order to validate the systems capabilities and to see how it

behaves in a “real world” use case, experiments were conducted in the Sporting Clube de Portugal

trampoline gymnasium where national team and Olympic level athletes and coaches train. Most of the

data gathered was used to help better understand how the trampoline bed behaves as an athlete jumps,

in order to improve the systems performance. Several athletes and coaches from Sporting Clube de

Portugal used the system and the recurrent opinion was that it could be a very helpful tool to improve

their performance. The application’s UI was also praised as it was very intuitive and displayed all

the relevant data in a way that made it easy for coaches to gain important insights about an athlete’s

performance. By being able to store a history of the routines performed by each athlete, the coaches

can find patterns in the athlete’s jumping behavior that otherwise would be impossible. The fact that

the interface between the user and the trampoline IR grid is wireless improved the usability of the

system, as it avoids the use of fixed long cables. A big concern was put into developing an attachment

method for the system that would be non-invasive for both the trampoline and the athlete and would

be compatible with most Olympic format trampoline models. This was also achieved by utilizing velcro

positioned in key places around the trampoline’s metallic ring frame. In terms of TOF resolution and

HD accuracy, the developed system met both requirements as it was able to detect TOF differences

with 600 microseconds and during testing, it correctly detected the HD area of each jump 100% of the

time, within 10 centimeters of each area line. Finally, the cost of making the hardware was kept as low

as possible, and if commercially produced would likely be sold at an affordable price for the clubs.

On the down side, the users felt that setting up the system for the first time was a bit confusing

and time consuming, as all the velcro strips needed to be attached to the trampoline frame by hand.

Despite this, after some explanation and trials the users were able to mount or dismount the system

in less than 10 minutes. Another difficulty felt during this project was trying to test the system in a

controlled environment. Given the resources available and the nature of the sport, it was very difficult

to replicate experiments several times while controlling all the involved variables.

As a Master’s thesis, this project proved to be very multidisciplinary, as it involved hardware and

software knowledge in many areas, such as: wireless and wired communications, embedded systems,

62

6.1 Future Work

sensor technologies, Web Application (WebApp) development and 3D printing. By developing a com-

plete system from start to end, there were also many time and project management skills learned that

can only be gained by actually doing a project like this. The development of this new system led to the

submission of a national patent, which was also a valuable and interesting new learning experience.

6.1 Future Work

In order to improve the system’s capabilities, more work needs to be done in terms of testing in

controlled environments. For example, the trampoline bed reacts differently when the athlete is closer

to the edges where the springs are. This work assumed that the bed behaved the same everywhere

which is a good approximation but is not exactly true. Also, these experiments should be performed

in conjunction with the Fédération Internationale de Gymnastique (FIG), in order to determine which

are the exact TOF and HD requirements that these types of systems need to meet to be used in a

competition scenario.

An example of a future improvement to the system is a different software implementation that

could help improve the HD resolution dramatically. In this scenario the individual Infrared Beam

Module Receiver (IRM-Rx) would locally measure the Time on Bed (TOB) during each jump and after,

send those values to the Grid Controller (GC) to be analyzed and determine the correct HD and TOF

values. Here the resolution of the system is only limited by the timer’s capabilities in each IRM-Rx and

not by the speed at which the GC can communicate with them. Instead of hundreds of microseconds

it would be dozens of microseconds, i.e. one order of magnitude lower. This algorithm was actually

implemented and some tests were performed. The problem was that due to the small differences

between clock sources in the MSP430 microcontrollers, the results weren’t valid. In order to solve

this issue a new prototype needed to be developed, where each IRM-Rx has an external more reliable

oscillator. Given the limitations in terms of time and resources this new version wasn’t implemented.

Another interesting parameter that can be measured by this system, with little modifications, is

the Synchro Score (SYN). In this case, two Infrared Beam Grid (IR-GRID) would be mounted on two

trampolines, and connected to the same Access Point Server (APS). Both systems would then need to

synchronize their clocks in order to measure the difference in time between the moments when each

athlete lands on their corresponding trampoline bed.

In time and with more clubs using this system, more optimizations, in hardware and software,

will surely be made to improve the system’s performance and help more athletes and coaches achieve

higher goals.

63

Bibliography

[1] ACRONAME (2017) SHARP INFRARED RANGER COMPARISON. https://acroname.com/

articles/sharp-infrared-ranger-comparison

[2] Acrosport (russian) (2017) Innovative technologies / systems testing. http://www.acrosport.ru/

catalogue/innovatsionnye tekhnologii/sistemy testirovaniya/sinkhronnyy apparat s 3 mya

datchikami /

[3] Adafruit (2017) How PIRs Work. https://learn.adafruit.com/

pir-passive-infrared-proximity-motion-sensor/how-pirs-work

[4] Analog Devices (2009) Decoupling Techniques. http://www.analog.com/media/en/

training-seminars/tutorials/MT-101.pdf

[5] Armin Ronacher (2017) Flask-SQLAlchemy. http://flask-sqlalchemy.pocoo.org/2.3/

[6] Armin Ronacher (2017) Welcome to Jinja2. http://jinja.pocoo.org/docs/2.10/

[7] Atmel (2013) Atmel 8-bit AVR Microcontroller with 2/4/8K Bytes In-System Programmable Flash

[8] Brock H (2010) Department of Computer Science Automated Classification of Trampoline Motions

Based on Inertial Sensor Input. Master’s thesis, Faculty of Natural Sciences and Technology I, De-

partment of Computer Science, Saarland University

[9] Chi EH, Borriello G, Hunt G, Davies N (2005) Guest Editors’ Introduction: Pervasive Computing in

Sports Technologies. Pervasive Computing, IEEE (Volume:4 , Issue:3) pp 22–25

[10] Costa A, Batalha M, Umbelino V, Amaro J (2015) Sports System Monitoring Intensity of Trampoline

Jump, Conference Paper at 2015 Conference on Engineering , At Covilhã - Portugal.

[11] David Hall (2010) United states patent, sensor, control and virtual reality system for a trampoline,

patent no.: Us 8,206,266 b2

[12] Embedded (2002) Serial Protocols Compared. http://www.embedded.com/design/connectivity/

4023975/Serial-Protocols-Compared

[13] Espressif (2018) ESP8266EX Datasheet. https://www.espressif.com/sites/default/files/

documentation/0a-esp8266ex datasheet en.pdf

[14] Eurotramp (2017) Eurotramp Trampoline bed. https://www.eurotramp.com/us-en/products/

large-trampolines/premium/

[15] Eurotramp (2017) Eurotramp Trampoline frame. https://www.eurotramp.com/us-en/products/

large-trampolines/ultimate/

[16] Eurotramp Trampoline - Kurt Hack (2017) United states patent publication trampoline

no.:us2017/0157444a1

65

https://acroname.com/articles/sharp-infrared-ranger-comparison
https://acroname.com/articles/sharp-infrared-ranger-comparison
http://www.acrosport.ru/catalogue/innovatsionnye_tekhnologii/sistemy_testirovaniya/sinkhronnyy_apparat_s_3_mya_datchikami_/
http://www.acrosport.ru/catalogue/innovatsionnye_tekhnologii/sistemy_testirovaniya/sinkhronnyy_apparat_s_3_mya_datchikami_/
http://www.acrosport.ru/catalogue/innovatsionnye_tekhnologii/sistemy_testirovaniya/sinkhronnyy_apparat_s_3_mya_datchikami_/
https://learn.adafruit.com/pir-passive-infrared-proximity-motion-sensor/how-pirs-work
https://learn.adafruit.com/pir-passive-infrared-proximity-motion-sensor/how-pirs-work
http://www.analog.com/media/en/training-seminars/tutorials/MT-101.pdf
http://www.analog.com/media/en/training-seminars/tutorials/MT-101.pdf
http://flask-sqlalchemy.pocoo.org/2.3/
http://jinja.pocoo.org/docs/2.10/
http://www.embedded.com/design/connectivity/4023975/Serial-Protocols-Compared
http://www.embedded.com/design/connectivity/4023975/Serial-Protocols-Compared
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.eurotramp.com/us-en/products/large-trampolines/premium/
https://www.eurotramp.com/us-en/products/large-trampolines/premium/
https://www.eurotramp.com/us-en/products/large-trampolines/ultimate/
https://www.eurotramp.com/us-en/products/large-trampolines/ultimate/

[17] Fédération Internationale De Gymnastique (2017) 2017 – 2020 code of points, trampoline gymnas-

tics. http://www.fig-gymnastics.com/publicdir/rules/files/tra/TRA-CoP 2017-2020-e.pdf

[18] Fédération Internationale de Gymnastique (FIG) (2017) Competition Description. http://www.

fig-gymnastics.com/site/page/view?id=435

[19] Google (2017) Google Cardboard. https://vr.google.com/cardboard/

[20] Grinberg M (2014) Flask Web Development - Developing Web Applications With Python. O’Reilly

Media

[21] Hawk-Eye Innovations (2017) Hawk-Eye in Tennis. http://www.hawkeyeinnovations.co.uk/

sports/tennis

[22] I2C-Bus (2017) I2C What’s That. https://www.i2c-bus.org

[23] IBEX Electronic Product Design Specialists (2017) CAN vs RS485. http://www.

electronic-products-design.com/geek-area/communications/can-bus/can-vs-rs485

[24] James L Levine, Susan A Luerich and Duane Scott Miller (2007) United states patent, infrared touch

screen gated by touch force, patent no.: Us 8,130,202 b2

[25] Leif Bennett (2016) Choosing a Lens. http://alumnus.caltech.edu/∼leif/infratag/lens choice.

html

[26] Maxim Integrated (2005) Serial Digital Data Networks. https://www.maximintegrated.com/en/

app-notes/index.mvp/id/3438

[27] Metropolia Confluence (2017) Infrared Sensors. https://wiki.metropolia.fi/display/sensor/

Infrared+sensors

[28] Microchip (2017) Microchip Home Page. http://www.microchip.com

[29] Mozilla, MDN and other contributors (2018) JavaScript reference. https://developer.mozilla.

org/en-US/docs/Web/JavaScript/Reference

[30] National Instruments (2017) RS-232, RS-422, RS-485 Serial Communication General Concepts.

http://www.ni.com/white-paper/11390/en/

[31] NXP Semiconductors (2014) I2C-bus specification and user manual. http://www.nxp.com/docs/en/

user-guide/UM10204.pdf

[32] Pallets (2010) Welcome to Flask. http://flask.pocoo.org/docs/1.0/

[33] Pepperl+Fuchs (2017) Light Grids. http://www.pepperl-fuchs.com/global/en/classid 51.htm

[34] Pepperl+Fuchs (2017) Pepperl+Fuchs Home Page. www.pepperl-fuchs.com

[35] Python Software Foundation (2010) PEP 333 – Python Web Server Gateway Interface v1.0. https:

//www.python.org/dev/peps/pep-0333/#preface

[36] Python Software Foundation (2018) Python 2.7.15 documentation. https://docs.python.org/2/

[37] Raspberry Pi Foundation (2018) Raspberry Pi 3 Model B. https://www.raspberrypi.org/products/

raspberry-pi-3-model-b/

[38] Raspberry Pi Foundation (2018) Raspberry Pi Documentation. https://www.raspberrypi.org/

documentation/

66

http://www.fig-gymnastics.com/publicdir/rules/files/tra/TRA-CoP_2017-2020-e.pdf
http://www.fig-gymnastics.com/site/page/view?id=435
http://www.fig-gymnastics.com/site/page/view?id=435
https://vr.google.com/cardboard/
http://www.hawkeyeinnovations.co.uk/sports/tennis
http://www.hawkeyeinnovations.co.uk/sports/tennis
https://www.i2c-bus.org
http://www.electronic-products-design.com/geek-area/communications/can-bus/can-vs-rs485
http://www.electronic-products-design.com/geek-area/communications/can-bus/can-vs-rs485
http://alumnus.caltech.edu/~leif/infratag/lens_choice.html
http://alumnus.caltech.edu/~leif/infratag/lens_choice.html
https://www.maximintegrated.com/en/app-notes/index.mvp/id/3438
https://www.maximintegrated.com/en/app-notes/index.mvp/id/3438
https://wiki.metropolia.fi/display/sensor/Infrared+sensors
https://wiki.metropolia.fi/display/sensor/Infrared+sensors
http://www.microchip.com
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
http://www.ni.com/white-paper/11390/en/
http://www.nxp.com/docs/en/user-guide/UM10204.pdf
http://www.nxp.com/docs/en/user-guide/UM10204.pdf
http://flask.pocoo.org/docs/1.0/
http://www.pepperl-fuchs.com/global/en/classid_51.htm
www.pepperl-fuchs.com
https://www.python.org/dev/peps/pep-0333/#preface
https://www.python.org/dev/peps/pep-0333/#preface
https://docs.python.org/2/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/documentation/
https://www.raspberrypi.org/documentation/

[39] Rockwell Automation (2017) Ultrasonic Sensing. http://www.ab.com/en/epub/catalogs/12772/

6543185/12041221/12041229/print.html

[40] SensorWiki (2017) Ultrasound. http://www.sensorwiki.org/doku.php/sensors/ultrasound

[41] Sharp (2017) GP2Y0A21YK datasheet. http://www.sharpsma.com/webfm send/1208

[42] Shenzhen Anxinke Technology (2015) ESP-12E WiFi Module. http://www.kloppenborg.net/

images/blog/esp8266/esp8266-esp12e-specs.pdf

[43] SparkFun (2017) IR Communication. https://learn.sparkfun.com/tutorials/ir-communication

[44] Sparkfun (2017) Sparkfun Home Page. https://www.sparkfun.com

[45] SportTechie - Sports Technology News (2015) Babolat Play Connected Ten-

nis Racket is the Future of Tennis. http://www.sporttechie.com/2015/01/29/

babolat-play-connected-tennis-racket-is-the-future-of-tennis/

[46] SQLAlchemy and other contributors (2018) SQLAlchemy 1.2 Documentation. http://docs.

sqlalchemy.org/en/latest/

[47] Stack Exchange Inc (2017) USART, UART, RS232, USB, SPI, I2C, TTL, etc. what are all of these

and how do they relate to each other? http://electronics.stackexchange.com/questions/37814/

usart-uart-rs232-usb-spi-i2c-ttl-etc-what-are-all-of-these-and-how-do-th

[48] Texas Instruments (2013) MIXED SIGNAL MICROCONTROLLER. http://www.ti.com/lit/ds/

symlink/msp430g2353.pdf

[49] Texas Instruments (2014) xx555 Precision Timers Datasheet. http://www.ti.com/lit/ds/symlink/

ne555.pdf

[50] Texas Instruments (2016) MSP-EXP430G2 LaunchPad Development Kit User’s Guide. http://www.

ti.com/lit/ug/slau318g/slau318g.pdf

[51] The Werkzeug Team (2017) Documentation Overview. http://werkzeug.pocoo.org/docs/0.14/

[52] Trampoline Timing Systems (2017) AirTime Trampoline System. http://www.

trampolinetimingsystems.com/products.htm?submenuheader=0

[53] Tseng Hsiang Lin (2012) United states patent publication trampoline with feedback system, pub.

no.:us2012/0295763a1

[54] University of Ulster (2015) The Role of Technology in Sport. http://www.ulster.ac.uk/

scienceinsociety/technologyinsport.html

[55] Vishay (2014) High Power Infrared Emitting Diode, 940 nm, GaAlAs, MQW

[56] Vishay (2016) IR Receiver Modules for Remote Control Systems. https://www.vishay.com/docs/

82459/tsop48.pdf

[57] World Wide Web Consortium (W3C) and other contributors (2017) CSS Snapshot 2017. https:

//www.w3.org/TR/2017/NOTE-css-2017-20170131/

[58] World Wide Web Consortium (W3C) and other contributors (2017) HTML 5.2. https://www.w3.

org/TR/html5/

[59] zeroday GitHub repository (2015) nodemcu-devkit-v1.0. https://github.com/nodemcu/

nodemcu-devkit-v1.0

67

http://www.ab.com/en/epub/catalogs/12772/6543185/12041221/12041229/print.html
http://www.ab.com/en/epub/catalogs/12772/6543185/12041221/12041229/print.html
http://www.sensorwiki.org/doku.php/sensors/ultrasound
http://www.sharpsma.com/webfm_send/1208
http://www.kloppenborg.net/images/blog/esp8266/esp8266-esp12e-specs.pdf
http://www.kloppenborg.net/images/blog/esp8266/esp8266-esp12e-specs.pdf
https://learn.sparkfun.com/tutorials/ir-communication
https://www.sparkfun.com
http://www.sporttechie.com/2015/01/29/babolat-play-connected-tennis-racket-is-the-future-of-tennis/
http://www.sporttechie.com/2015/01/29/babolat-play-connected-tennis-racket-is-the-future-of-tennis/
http://docs.sqlalchemy.org/en/latest/
http://docs.sqlalchemy.org/en/latest/
http://electronics.stackexchange.com/questions/37814/usart-uart-rs232-usb-spi-i2c-ttl-etc-what-are-all-of-these-and-how-do-th
http://electronics.stackexchange.com/questions/37814/usart-uart-rs232-usb-spi-i2c-ttl-etc-what-are-all-of-these-and-how-do-th
http://www.ti.com/lit/ds/symlink/msp430g2353.pdf
http://www.ti.com/lit/ds/symlink/msp430g2353.pdf
http://www.ti.com/lit/ds/symlink/ne555.pdf
http://www.ti.com/lit/ds/symlink/ne555.pdf
http://www.ti.com/lit/ug/slau318g/slau318g.pdf
http://www.ti.com/lit/ug/slau318g/slau318g.pdf
http://werkzeug.pocoo.org/docs/0.14/
http://www.trampolinetimingsystems.com/products.htm?submenuheader=0
http://www.trampolinetimingsystems.com/products.htm?submenuheader=0
http://www.ulster.ac.uk/scienceinsociety/technologyinsport.html
http://www.ulster.ac.uk/scienceinsociety/technologyinsport.html
https://www.vishay.com/docs/82459/tsop48.pdf
https://www.vishay.com/docs/82459/tsop48.pdf
https://www.w3.org/TR/2017/NOTE-css-2017-20170131/
https://www.w3.org/TR/2017/NOTE-css-2017-20170131/
https://www.w3.org/TR/html5/
https://www.w3.org/TR/html5/
https://github.com/nodemcu/nodemcu-devkit-v1.0
https://github.com/nodemcu/nodemcu-devkit-v1.0

A
Hardware Bill of Materials (BOM)

A-1

Table A.1: IRM-Tx Hardware BOM

A-2

Table A.2: IRM-Rx Hardware BOM

A-3

Table A.3: GC Hardware BOM

Table A.4: APS Hardware BOM

A-4

Table A.5: Complete System Hardware BOM

A-5

B
Code and Flowcharts

B-1

Listing B.1: Infrared Beam Module Transmitter (IRM-Tx) software code implemented in the ATtiny85 microcontroller. Developed
using the Arduino IDE.

1 void setup(){

2 DDRB |= (1<<PB0); // Set pin PB0 as output

3 TCNT0 = 0; // Timer0 C o u n t e r

4 TCCR0A =0; // Timer0 C o n t r o l R e g i s t e r A

5 TCCR0B =0; // Timer0 C o n t r o l R e g i s t e r B

6

7 TCCR0A |=(1<< COM0A0); // Timer0 in toggle mode (a s s o c i a t e d with pin PB0)

8 TCCR0A |=(1<<WGM01); // Start Timer0 in CTC mode

9 TCCR0B |= (1 << CS00); // Use CPU clock with no p r e s c a l a r

10 OCR0A =105; // CTC C o m p a r e value

11 }

12 void loop(){}

Listing B.2: Infrared Beam Module Receiver (IRM-Rx) software code implemented in the MSP430G2553 microcontroller. Devel-
oped using the Code Composer Studio.

1 #include <msp430.h>

2

3 int main(void){

4

5 WDTCTL = WDTPW + WDTHOLD; // Stop WDT

6 // C a l i b r a t e CPU clock to 16 MHz

7 if (CALBC1_16MHZ ==0xFF){ // V e r i f i y if c o n s t a n t is well d e f i n e d

8 while (1);

9 }

10 DCOCTL = 0; // Select lowest DCOx and MODx s e t t i n g s

11 BCSCTL1 = CALBC1_16MHZ; // Set range

12 DCOCTL = CALDCO_16MHZ; // Set DCO step + m o d u l a t i o n

13

14 P2SEL &= (˜BIT3); // Set P2 .3 SEL for GPIO

15 P2DIR &= (˜BIT3); // Set P2 .3 as input

16

17 P1SEL |= BIT6 + BIT7; // Assign I2C pins to U S C I _ B 0

18 P1SEL2 |= BIT6 + BIT7; // Assign I2C pins to U S C I _ B 0

19

20 UCB0CTL1 |= UCSWRST; // Enable SW reset

21 UCB0CTL0 = UCMODE_3 + UCSYNC; // I2C Slave , s y n c h r o n o u s mode

22 UCB0I2COA = 0x40; // Own A d d r e s s is 040 h . Each IRM - Rx will have a

d i f f e r e n t a d d r e s s

23 UCB0CTL1 &= ˜UCSWRST; // Clear SW reset , resume o p e r a t i o n

24 UCB0I2CIE |= UCSTTIE; // Enable STT i n t e r r u p t

25 IE2 |= UCB0TXIE; // Enable TX i n t e r r u p t

26

27 while (1){

28 __bis_SR_register(CPUOFF + GIE); // Enter LPM0 w / i n t e r r u p t s

29 }

30 }

31

32 // U S C I _ B 0 Data ISR

33 #if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)

34 #pragma vector = USCIAB0TX_VECTOR

B-2

35 __interrupt void USCIAB0TX_ISR(void)

36 #elif defined(__GNUC__)

37 void __attribute__ ((interrupt(USCIAB0TX_VECTOR))) USCIAB0TX_ISR (void)

38 #else

39 #error Compiler not supported!

40 #endif

41 {

42 UCB0TXBUF = (P2IN & BIT3); // TX data

43 __bic_SR_register_on_exit(CPUOFF); // Exit LPM0

44

45 }

46

47 // U S C I _ B 0 State ISR

48 #if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)

49 #pragma vector = USCIAB0RX_VECTOR

50 __interrupt void USCIAB0RX_ISR(void)

51 #elif defined(__GNUC__)

52 void __attribute__ ((interrupt(USCIAB0RX_VECTOR))) USCIAB0RX_ISR (void)

53 #else

54 #error Compiler not supported!

55 #endif

56 {

57 UCB0STAT &= ˜UCSTTIFG; // Clear start c o n d i t i o n int flag

58 }

B-3

Listing B.3: Grid Controller (GC) software code implemented in the MSP430G2553 microcontroller. Developed using the Code
Composer Studio.

1 #include "msp430g2553.h"

2

3 unsigned char RXData;

4 unsigned char takeOffFlag =0, x=0, y=0, numXSens=6, numYSens =4;

5 // These a d d r e s s e s c o r r e s p o n d to the IRM - Rx shown in Figure D .1

6 // 0 x40 - X1 /0 x41 - X2 /0 x42 - X3 /0 x43 - X4 /0 x44 - X5 /0 x45 - X6

7 // 0 x46 - Y1 /0 x47 - Y2 /0 x48 - Y3 /0 x49 - Y4

8 unsigned char xAddrList [6] = {0x40 , 0x41 , 0x42 , 0x43 , 0x44 , 0x45};

9 unsigned char yAddrList [4] = {0x46 , 0x47 , 0x48 , 0x49};

10 // These area code values c o r r e s p o n d to the areas shown in Figure D .2:

11 // 0 - A0 /1 - A11 /2 - A12 /3 - A13 /4 - A14 /5 - A2 /6 - A31 /7 - A41 /8 - A51 /9 - A52 /10 - A61 /11 - A71 /12 - A32 /13 -

A42 /14 - A53 /15 - A54 /16 - A62 /17 - A72 /18 - A8 /19 - A91 /20 - A92 /21 - A93 /22 - A94 /23 - A10

12 unsigned char areaCodeList [6][4] =

{{18 ,12 ,6 ,0} ,{19 ,13 ,7 ,1} ,{20 ,14 ,8 ,2} ,{21 ,15 ,8 ,3} ,{22 ,16 ,9 ,4} ,{23 ,17 ,9 ,5}};

13 unsigned int tofInClockCycles = 0;

14 int foundXFlag =0, foundYFlag =0, i=0;

15 unsigned char currentAddr = 0;

16

17 void pollForTakeOff ();

18

19 int main(void){

20 WDTCTL = WDTPW + WDTHOLD; // Stop WDT

21 // C a l i b r a t e CPU clock to 16 MHz

22 if (CALBC1_16MHZ ==0xFF){ // V e r i f i y if c o n s t a n t is well d e f i n e d

23 while (1);

24 }

25 DCOCTL = 0; // Select lowest DCOx and MODx s e t t i n g s

26 BCSCTL1 = CALBC1_16MHZ; // Set range

27 DCOCTL = CALDCO_16MHZ; // Set DCO step + m o d u l a t i o n

28 // S o u r c e Timer clock from ACLK with VLO = 12 khz

29 BCSCTL3 |= LFXT1S_2; // Source ACLK from VLO

30 TA0CTL |= TASSEL_1 + MC_0; // Use ACLK as sourc e for timer0

31 TA1CTL |= TASSEL_1 + MC_0; // Use ACLK as sourc e for timer1

32 // Setup GPIO for LED

33 P1DIR |= BIT0; // P1 .0 output

34 // Setup I2C bus

35 P1SEL |= BIT6 + BIT7; // Assign I2C pins to U S C I _ B 0

36 P1SEL2 |= BIT6 + BIT7; // Assign I2C pins to U S C I _ B 0

37 UCB0CTL1 |= UCSWRST; // Enable SW reset

38 UCB0CTL0 = UCMST + UCMODE_3 + UCSYNC; // I2C Master , s y n c h r o n o u s mode

39 UCB0CTL1 = UCSSEL_2 + UCSWRST; // Use SMCLK , keep SW reset

40 UCB0BR0 = 40; // fSCL = SMCLK /40 = ˜400 kHz

41 UCB0BR1 = 0;

42 UCB0CTL1 &= ˜UCSWRST; // Clear SW reset , resume o p e r a t i o n

43 IE2 |= UCB0RXIE; // Enable RX i n t e r r u p t

44 // Setup serial UART t r a n s m i s s i o n to ESP -12 E

45 P2DIR |= 0xFF; // All P2 . x o u t p u t s

46 P2OUT &= 0x00; // All P2 . x reset

47 P1SEL |= BIT1 + BIT2 ; // P1 .1 = RXD , P1 .2= TXD

48 P1SEL2 |= BIT1 + BIT2 ; // P1 .1 = RXD , P1 .2= TXD

B-4

49 P1OUT &= 0x00;

50 UCA0CTL1 |= UCSSEL_2; // SMCLK

51 UCA0BR0 = 0x8A; // 16 MHz 115200

52 UCA0BR1 = 0x00; // 16 MHz 115200

53 UCA0MCTL = UCBRS2 + UCBRS0; // M o d u l a t i o n UCBRSx = 5

54 UCA0CTL1 &= ˜UCSWRST; // ** I n i t i a l i z e USCI state m a c h i n e **

55

56 while (1){

57 // In the worst case , each loop is ˜600 us (this is the r e s o l u t i o n)

58 takeOffFlag =0;

59 if(! foundXFlag){

60 for(x=0;x<numXSens;x++){

61 UCB0I2CSA = xAddrList[x]; // define slave a d d r e s s

62 WDTCTL = WDTPW + BIT3 + BIT2 + BIT1; // WDT of 43 ms

63 while (UCB0CTL1 & UCTXSTP); // Ensure stop c o n d i t i o n got sent

64 UCB0CTL1 |= UCTXSTT; // I2C start c o n d i t i o n

65 while (UCB0CTL1 & UCTXSTT); // Start c o n d i t i o n sent ?

66 UCB0CTL1 |= UCTXSTP; // I2C stop c o n d i t i o n

67 __bis_SR_register(CPUOFF + GIE); // Enter LPM0 w / i n t e r r u p t s

68 WDTCTL = WDTPW + BIT7 + BIT3 + BIT2 + BIT1; // WDT of 43 ms

69 if(RXData == 8){

70 P1OUT |= BIT0; // ON LED1 .0

71 foundXFlag =1; // X - axis beam i n t e r r u p t e d

72 break;

73 }

74 }

75 }

76 if(! foundYFlag){

77 for(y=0;y<numYSens;y++){

78 UCB0I2CSA = yAddrList[y]; // define slave a d d r e s s

79 WDTCTL = WDTPW + BIT3 + BIT2 + BIT1; // WDT of 43 ms

80 while (UCB0CTL1 & UCTXSTP); // Ensure stop c o n d i t i o n got sent

81 UCB0CTL1 |= UCTXSTT; // I2C start c o n d i t i o n

82 while (UCB0CTL1 & UCTXSTT); // Start c o n d i t i o n sent ?

83 UCB0CTL1 |= UCTXSTP; // I2C stop c o n d i t i o n

84 __bis_SR_register(CPUOFF + GIE); // Enter LPM0 w / i n t e r r u p t s

85 WDTCTL = WDTPW + BIT7 + BIT3 + BIT2 + BIT1; // WDT of 43 ms

86 if(RXData == 8){

87 tofInClockCycles = TA0R; // This will be the TOF . Timer0 was i n i t i a l i z e d

in p o l l F o r T a k e O f f () f u n c t i o n

88 currentAddr = UCB0I2CSA; // IRM - Rx whose IR beam was i n t e r r u p t e d first

89 P1OUT |= BIT0; // ON LED1 .0

90 foundYFlag =1; // Y - axis beam i n t e r r u p t e d

91 break;

92 }

93 }

94 }

95 if(foundXFlag && foundYFlag){

96 while (!(IFG2&UCA0TXIFG));

97 UCA0TXBUF = areaCodeList[x][y]; // TX area

98 while (!(IFG2&UCA0TXIFG));

99 UCA0TXBUF = (tofInClockCycles & 0xFF); // TX lower

B-5

100 while (!(IFG2&UCA0TXIFG));

101 UCA0TXBUF = ((tofInClockCycles >>8) & 0xFF); // TX upper

102 pollForTakeOff (); // Check when the atlete leave s the bed

103 foundXFlag =0;

104 foundYFlag =0;

105 }

106 }

107 }

108

109 void pollForTakeOff (){

110 UCB0I2CSA = currentAddr;

111 while(takeOffFlag == 0){

112 TA0CTL |= TASSEL_1 + MC_0 + TACLR; // Use ACLK as source for t imer0 . Timer0

s t o p p e d .

113 WDTCTL = WDTPW + BIT3 + BIT2 + BIT1; // WDT of 43 ms

114 while (UCB0CTL1 & UCTXSTP); // Ensure stop c o n d i t i o n got sent

115 UCB0CTL1 |= UCTXSTT; // I2C start c o n d i t i o n

116 while (UCB0CTL1 & UCTXSTT); // Start c o n d i t i o n sent ?

117 UCB0CTL1 |= UCTXSTP; // I2C stop c o n d i t i o n

118 __bis_SR_register(CPUOFF + GIE); // Enter LPM0 w / i n t e r r u p t s

119 WDTCTL = WDTPW + BIT7 + BIT3 + BIT2 + BIT1; // WDT of 43 ms

120 if(RXData == 0){ // IR beam u n i n t e r r u p t e d . P o s s i b l y t a k e o f f ?

121 TA0CTL |= TASSEL_1 + MC_2; // Start timer0 in c o n t i n u o u s mode

122 while (1){

123 WDTCTL = WDTPW + BIT3 + BIT2 + BIT1; // WDT of 43 ms

124 while (UCB0CTL1 & UCTXSTP); // Ensure stop c o n d i t i o n got sent

125 UCB0CTL1 |= UCTXSTT; // I2C start c o n d i t i o n

126 while (UCB0CTL1 & UCTXSTT); // Start c o n d i t i o n sent ?

127 UCB0CTL1 |= UCTXSTP; // I2C stop c o n d i t i o n

128 __bis_SR_register(CPUOFF + GIE); // Enter LPM0 w / i n t e r r u p t s

129 WDTCTL = WDTPW + BIT7 + BIT3 + BIT2 + BIT1; // WDT of 43 ms

130 if(RXData ==0 && TA0R >=4800){ // IR beam u n i n t e r r u p t e d for 400 ms ?

131 P1OUT &= ˜BIT0; // OFF LED1 .0

132 takeOffFlag =1;

133 break;

134 }else if(RXData ==8){ // still on t r a m p o l i n e bed ?

135 takeOffFlag =0;

136 break;

137 }

138 }

139 }

140 }

141 return;

142 }

143

144 // U S C I _ B 0 Data ISR

145 #if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)

146 #pragma vector = USCIAB0TX_VECTOR

147 __interrupt void USCIAB0TX_ISR(void)

148 #elif defined(__GNUC__)

149 void __attribute__ ((interrupt(USCIAB0TX_VECTOR))) USCIAB0TX_ISR (void)

150 #else

B-6

151 #error Compiler not supported!

152 #endif

153 {

154 RXData = UCB0RXBUF; // Get RX data

155 __bic_SR_register_on_exit(CPUOFF); // Exit LPM0

156 }

B-7

Figure B.1: IRM-Rx flowchart of the main() function in the software implemented in the MSP430G2553 microcontroller.

B-8

Figure B.2: IRM-Rx flowchart of the pollForTakeOff() function in the software implemented in the MSP430G2553 microcontroller.

B-9

Listing B.4: GC software code implemented in the ESP-12E microcontroller. Developed using the Arduino IDE.

1 #include <ESP8266WiFi.h>

2 #include <ESP8266HTTPClient.h>

3

4 const char* ssid = "Pi_AP"; // APS Wi - Fi n e t w o r k name ID

5 const char* password = "betterjumppass"; // APS Wi - Fi n e t w o r k p a s s w o r d

6 const char* host = "192.168.42.1"; // APS IP

7 const int trampID = 1; // GC ID (one GC per t r a m p o l i n e)

8 String message="";

9 unsigned int tofCycles=0, upper , lower , areaCode , jumpTmpID = 0;

10 float realTOF;

11

12 WiFiClient client;

13

14 void setup()

15 {

16 Serial.begin (115200); // open serial c o n n e c t i o n to r e c e i v e data from GC

17

18 WiFi.begin(ssid , password); // c o n n e c t to APS Wi - Fi n e t w o r k

19 while (WiFi.status () != WL_CONNECTED);

20 }

21

22 void loop()

23 {

24 message="";

25 // R e c e i v e jump data from GC

26 while(Serial.available () == 0); // wait until there are bytes to be read

27 areaCode = (int)Serial.read(); // get HD area code

28 lower = (int)Serial.read(); // get lower 8 bits of TOF (in timer cycles)

29 upper = (int)Serial.read(); // get upper 8 bits of TOF (in timer cycles)

30

31 tofCycles =(upper);

32 tofCycles =((tofCycles <<8)|lower);

33 // C o n v e r t TOF in timer cycles to s e c o n d s

34 realTOF = float(tofCycles);

35 realTOF = realTOF /(12000); // Timer0 at 12 kHz

36 // m e s s a g e to send to APS has this form : " a r e a C o d e / TOF (s e c o n d s) / j u m p T m p I D / t r a m p I D "

37 message=message+areaCode+"/"+String(realTOF , 3)+"/"+jumpTmpID+"/"+String(trampID);

38 // C r e a t e HTTP Client and send m e s s a g e to APS

39 HTTPClient http;

40 http.begin(host ,5000,"/post_sensor"); // http : / / 1 9 2 . 1 6 8 . 4 2 . 1 : 5 0 0 0 / p o s t _ s e n s o r is

the URL to send jump data

41 http.POST(message);

42 http.end();

43 delay (0);

44 jumpTmpID ++;

45 // R e s t a r t j u m p T m p I D when they reach 100

46 if(jumpTmpID ==100){

47 jumpTmpID =0;

48 }

49 }

B-10

Listing B.5: Summary of the seven most important Access Point Server (APS) Web Application (WebApp) view functions.

1 # D i s p l a y the Login page

2 @auth.route('/login', methods =['GET','POST'])

3 def login():

4 # ...

5 return render_template('auth/login.html', form=form)

6

7 # D i s p l a y the main App page

8 @main.route('/', methods =['GET', 'POST'])

9 @login_required

10 def appPage ():

11 # ...

12 return render_template('main/gui.html', form=form , athleteList=athleteList)

13

14 # C a l l e d by the B r o w s e r Client to r e q u e s t (GET) the most recent skill

15 @main.route('/get_score ', methods =['GET'])

16 @login_required

17 def getScore ():

18 # ...

19 return jsonify(routineDict)

20

21 # C a l l e d by the Grid C o n t r o l l e r to POST data from the last s k i l l e d p e r f o r m e d

22 @main.route('/post_sensor ', methods =['POST'])

23 def postSensorJumpData ():

24 # ...

25 return "Received jump data\n"

26

27 # C a l l e d by Client B r o w s e r when the user p r e s s e s on the SAVE button

28 @main.route('/save_routine ', methods =['GET', 'POST'])

29 @login_required

30 def saveRoutine ():

31 # ...

32 return jsonify(result="OK")

33

34 # D i s p l a y the P r o f i l e page

35 @main.route('/profile/<profileName >', methods =['GET'])

36 @login_required

37 def profilePage(profileName):

38 # ...

39 return render_template('main/profile.html', profileName=profile.name , level=

profile.level , profileRoutines=profileRoutines , birthDay=birthDay)

40

41 # D i s p l a y the P r o f i l e R o u t i n e H i s t o r y page

42 @main.route('/profile_history/<profileName >', methods =['GET', 'POST'])

43 @login_required

44 def profileHistoryPage(profileName):

45 # ...

46 return render_template('main/profileHistory.html', profileName=profileName , srList

=l, routineArray=routineArray , num=0, selNum=0, filterOption = 0, f="

00 -00 -0000", t="00 -00 -0000",numRoutines=numRoutines ,numBadRoutines=

numBadRoutines ,numGoodRoutines=numGoodRoutines ,filterLabel=filterLabel)

B-11

C
WebApp Graphical User Interface

(GUI) Screenshots

C-1

Figure C.1: Login page.

C
-2

Figure C.2: Register page.

C
-3

Figure C.3: Main application page.

C
-4

Figure C.4: Main application page with New Profile overlay.

C
-5

Figure C.5: Profile information page.

C
-6

Figure C.6: Edit profile information page.

C
-7

Figure C.7: Profile routine history page.

C
-8

Figure C.8: Profile routine history page with graphical representation of routine overlay.

C
-9

D
Infrared Beam Grid (IR-GRID)

Configuration

D-1

Figure D.1: Infrared Beam Grid (IR-GRID) configuration.

D
-2

Figure D.2: All “virtual” areas that the IR-GRID configuration can differentiate. These areas are coded into integers, as shown in Listing B.3.

D
-3

	Acknowledgments
	Abstract
	Resumo
	List of Tables
	List of Figures
	List of Listings
	Acronyms
	Glossary
	Introduction
	Motivation
	Goals
	Challenges
	Thesis Structure

	The State of Sensor Technologies Applied to Trampoline Gymnastics
	Existing Products
	Other Measuring Systems for Trampoline
	Sensor Technology Comparison
	Inter-Sensor Communication Comparison
	I2C Primer

	System Architecture and Requirements
	Requirements
	Architecture

	Hardware and Software Design and Implementation
	IRM-Tx Design and Implementation
	IRM-Rx Design and Implementation
	GC Design and Implementation
	APS Design and Implementation
	Final System Design and Implementation

	Testing and Results
	Trampoline Bed Behavior Characterization
	``Real World'' Testing
	Limit Testing

	Conclusions and Future Work
	Future Work

	Bibliography
	Hardware Bill of Materials (BOM)
	Code and Flowcharts
	WebApp Graphical User Interface (GUI) Screenshots
	Infrared Beam Grid (IR-GRID) Configuration

