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Resumo

As doenças cardı́acas são das mais perigosas e presentes condições em todo o mundo. O método

mais utilizado para detectar e diagnosticar este tipo de doença é o Eletrocardiograma (ECG), que é

uma técnica simples, não invasiva e de baixo custo para efeitos de diagnóstico e monitorização.

Este trabalho foca-se em duas áreas principais: Eliminação de ruı́do e troços de sinal corrompido

de batimentos cardı́acos de um ECG e classificação de arritmias cardı́acas. Para a primeira tarefa

foram testados vários métodos, nomeadamente dois filtros de mediana com um filtro passa baixo de

40 Hz e métodos combinando diferentes ”wavelets” e filtros de média móvel. No presente trabalho,

os melhores resultados foram obtidos para a técnica que consistia em utilizar a decomposição com

a wavelet quadrática de nı́vel 6, que alcançou 0.835 de semelhança de cosenos. Após um passo de

remoção de outliers, o resultado passou para 0.930. A temática de classificação consistiu em classificar

os dados de ECG em 5 classes, usando Support Vector Machines (SVM) e K-nearest neighbors (KNN).

Duas bases de dados foram utilizadas nesta tarefa, a base de dados MIT-BIH, usada como referência,

cuja classificação atingiu uma exactidão de 88.70% e a base de dados de Santa Marta (StM), cuja

tarefa de classificação atingiu uma exactidão de 81.06%. Foram ainda realizados dois testes extra

usando esta base de dados, um para testar o efeito do melhor método de remoção de ruı́do e troços de

sinal corrompido na tarefa de classificação, o que melhorou os resultados em termos de exactidão.

Palavras-chave: Arritmias cardı́acas, ECG, Ritmo Cardı́aco, Support Vector Machine, K-

Nearest Neighboor, Decomposição em Wavelet, Remoção de Outliers, Denoising, Classificação.
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Abstract

Heart diseases are one of the most dangerous and present conditions worldwide. The common method

for the detection and diagnosis of this type of disease is electrocardiography (ECG), which is a simple,

non-invasive and cost-effective technique for diagnosing and monitoring purposes.

This work focused on two main areas: Denoising and outlier removal of ECG heartbeats and Classifi-

cation of arrhythmic heartbeats. For the first task several method were tested, namely two median filters

plus a 40 Hz Low pass filter, wavelet based denoising methods, using several mother wavelets and a

moving average filter. In the present work, the best resuls were obtained with the technique consisting of

using a decomposition level 6 quadratic spline wavelet based denoising which achieved a 0.835 cosine

similarity. After an outlier removal step, the result was improved to 0.930.

The classification task consisted in separating a dataset into 5 classes and using the Support Vector

Machines (SVM) and K-nearest neighbors (KNN) classifiers. Two databases were used for this task, the

MIT-BIH database that was used as a benchmark, whose classification achieved an accuracy of 88.70%

and the Santa Marta (StM) database, whose classification task achieved an 81.06% accuracy. Also, two

extra tests were done using this database, one for testing the effect of the best denoising method on the

classification task, which improved the results in terms of accuracy.

Keywords: Arrythmic heartbeats, ECG, Heart Rhythm, Support Vector Machine, K-Nearest

Neighboor, Wavelet Decomposition, Outlier Removal, Denoising, Classification.
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Chapter 1

Introduction

This chapter presents the motivation, goals and the structure of this thesis.

1.1 Motivation

Heart diseases are one of the most dangerous and present conditions worldwide. The common ap-

proach for the detection and diagnosis of this type of disease is based on electrocardiography (ECG),

which is a simple, non-invasive and cost-effective technique for diagnosing and monitoring purposes.

Besides the standard 12-lead ECG, which is widely used, other types of monitoring tools were devel-

oped in the last few decades, such as Holter monitors, patch monitors, among others, which shows the

growing need to keep developing the heart monitoring area, in order to better diagnosing these diseases

and, ultimately, saving many of lives. From this type of devices, a huge amount of data can be collected

and processed, an essential feature for developing algorithms that help in their analysis.

In this work the main focus is on arrhythmic heartbeats, a disturbance in rate, rhythm or conduction

of the electric signal through the heart. While some arrhythmias are harmless, others can compromise

the functioning of the heart, being potentially heart threatening, a fact that increases the importance of

the development of automated ways to classify the heartbeats and get a fast and accurate diagnosis to

the patient. While research on heart rhythm and heartbeat automatic classi�cation areas have gained

an increased interest, with many new approaches and techniques being proposed every day, still much

work has to be done towards increased diagnosis accuracy. In particular, in the area of IoT, with sensors

being integrated into everyday objects (such as smart-phones or garnments), analysis of the ECG data

collected with these sensors poses additional dif�culties, mainly due to the low quality of the acquired

signals. These present artifacts and a high level of noise contamination, due to the intermitence and/or

poor contact of electrodes with the skin (more notably associated with movements) and contamination

with other signals (such as muscle activity).

In a step towards pervasive signal acquisition systems, most of the works are based on the placement

of electrodes at the hands, wrist or chest level, corresponding to lead I placement according to the

standard [1]. Hence the main focus is on diagnosis based on a single lead, mainly lead I.
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1.2 Goals and Proposed Approach

This thesis focuses on two main objectives: ECG denoising and artifact removal, automatic heartbeat

classi�cation from single-lead ECG records.

For the �rst task of ECG denoising, several methods are tested and compared, namely two median �l-

ters plus a 40 Hz low pass �lter, wavelet based denoising techniques and moving average �lters. Besides

these methods, an outlier removal technique is proposed and developed, aiming to remove the heart-

beats that are not relevant for the classi�cation task at hand, and the artifacts present in acquired signals.

The denoising methods were tested on a database developed at IT - Instituto de Telecomunicações [2],

using a BITalino device [3], that comprises both signals with a small amount of noise, used as a baseline,

acquired by placing electrodes on the chest, and signals with a big amount of noise, acquired using a

static bicycle where the handles coupled to a BiTalino device were used to extract the ECG signal in the

hands. The bicycle signals went through several denoising methods separately and compared to the

�rst ones. The objective was to calculate the difference between the baseline signals and the denoised

ones in terms of Signal-to-Noise ratio and cosine similarity for each method and decide which method

is better for this type of task.

For the classi�cation task, which was considered the �nal purpose of the thesis, three different types

of features are explored: temporal features, morphological wavelet-based features and a combination of

both. The aim of this task was to develop an algorithm that could identify 5 types of heartbeats: Beats

originating in the sinoatrial(SA) node (N), left bundle branch block beats(L), supraventricular ectopic

beats(S), ventricular ectopic beats(V) and fusion beats(F). Firstly, the best set of features for this task

was chosen, based on tests performed using the MIT-BIH Arrhythmia Database, which is widely used

for heartbeat and rhythm automatic classi�cation experiments. The feature set thus selected was then

used for data representation of the classi�ers applied to the validation dataset, gathered at the Santa

Marta Hospital, in Lisbon, the Santa Marta (StM) Database. Also for this database, a feature set based

on a different mother wavelet was tested, as well as the effect of denoising and outlier removal on the

classi�cation task. Two types of classi�ers were evaluated, namely: Support vector Machines (SVM);

and K-nearest neighbors (KNN)algorithms.

1.3 Contributions

The contributions of this thesis are:

� Evaluates the performance of several denoising algorithms, in order to improve the quality of ECG

signals;

� Presents a method for the development of prototypes for normal and pathological heartbeats that

can be used both for classi�cation and for outlier removal purposes in ECG signals;

� Analyzes the performance of time domain and morphological features, considered both individually

and combined, on the classi�cation of normal and pathological heartbeats;
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� Compares the performance of two supervised learning algorithms, nearest neighbor and support

vector machine, on the classi�cation of speci�c heartbeat types.

1.4 Structure

This thesis is organized in six chapters:

� On the current chapter, Chapter 1, the motivation and proposed approach was outlined;

� Chapter 2 gathers important basic concepts concerning the electrical conduction system of the

heart and the different types of heartbeats that are important for this study;

� In Chapter 3, a review of state-of-the-art algorithms for both ECG denoising and heartbeat and

rhythm classi�cation;

� Chapter 4 includes the materials used for this thesis, namely the used databases, the arrhythmia

classi�cation convection that was used and the methodology that was applied for both tasks;

� Experiments and results are detailed and discussed in Chapter 5;

� Chapter 6 contains the main conclusions of the work and suggestions for future developments.
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Chapter 2

Electrophysiology

2.1 Electrical Conduction System of the Heart

The heart is a muscle whose function is to pump blood into the body and that is at the center of the

circulatory system. This system is also constituted by a network of blood vessels, such as arteries, veins

and capillaries. This muscle is controlled by an electrical system that uses electrical signals in order to

contract the hearts wall. When a contraction occurs, blood is pumped into the circulatory system and

the direction of its �ow is controlled by the valves that exist in the heart chambers [4]. The heart has

four chambers, two atria and two ventricles. The de-oxygenated blood returns to the heart,namely to the

right atrium, via venous circulation. This part of the circulatory system is known as the systemic circuit.

Afterwards, the blood is pumped into the right ventricle and then to the lungs, where carbon dioxide is

released and oxygen is absorbed. The now oxygenated blood travels back to the heart, into the left

atrium. This part of the system, called pulmonary circuit, is much smaller and its main responsibility is

to oxygenate the blood.

The blood is then pumped into the left ventricle and then into the aorta, starting the circulatory

system again and being supplied into the rest of the body [5]. In order to function, the heart needs a

power source and uses electricity, being able to create its own electrical impulses and their route via a

specialized conduction pathway. This pathway has �ve elements (Figure 2.1):

1. The sino-atrial (SA) node;

2. The atrio-ventricular (AV) node;

3. The bundle of His;

4. The left and right bundle branches;

5. The Purkinje �bres.

The SA node works as a natural pacemaker of the heart. It releases electrical stimuli at a regular

rate (60 to 100 times per minute), which is controlled by the needs of the body. Each stimulus goes

through the myocardial cells of the atria, creating a wave of contraction that spreads quickly through
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Figure 2.1: The cardiac conduction system [6].

both of them. The speed of this atrial contraction is so high, that it appears instantaneous. Eventually,

the stimulus reaches the AV node and is slightly delayed (AV node delays impulses by 0.04 seconds),

in order to allow for the contracting atria to have enough time to pump all the blood into the ventricles,

followed by the closing of the valves between the atria and ventricles, once the atria are empty. This

delay is one of the main functions of the AV node and some impulses may even be blocked if the atrial

rate is dangerously high. Additionally, the cells in the AV node are capable of generating impulses at a

rate of 40 to 60 beats per minute. At this point, the atria begin to re�ll and the electrical signal passes

through the AV node and Bundle of His. The latest divides into the right and left bundle branches, which

assures the conduction, respectively, to the right and left ventricles.

The Purkinje �bers extend from the bundle branches and spread across the ventricles. These are

going to receive the impulses and, as a response, contract. These �bers can also serve as pacemakers,

being able to produce impulses at a rate of 20 to 40 times per minute, sometimes less [7]. As the

ventricles contract, the right one pumps blood that goes to the lungs while the left pumps blood into the

aorta, beginning the systemic circuit. At this point of the process, the ventricles are empty and the atria

are full, with all the valves closed. Thus beginning the process again, with the release of the impulse

by the SA node. This node recharges as the atria is re�lling, whilst the AV node recharges when the

ventricles are being re�lled. In all these processes, the terms used for the release and the recharging of

the electrical are ”depolarization” and ”repolarization”, respectively. Therefore, the 3 stages of a single

heartbeat are:

1. Atrial depolarization;

2. Ventricular depolarization;

3. Atrial and ventricular repolarization.

5



2.2 Electrocardiogram

The hearts electrical activity creates currents that spread through the surrounding tissue to the skin

so, when electrodes are attached to the skin, they can sense those currents and transmit them to an

Electrocardiogram (ECG) monitor. These currents are represented in waveform, which represents the

depolarization-repolarization cycle of the heart. An ECG shows the sequence of the electrical events that

happen in the cardiac cell throughout that cycle and allows the monitoring of the phases of myocardial

contraction and the identi�cation of rhythm and conduction disturbances. The ECG complex is, therefore,

a representation of the events that take place during one cardiac cycle and its tracings represent the

conduction of the impulses from the atria to the ventricles. It consists of �ve different waveforms, labeled

with the letters ”P”, ”Q”, ”R”, ”S” and ”T”. ”Q”, ”R” and ”S” are referred to as an unit, known as the QRS

complex (Figure 2.2).

Figure 2.2: The components of the ECG signal [8].

The P wave is the �rst component that can be seen on a normal ECG waveform. It corresponds to

the atrial depolarization, i.e, the conduction of the electrical stimuli from the SA node through both atria.

The duration of this type of wave can vary between 0.06 to 0.12 seconds.

The PR interval tracks the impulse from the atria and through the AV node, bundle of His and right

and left branches. It is the time between the onsets of atrial and ventricular depolarization. This interval

goes from the beginning of the P wave until the start of the QRS complex. It usually has a duration

ranging from 0.12 to 0.2 seconds.

Following the P wave, the QRS complex represents the depolarization of the ventricles. It is often

composed of three different waves, as mentioned earlier: The Q wave, which is the �rst negative de-

�ection after the P wave, the �rst positive de�ection after the P and Q waves known as R wave and the

S wave, which consists of the �rst negative de�ection after the R wave. The QRS complex, in normal

situations, has a duration of 0.06 to 0.10 second, duration which should be measured from the beginning

of the Q wave to the end of the S wave or from the beginning of the R wave until the end of the S wave,
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if the Q wave is absent.

The ST segment is the representation of the end of the ventricular conduction or depolarization and

the beginning of ventricular recovery or repolarization. It is usually an isoelectric line, extends from the

S wave to the beginning of the T wave and and elevation or depression in this segment can indicate

myocardial damage.

The representation of the ventricular repolarization on an ECG is the T wave. This wave should be in

the same direction of the QRS complex and is asymmetrical, with the �rst part sloping to the peak and

returning more abruptly to the baseline.

The QT interval represents the time needed for the ventricular depolarization-repolarization cycle,

being measured from the beginning of the QRS complex until the end of the T wave. Depending on

factors such as gender, age and heart rate, it can last from 0.36 to 0.44 seconds and shouldn't be

greater than half the distance between consecutive R waves, when a regular rhythm is observed.

Lastly, the U wave represents the period that corresponds to the recovery of the Purkinje �bers. It

follows the T wave and is not always present on an ECG. This absence doesn't represent an abnormality.

These waves are usually more prominent when the heart rate is lower.

2.3 Arrhythmia and ECG heartbeat types

Arrhythmia, or dysrhythmia, is a very general term that can refer to all rhythms of the heart other than

the normal one. It can represent any disturbance in the rate, regularity, site of origin or conduction of

the cardiac impulse. As described before, the cardiac impulse starts in the SA node but, under some

circumstances, cardiac cells in any other part of the heart can serve as a pacemaker of the heart. When

this happens, we are in the presence of an ectopic pacemaker, that is, a pacemaker that is any other

than the sinus node. The result may be ectopic beats or rhythms. Depending on the location of the

pacemaker (natural - SA node - or ectopic), the heart rhythms can be identi�ed as:

� Sinus Node Rhythms, which are due to impulse conduction from the sinus node. This include not

only arrhythmia (Sinus arrhythmia) but also the normal sinus rhythm, i.e, the usual cardiac rhythm

of the heart;

� Atrial Arrhythmia that originate from ectopic sites in the atria;

� Junctional Arrhythmia and Atrioventricular Blocks originate in the area around the AV node and the

bundle of His, called AV junction;

� Ventricular Arrhythmia and Bundle-Branch Blocks that create the impulse in the ventricles, below

the bundle of His.

An important step towards identifying an arrhythmia is the classi�cations of heartbeats, which helps

classifying the rhythm of an ECG signal, given by the classi�cation of several consecutive heartbeats in

that signal [9]. In this work, four different main type of heartbeats were considered and are described

below.
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2.3.1 Sinus node originated Heartbeats

This class comprises all the heartbeats that are originated in the sinus node, which includes the normal

heartbeats or the bundle branch block beats. The normal heartbeat type was already described above.

The remaining types included in this class are described below.

Left bundle branch block beats (LBBB)

Left bundle branch block beat [10], where the conduction in the left bundle is slow and results in a

delayed depolarization of the left ventricle. The criteria used for the this type of heartbeat is as following:

� QRS complex> 0.12 seconds;

� Broad monomorphic R waves in I and V6 with no Q waves;

� Broad monomorphic S waves in V1, may have a small R wave.

An example of this type of beat is represented in Figure 2.3.

Figure 2.3: Left bundle branch block heartbeat [11].

Right bundle branch block beats (RBBB)

In the right bundle branch block beat (displayed in Figure 2.4), the conduction in the bundle to the right

ventricle is slow. While the right ventricle depolarizes, the left ventricle is, most of the times, halfway

�nished. The criteria used for RBBB is:

� QRS complex> 0.12 seconds;

� Slurred S wave in lead I and V6;

� RSR'-pattern in V1 where R'> R.
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Figure 2.4: Right bundle branch block (RBBB) in lead V1 [10].

Atrial Escape Beats

An atrial escape beat happens after a long sinus pause due to a sinus node exit block or sinus node

arrest, that is, when the depolarization that occurs in the sinus node is unable to leave the sinus node

towards the atria. This type of beat can become a sustained atrial rhythm when three or more escape

beats happen in a row at a rate above 60 beats-per-minute. An atrial escape beat example can be seen

in Figure 2.5 and the ECG characteristics for this type of heartbeat are the following [12]:

� Every P wave is followed by a QRS complex but the shape of the P wave is different than that of

the normal beat;

� QRS complex is narrow and the heart rate is generally above 60/minute.

Figure 2.5: Atrial escape beat [10].
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Nodal (junctional) escape beats

This type of heartbeat is a delayed one that originates from an ectopic focus somewhere in the AV

junction. It happens when the rate of depolarization of the SA node falls bellow the rate of the AV node

or when it fails to reach the AV node because of a SA or AV block. The nodal, or junctional, escape

beat serves as a protection for the hearts mechanism, in order to compensate for the SA node inability

of acting as a pacemaker [7]. The ECG characteristics for this heartbeat are:

� Rate of 35 to 60 bpms;

� Irregular rhythm in single escape junctional escape complex;

� The P-wave depends on the ectopic focus site. They may be inverted or appear either before or

after the QRS complex or even be absent, hidden by this complex;

� The QRS complex is usually normal in duration and morphology, of less then 0.12 seconds.

The juncional escape beat is represented in Figure 2.6.

Figure 2.6: Nodal (junctional) escape beat [13].

2.3.2 Supraventricular Ectopic Beats

The supraventricular ectopic beats consist in beats that result from electrical impulses with supraven-

tricular focus (usually in the atria) [7], that can happen prematurely, being also called, supraventricular

premature beats. This class includes all the types that are described below.

Atrial premature beats (APB)

The atrial premature beat originates from an ectopic pacing region in the atria and results in a p-wave

with a different morphology from the preceding ones. If this beat follows early after a sinus beat, some

of the conducting tissues may not conduct. In this way, a premature atrial complex may have different

rates [14], as shown in Figure 2.7:

1. Normally conducted;

2. Conducted with aberrancy, i.e. a conduction of the supraventricular impulse to the ventricles in a

markedly different way than the usual conduction [7]. Mostly right bundle branch block aberrancy

occurs, since this has a longer refractory period;
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3. Not-conducted. If the premature beat is very early, the AV node is incapable of conducting and the

beat is not followed by a QRS complex.

ECG characteristics for this type of beat are as follows:

� Abnormal P-wave, which can be hard to see due to the fact that this wave is rather shapeless;

� Occurs earlier then expected;

� Is usually followed by a non-compensatory pause due to the fact that atrial depolarization enters

the SA node and resets the sinus rhythm.

Figure 2.7: Atrial premature beat three possible faiths, where the dots represent normal sinus beats and
the stars represent the atrial premature beats. The �rst APB is conducted normally, the second one
follows the previous sinus beat earlier and is conducted with RBBB aberration and the third one is still a
little bit earlier after the previous sinus beat and is blocked in the AV node and is, therefore, not conducted
and results in a present P-wave but no QRS complex is present, followed by a non-compensatory pause
[14].

Nodal (junctional) premature beats

Premature junctional beats are premature cardiac impulses that originate from the AV junction [15]. They

may arise either in the AV node or in the bundle of His. Their main ECG features are:

� The P-wave may appear after complex, within the ST-segment or the T-wave;

� P-wave may not appear at all, which may be due to burial of the wave within the QRS complex.

� P-wave may appear before the QRS complex with a PR interval that is usually short, less then

0.12 s.

An example of a premature junctional beat can be seen in Figure 2.8.

2.3.3 Ventricular Ectopic Beats

A ventricular ectopic beat is an extra-heartbeat that originates in the ventricles, the lower chambers of

the heart. They can also be called premature ventricular contractions because they occur before the

beat that is triggered by the SA node, the normal site for the heart's activation [16] (Figure 2.9). The

ECG characteristics for premature ventricular contractions are described below:
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