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Resumo

Embora hoje em dia a medicina esteja dependente da tecnologia, é usada para servir pessoas. De

facto, uma consulta médica pode ser um exemplo extremamente complexo de interação humana. É

na modelação desse tipo de interações que a Teoria dos Jogos pode desempenhar um papel funda-

mental na melhoria dos resultados médicos. A teoria dos jogos é amplamente usada em estudos de

diversas áreas. No entanto, existem poucos exemplos de estudos onde é a aplicada a questões de

saúde, nomeadamente à relação entre o médico e o paciente em tratamentos médicos mais compli-

cados e prolongados. Este estudo usa teoria de jogos para modelar a consulta médica de transplante

hepático para pacientes que sofrem de doença hepática alcoólica (DHA). A DHA é uma doença que

deixa os pacientes em situações muito delicadas, especialmente fase terminal. O processo de trans-

plante hepático envolve negociação com o paciente, e é comum este tentar enganar os médicos para

ser beneficiado e receber o transplante. Tendo em conta que os fı́gados disponı́veis para transplante

são um recurso escasso, é necessário que o candidato cumpra rigorosamente uma série de requisitos.

Foram analisados jogos nas formas normal e extensiva, e os respetivos equilı́brios foram calculados.

Os resultados sugerem algumas implicações de polı́tica em matéria de saúde, que devem ser usadas

para obter melhores resultados. A análise do jogo na forma normal mostra quais os parâmetros que

influenciam o nı́vel de cooperação, tanto para o médico como para o paciente. A análise do jogo na

forma extensiva mostra como alterar o jogador (paciente ou médico) que decide primeiro pode levar a

equilı́brios mais cooperativos.

Palavras-chave: Teoria dos Jogos, Transplante Hepático, Doença Hepática Alcoólica, Con-

sulta Médica
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Abstract

Even though nowadays medicine is necessarily linked with technology, it is still a service involving a lot

of human interaction. Indeed, a medical consultation can be an extremely complex example of human

interaction. This is where game theory (GT) may play a key role in helping to improve the results of

medical processes. GT is widely used in an immense variety of study fields, but there is little application

to healthcare issues, namely the doctor-patient relationship. This study uses GT to model the liver

transplantation consultation for patients suffering from Alcoholic Liver Disease (ALD). ALD is a very

delicate disease, and patients at its end-stages require special dedication. They may try to deceive

doctors which may lead to bad outcomes. Strategic and extensive form games are analysed, and the

equilibrium solutions computed. Results show some health policy implications on the parameters that

should be managed to achieve better outcomes. The analysis of the strategic form game shows which

parameters influence the cooperation rates, both for the doctor and the patient. The analysis of the

extensive form game shows how to obtain a more cooperative outcome, depending on the player (patient

or doctor) that moves first.

Keywords: Game Theory, Liver Transplantation, Alcoholic Liver Disease, Medical Consultation

vii



viii



Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Topic Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5

2.1 Alcoholic Liver Disease and Alcoholism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 ALD in Europe and in Portugal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Liver Transplantation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Prognosis and Indication for Transplant . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Contraindications and Psychosocial Aspects . . . . . . . . . . . . . . . . . . . . . 13

2.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Game Theory Essentials and Literature Review 19

3.1 Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Games Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.2 Fundamental Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Prisoners’ Dilemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 The Assurance Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.3 The Centipede Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.4 Game Theory and Health care . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Other Applications of Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Game Theory in Sociology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

ix



3.3.2 Game Theory in Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.3 Game Theory in Economics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Model 43

4.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 Players . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.2 Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.3 Payoffs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Model Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Strategic Form equilibria in Pure strategies . . . . . . . . . . . . . . . . . . . . . . 48

4.2.2 Strategic Form equilibria in Mixed strategies . . . . . . . . . . . . . . . . . . . . . . 53

4.2.3 Extensive Form equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Discussion 69

6 Conclusions and Future Work 73

References 77

A Background Articles 83

A.1 Mixed strategy in Diamond et al. (1986) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.2 Expressions for x and y in Djulbegovic et al. (2015) . . . . . . . . . . . . . . . . . . . . . . 84

B Boundary Conditions for parameters 87

C Equilibrium in mixed strategies 91

C.1 Proving the strategy NCd is dominated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

C.2 Validating the probabilities p and q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

C.3 Validating ED[C] = ED[NC] and EP [C] = EP [NC] . . . . . . . . . . . . . . . . . . . . . . 94

x



List of Tables

2.1 Comorbidities associated with alcohol related liver disease. Adapted from Varma et al.

(2010). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Child-Pugh Score. Adapted from Burke and Lucey (1998) . . . . . . . . . . . . . . . . . . 12

2.3 Contraindications to liver transplantation. Adapted from Graziadei et al. (2016) . . . . . . 15

2.4 Michigan alcoholism prognosis scale. Adapted from Varma et al. (2010) . . . . . . . . . . 15

3.1 Payoff matrix for Stag hunt game. Adapted from Girtz et al. (2017). . . . . . . . . . . . . . 25

3.2 Payoff matrix for Biopsy game. Adapted from Diamond et al. (1986). . . . . . . . . . . . . 29

3.3 Payoff matrix for Treatment game. Adapted from Djulbegovic et al. (2015) . . . . . . . . . 31

3.4 Outcome utilities for patient and doctor, arising from the medical situation. Based on

information in Djulbegovic et al. (2015). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 General payoff matrix for the Donation game. . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Payoffs for the Doctor (D) and for the Patient (P ), dependent on the actions taken by both

players. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Representation of the payoffs in terms of utilities, for the doctor and for the patient. . . . . 47

4.3 Representation of the simultaneous game in normal form. . . . . . . . . . . . . . . . . . . 48

4.4 Boundary conditions for γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 Boundary conditions for β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.6 Nash Equilibria obtained from variation of parameters γ and β. . . . . . . . . . . . . . . . 51

4.7 Representation of the abbreviated simultaneous game in normal form. The dominated

strategy for β < βNC was eliminated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.8 Nash Equilibria (or absence of it) obtained from variation of parameter γ having β < βNC . 53

4.9 Comparative statics for q and p. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.10 Comparative statics for ED and EP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.11 Backward induction equilibrium for each interval of γ, when the doctor decides first, and

resulting payoffs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.12 Backward induction equilibrium for each interval of γ, when the patient decides first, and

resulting payoffs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.13 Backward induction equilibrium for each interval of γ and β, when the doctor decides first,

and resulting payoffs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xi



4.14 Backward induction equilibrium for each interval of γ and β, when the patient decides first,

and resulting payoffs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B.1 Boundary Conditions for the parameters that constitute the payoffs, obtained from the

payoffs order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

B.2 Negativity Conditions for the parameters that constitute the payoffs. . . . . . . . . . . . . 89

xii



List of Figures

2.1 Number of deaths from hepatobiliary disease by sex in Portugal, 2006-2012. Extracted

from da Rocha et al. (2017) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Estimated 3-month survival as a function of the MELD score. Extracted from Wiesner

et al. (2003). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Payoff matrix for Prisoners’ Dilemma game. Extracted from Gibbons (1992). . . . . . . . . 20

3.2 Extensive form representation of the Big John and Little John game. Extracted from Gintis

(2009). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Centipede game. Extracted from Tarrant et al. (2004). . . . . . . . . . . . . . . . . . . . . 27

3.4 Decision tree for the treatment of chronic liver failure. Choice odes are denoted by a

square and chance nodes by a circle. Survival is in percent. This decision tree was built

using the software Precision Tree from Palisade. Adapted from Diamond et al. (1986). . . 28

3.5 A game theory model related to decision whether a physician should give treatment when

no further diagnostic testing is available, and whether a patient should accept the recom-

mendation (The patient demands treatment but does not get it). Extracted from Djulbe-

govic et al. (2015). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Tree representation of the extensive form game, illustrating the interaction between the

doctor and the patient in a consultation. Each player has two strategies, and the doctor

decides first. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Tree representation of the extensive form game, illustrating the interaction between the

doctor and the patient in a consultation. Each player has two strategies, and the patient

decides first. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Tree representation of the extensive form game, illustrating the interaction between the

doctor and the patient in a consultation, with the doctor acting first. . . . . . . . . . . . . . 63

4.4 Tree representation of the extensive form game, illustrating the interaction between the

doctor and the patient in a consultation, with the patient acting first. . . . . . . . . . . . . . 65

xiii



xiv



Chapter 1

Introduction

This chapter briefly introduces the subject of the current dissertation and its motivation, as well as

the goals set to achieve. Section 1.1 provides a general explanation of the problems that motivated this

study. Section 1.2 contains an overview of our particular subject, backed with some factual data. Section

1.3 enlightens the reader about the main objectives of this dissertation. Lastly, section 1.4 provides a

broad vision over the dissertation layout.

1.1 Motivation
Medical practice is evolving extremely rapid, and breakthroughs occur on a daily basis. Advances in

technology are one of the main contributors to these exceptionally fast and frame-breaking changes.

However, health care is still a service for people offered by people, and the role of physicians has

changed substantially (Henry, 2006). As stated in Elwyn (2004, page 415), “Medicine is a service

delivered by a mix of episodic and repeated interactions between humans, medicated by the use of

technologies such as tests, drugs and procedures”. However, it is widely recognized that there exists

an obvious communication gap between the actors in a medical consultation, which usually leads to

a 40-50% less than optimal adherence to physicians’ advice and treatment. Successful attempts and

efforts to address this problem are rare (Hockstra and Miller, 1976).

Physicians are decision makers under extreme pressure, not only to offer the right treatment but

also to make the best allocation of resources. Furthermore, technology has enabled physicians and

patients to access a massive amount of information. Therefore, patients are nowadays more informed

(for better or for worse) and are more aware of the options they have. This led to a new scenario where

empowered patients also assume the role of decision makers, being able to negotiate with physicians in

order to defend their own interests. In an interaction like this, it is common to have conflict of interests

of both players - the patient and the doctor - and the outcomes of the situation will be influenced by

the decisions taken by them. This is where Game Theory appears as a suitable tool to study this

interaction (e.g. Djulbegovic et al., 2015). Game theory is a mathematical programming tool with many

applications in solving complex human (or animal) interaction situations. It models decision making

when players’ outcomes are interdependent. It is widely applied to firm competition, but is powerful

to find the equilibrium outcomes in many other social contexts. The relationship between doctor and

1



patient, or decisions concerning health services provision may be modeled with this tool. One example

of a possible game theory application can be the choice between eutocia or caesarean delivery, taking

into account the incentives given to reducing the caesaren rate. Game theory is considered to offer

medicine a potential study method, yet the complexity of the consultation must not be underestimated.

Designing a model that portraits correctly the consultation is a considerable challenge. Despite that, if

it is done, it may bring over improvements in the quality of health care and benefits for all interested

parties (Elwyn, 2004; Hockstra and Miller, 1976).

This dissertation focuses on the alcoholic liver diseased treatment process, namely in its end stage

where patients usually require a liver transplantation. The major problem is that there are not enough

liver grafts for all the patients in need (demand exceeds supply), so a very prudent management of

each situation must be made, in order to best allocate the existent liver grafts. Consequently, the entire

transplantation process is very complex, and requires doctors to take exceptionally difficult decisions. It

also requires patients to change their lifestyle - especially to become alcohol abstinent - in order to be

able to receive the much needed transplant. However, not always everything goes perfect, and there

may be times where one of the players is not willing to cooperate, due to several possible reasons. The

whole process engages a tremendous negotiation between physicians and patients, which will be the

object of the current dissertation, using game theory. Simulating the consultation using game theory

may lead to interesting results that can be used to come up with health policy implications targeted to

increase patients’ adherence to doctors’ recommendations and promote a better allocation of a very

scarce resource - liver grafts.

1.2 Topic Overview

It is common knowledge that alcohol consumption is harmful for peoples’ health, harming especially one

vital organ: the liver. In fact, alcohol consumption is considered to be the main cause of hepatic disease

in Europe, though it is often combined with other risk behaviors (APEF, 2014; Marinho, 2010). Alcohol

abuse led to 3.8% of all deaths in the world in 2004 and 4.5% of the global disease burden which is

measured in disability-adjusted life years lost. This is why alcohol abuse is often considered a public-

health problem (Marinho et al., 2015). Besides causing alcoholic liver disease, alcohol consumption also

contributes to diseases in the pancreas, heart, digestive track, among others.

Alcohol has a specific mechanism of action when striking the liver. It leads to steatosis, which

consists of deposing fat in the liver, followed by cellular lesion and fibrosis. Lastly, if it reaches the end

stages, hepatic alcoholic cirrhosis can be reached. Once at this stage, there is no treatment that will cure

the disease. Naturally, the larger the doses consumed the more likely the development of the illness.

However, there is no minimum quantity defined to avoid the emergence of alcoholic liver disease, and

not even non-excessive drinkers can be considered risk-free. There are other factors that have been

demonstrated to influence the evolution of this disease, such as gender, race, and obesity (Matos, 2006;

APEF, 2014).

As mentioned before, hepatic cirrhosis is the end-stage of alcoholic liver disease and it is irreversible.
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Additionally, it is common to observe the development of hepatic cancer in cirrhotic patients. Alcohol

consumption at this stage assumes a critical role. It is of tremendous importance that patients stay

abstinent, or the cirrhosis can aggravate and eventually lead to death. Alcohol abstinence can bring

noticeable benefits for patients’ health, and many patients are advised to seek counselling in order to

remain abstinent. The last resort treatment for alcoholic liver disease is liver transplantation, with this

disease being one of the main causes for liver transplantation referral in Europe (APEF, 2014). The

main issue with liver transplantation is that there are not enough liver grafts to cover the demand, thus

requiring a very complex and strictly ruled candidate selection process (Carrion et al., 2013). The

selection criteria comprises requisites such as alcohol abstinence (minimum six months), assessment

of the severity of patient’s disease and existence of any other clinical conditions, given by scores such

as Model for End-Stage Liver Disease (MELD), as well as verification of the post-transplant prognostic.

This last criterion is of utmost importance since 20%-25% of the patients lapse or relapse to heavy

drinking post-operatively (Telles-Correia and Mega, 2015).

The selection process engages a tricky negotiation between the multidisciplinary team of practition-

ers and the patients and their families. The physician must check if the patient has been following the

recommendations, and at the same time assess the prognostic for the patient’s liver transplantation. If

the patient relapses into drinking after receiving a new healthy liver, it will be a big loss for all interested

parties. At the same time, the patient may or may not comply with the doctor - since complying entails

several sacrifices - and she/he might try to deceive the doctor in order to not be excluded from the trans-

plantation waiting list. Using game theory one may find interesting equilibria that will help defining new

ways to encourage patients to cooperate.

1.3 Objectives
This dissertation aims at developing a game theory model to study the interaction between doctors

and patients in consultations, particularly for the liver transplantation process of patients suffering from

alcoholic liver disease. The game is solved to find the equilibrium or equilibria behaviors.

This model is expected to support medical decision and to present health policy implications in order

to better collaborate with such patients. A more collaborative process, where patients feel the doctor

is there to help instead of to punish them, will improve outcomes both for the doctor and the patient,

or society in general. The ultimate goal is to assure that liver grafts are transplanted to patients with

the best possible prognostic. Actually, more than a single model were developed, and the solutions

compared.

1.4 Dissertation Outline
This dissertation is organized in six chapters, as explained below.

Chapter 2 introduces the disease in question, explaining how it develops and including factual data

that demonstrates the impact it may have in a society. Moreover, the entire transplantation process is

thoroughly detailed. Chapter 3 gives an overview of game theory models and a literature review on

3



applications to a wide variety of study fields. Two applications of game theory to health care issues

are presented in a detailed way. The model construction and analysis is made in chapter 4. The results

achieved are presented as the analysis proceeds, with the necessary comparisons being made. Chapter

5 discusses and interprets the results obtained and draws some possible health policy implications.

Finally, chapter 6 outlines the main conclusions and presents possible developments for future work.
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Chapter 2

Background

This chapter describes the Alcoholic Liver Disease (ALD), which is one of the main contributing dis-

eases to liver transplants in Portugal, and also goes through all the transplantation requirements and

process. Section 2.1 addresses the causes, characteristics, and related health issues of this disease.

Section 2.1.1 presents some relevant statistical evidence on its incidence in Europe and in Portugal,

and also gives some specialist insight into the Portuguese situation. Section 2.2 deals with the trans-

plantation process, which is thoroughly explained since it serves as baseline for the application of the

model. Diagnostic is only roughly exploited whereas it can be a very complex process and does not

have a substantial contribution to the results of this study. It is important to notice that this work will

focus on alcoholic chronic liver disease and not on acute liver disease, since the former one allows for a

better application of the model of interest. Section 2.3 wraps up the context introduction made along the

chapter, outlining the most important aspects that serve as motivation for improvement efforts.

2.1 Alcoholic Liver Disease and Alcoholism
Chronic Liver Disease is characterized by the progressive destruction of the liver parenchyma and its

replacement by fibrous tissue (Hammer and McPhee, 2014). Cirrhosis is an example of long-term

chronic liver disease where scar tissue replaces healthy tissue, after the latter one suffered damage for

a long period of time (Matos, 2006).

The liver is an essential organ with a wide variety of functions, including expelling toxins from the

body, bile production for food digestion, manufacturing triglycerides (fat) used for energy, and proteins

production (Tortora and Derrickson, 2014). These are vital functions that will be compromised when

liver disease reaches its end-stage, cirrhosis. This failure might lead to death if not taken care of in good

time. Cirrhosis may also entail portal hypertension and increase the risk of development of hepatocellular

carcinoma (Kumar et al., 2015).

Alcohol consumption has been a reality for a long time in Humanity history. Despite that, its connec-

tion with ALD is much more recent, starting to appear in the 19th century. Though alcohol consumption

does not necessarily lead to cirrhosis, it definitely increases the risk of (irreversibly) damaging the liver,

especially if consumed regularly (Matos, 2006). Although other disorders or risky behaviours may lead

to hepatic cirrhosis, approximately 80% of the cases derive from alcoholic consumption (Marinho, 2010).
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But alcohol consumption repercussions do not end here, it may also lead to diseases in other organs

such as the pancreas, the heart, or the digestive tract. Besides, alcohol abuse is also strongly cor-

related with car accidents and domestic violence, sometimes leading to homicides or suicides (APEF,

2014; Marinho et al., 2015). This is why excessive alcohol consumption can be seen as a public-health

problem. Alcohol abuse led to 3.8% of all deaths in the world in 2004 and 4.5% of the global disease

burden which is measured in disability-adjusted life years lost (Marinho et al., 2015).

Some comorbidities associated with ALD can be seen in table 2.1.

Table 2.1: Comorbidities associated with alcohol related liver disease. Adapted from Varma et al. (2010).

Comorbidities associated with alcohol related liver disease

Cardiovascular
Alcoholic cardiomyopathy
Cirrhotic cardiomyopathy
Coronary artery disease

Musculoskeletal Myopathy
Osteopenia

Neurologic

Wernicke-Korsakoff psychosis
Alcoholic dementia

Alcoholic cerebellar degeneration
Peripheral neuropathy

Malnutrition

Chronic pancreatitis

Hepatocellular carcinoma

Hepatitis B or C infection

Other malignancy Upper aerodigestive tract malignancy

Psychiatric

Depression or mood disorders
Personality disorders

Anxiety disorders
Psychosis

It is important to briefly mention some mechanisms through which alcohol can harm the liver. It

is fully absorbed throughout the digestive tract, and this absorption can take from minutes to hours

depending on whether the individual was fasting (Matos, 2006). After being absorbed, the alcohol must

be metabolized and the resulting metabolites will be the harmful entities (APEF, 2014). Acetaldehyde is

a toxic compound which may cause protein denaturation and suppress some DNA repair mechanisms.

Alcohol metabolization may also enable some bacterial endotoxins to enter the liver and lead to an

immune response that can harm the tissue. Nonetheless, it has been proved that not every individual has

the same likelihood of having alcoholic cirrhosis. Gender, age, and other genetic factors may influence

the susceptibility an individual has to develop cirrhosis. For example, women or African people are more

prone to develop such a disease. Lastly, alcohol consumption can deepen other diseases effects, for

example hepatitis C (Marinho, 2010; Matos, 2006).

Physicians have good understanding of the reality of these two diseases (ALD and Alcoholism), albeit

the context has seen some changes like the age at which alcohol consumption begins. Portuguese

teenagers start drinking at the age of 13, which is incredibly early and is associated with a risk of future
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addiction around 50% (Marinho, 2010).

Alcoholism is a disease strongly related with social and familial issues. Despite the tremendous

burdens and problems alcoholism and alcoholic cirrhosis may bring to society, they still are not hot

topics amongst medical community due to the lack of therapeutic and technological innovations in this

area (Beresford, 1997; Marinho, 2010).

2.1.1 ALD in Europe and in Portugal
This subsection gives some insights and statistical facts about how alcohol consumption is deeply rooted

in human society and on some other consequences it may bring.

According to a report conducted by the Portuguese National Health System (Serviço Nacional de

Saúde - SNS) chronic liver disease is positioned in the top ten causes of death in Europe and also in

Portugal (Pedroto et al., 2016; Marinho, 2010).

As previously mentioned, and despite all the health problems it may be associated with, alcohol is

the most accepted drug. Thus, it naturally is also the most consumed one.

Not surprisingly, “Alcoholic liver disease (ALD) is the second most common diagnosis among patients

undergoing liver transplantation (LT) in the United States and Europe” (Burke and Lucey, 1998). It is only

exceeded by viral hepatitis (Varma et al., 2010). Between 1988 and 2004, 31% of liver transplants per-

formed in Europe were due to ALD (17,2% in the USA) (Telles-Correia, 2011). This goes in accordance

with the fact that alcohol is consumed in high quantities. Indeed, around 15% of the European citizens

drink alcohol in an excessive and hazardous way (APEF, 2014). The World Health Organization (WHO)

puts Portugal in the 11th position of the top alcohol consuming countries in Europe (2010 data) (Pedroto

et al., 2016).

Alcoholic liver cirrhosis is one of the main contributors to the substantial number of deaths due to

hepatobiliary diseases. In Portugal there were 18,279 deaths (25.1 deaths per 100,000 inhabitants)

caused by hepatobiliary disease reported from 2006 to 2012, with more than 5,200 (7.1 deaths per

100,000 inhabitants) having ALD as main cause. In addition, this same study concluded that from all

the deaths caused by hepatobiliary disease in Portugal 72% were from male patients, thus underlining

the influence of other factors such as gender. Though women are more prone to develop alcoholic liver

disease, Portuguese men drink more alcohol than Portuguese women, which contributes to the previous

statistic (da Rocha et al., 2017). The number of deaths from hepatobiliary disease by sex in Portugal

between 2006 and 2012 is depicted in figure 2.1.

Another curious aspect of mortality from liver cirrhosis is its regional distribution in Portugal. It

reaches its highest values in the archipelago of Madeira, which can be linked to historical elevated

levels of alcohol consumption and intravenous drug abuse. In continental Portugal, there is a north-

south gradient that can be explained by the location of the reference centres (north centre in Porto and

Coimbra and Lisbon are the central centres). Besides this, this result is in accordance with the different

levels of alcohol consumption along the country (da Rocha et al., 2017).

Furthermore, it is estimated that around 11% of individuals in Western Europe die as a result of

alcohol consumption (Marinho, 2010).
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Figure 2.1: Number of deaths from hepatobiliary disease by sex in Portugal, 2006-2012. Extracted
from da Rocha et al. (2017)

Looking into the National Statistical Institute (INE) data it is possible to validate the previous estima-

tion and verify that Portugal follows the Western European trend, with the mortality rate due to chronic

liver disease and cirrhosis per 100,000 inhabitants being approximately 10, in other words, in every

100,000 individuals 10 die from chronic liver disease (INE). This outnumbers the previously mentioned

mortality ratio for ALD (7.1/100,000) because it includes other chronic liver diseases.

The impact range of ALD is much wider than the addressed previously. A clear example of the

enormous burden of this disease is the number of hospital admissions. Approximately 5,500 admissions

are registered per year in Portugal and 84% of the cases are related with alcohol (data from 2008).

Approximately twenty years ago this percentage was 63% (Pedroto et al., 2016; Marinho et al., 2015).

These admissions are commonly longer than the usual and the mortality rate is three times the national

average. Thus, hospitals and the SNS incur high costs with ALD (Marinho, 2010; Vitor et al., 2016).

Additionally, patients are being admitted at earlier ages than in the past. In the mid-nineties the mode

would fall between 60 and 64 years old whereas between 2004 and 2008 it was confirmed to fall within

50 and 54 years old, thus 10 years younger (Marinho et al., 2015). A study published in 2016 stated that

by 2008 liver disease was the third most expensive disease for the Portuguese Public Health Service

when considering only hospital admissions, with a cost of e62,950,631. 42,6% of this cost came from

admissions where patients suffered from alcoholic cirrhosis (Vitor et al., 2016). Along with those costs,

transplantation costs have increased and can nowadays reach e100,000 per transplant. Even so,

Portugal is one of the top ranked countries regarding the amount of liver transplants executed, with the

number being around 200 transplants per year (Marinho, 2010).
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An indirect economic burden also important to consider derives from the fact that the major share of

patients admitted is aged between 20 and 60 years, i.e., the most socioeconomically active age group.

Between 2006 and 2012, it was evidenced that ALD mortality rate may reach 25-30/100,000 in males

aged amid 50 and 65 years, therefore possibly having severe productivity repercussions (da Rocha

et al., 2017). Besides the accountability costs associated to hospital admissions and treatments to

patients, there is also an opportunity cost associated with the lost production. Thus, considering just the

number of hospital admissions is an underestimating approach since it does not account for the lost of

productivity and other factors of the previously socioeconomically active admitted patients. It is then very

complicated to truly quantify the economic burden of ALD. However, it already shows how problematic

this disease can be for a society (Vitor et al., 2016).

Portuguese teenagers are consuming larger quantities of alcohol at younger ages, especially follow-

ing the pattern of binge drinking. This basically consists on drinking many alcoholic beverages in order

to become intoxicated over a short period of time. These kind of behaviours can be very harmful for

teenagers and they end up being taken to the intensive care unit very often. In the future, the number

of admissions for ALD tends to increase and patients will be even younger, which is subject of big con-

cern. Governments should address these problems and work to find more effective regulation on alcohol

consumption in order to revert the situation (Marinho et al., 2015).

2.2 Liver Transplantation

This section focuses on the liver transplantation process, defining and describing each fundamental

portion of it. Section 2.2.1 explains the details and particularities of the diagnosis of the disease in

question giving an overview of the complexity it may encompass. A clear and accurate diagnosis is

a key point for the outcome of the treatment. Following after, indications for transplant and prognosis

are discussed in section 2.2.2. Knowing that liver grafts are a scarce resource for the large number

of patients in need of a transplantation, this task is fundamental for selecting the candidates who will

receive the transplant. Lastly, section 2.2.3 covers the aspects that might exclude patients from the

waiting list. Besides the clinical parameters, psychosocial aspects take a decisive role in this process

and are also detailed.

2.2.1 Diagnosis
The patient arrives to the hepatology consultation usually redirected from specialties like gastroenterol-

ogy, infectiology, or internal medicine. If the patient has developed hepatocellular carcinoma then the

consultation will be with a surgeon. In this first pre-transplant consultation a thorough diagnosis is made,

and the steps will be briefly explained in this subsection.

First of all it is important to differentiate two, sometimes mistakenly mixed, concepts: alcohol de-

pendence and alcohol abuse, being the former one more serious than the latter. Alcohol dependence

involves the urge of alcohol to avoid some sort deprivation or satisfy some physical or mental need. Alco-

hol abuse can be defined as drinking behaviours that have recurring negative impacts on an individuals
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health, relationships and work. A third but not least important concept is tolerance: the more tolerance

to alcohol an individual has, the more she/he has to drink to get the same level of satisfaction (Matos,

2006; Beresford, 1997).

ALD may be divided in three histological stages: hepatic steatosis, alcoholic hepatitis, and cirrhosis.

It is common to find at least two stages coexisting. This division is advantageous when considering

the progressive character of ALD and its continuous spectrum of varying severity, being steatosis less

severe and cirrhosis the most severe. One important feature of this classification is the possibility to

ascertain whether the disease is reversible (steatosis) or not (alcoholic cirrhosis) (Matos, 2006; APEF,

2014). It is very important that the diagnosis of ALD is done at an early stage. This diagnosis is

based on the patient’s clinical history, physical examination, and complementary diagnostic exams such

as laboratory and imaging exams (APEF, 2014; Matos, 2006). The complexity of this diagnosis is

vast and the practitioner must bear in mind that several alcohol dependent patients may not develop

ALD and also that there might be symptoms that mimic ALD but do not derive necessarily from it or

from alcohol consumption (e.g. non-alcoholic steato-hepatitis, which would be neglected in favour of a

non-existent ALD). It is also imperative that the diagnostic is purely unbiased by social stereotypes or

prejudices. However, patient history and family precedents should never be disregarded (Telles-Correia,

2011; Matos, 2006).The physician may need to cross-check the patient and the family testimony (APEF,

2014).

At the early stages, ALD is usually asymptomatic. When the disease reaches more severe stages

the symptoms start to appear. However, these symptoms are very often unspecific and are common for

most types of hepatic disease. Some examples of symptoms are jaundice, ascites, ginecomasty, and

testicular atrophy (Matos, 2006; APEF, 2014). The laboratory tests may target ALD at the early stages

by detecting a high volume of erythrocytes and hepatic enzymes. At more advanced stages albumin

levels decrease while bilirubin levels increase (APEF, 2014). Amongst the imagiolic exams, abdominal

ecography, computerized tomography, and magnetic resonance are quite common for diagnosing ALD.

While the former two are helpful detecting steatosis, the latter one is handy to detect slight hepatic

changes, such as the emergence of tumors (Matos, 2006).

Despite all these diagnostic tools, hepatic biopsy is the gold standard of ALD diagnosis even though

it might have some risks associated (Matos, 2006; APEF, 2014). If a physician suspects that the patient

is not being honest about alcohol consumption in the past, he may confirm this consumption if the

biopsy reveals the AST/ALT ratio to be higher than 2. This is the ratio between the concentrations of the

enzymes aspartate transaminase (AST) and alanine transaminase (ALT) and is commonly verified in

medical diagnosis of liver disease. Most causes of liver injury are associated with a greater increase in

ALT than AST; however, an AST/ALT ratio of 2:1 or higher is suggestive of alcoholic liver disease (Lucey

et al., 1994; Telles-Correia, 2011).

2.2.2 Prognosis and Indication for Transplant
After the diagnosis is completed, it is necessary to stage the disease and evaluate how it can progress.

This evaluation also includes the assessment of the psychosocial status of the patient. The prognosis
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of the disease is a very complex task and whether the patient should obtain a transplant or not is still

a motif of discordance. The fact that this task can be subjective and the predictors used have still not

proven to be totally flawless shows there is still a lot of work to do in order to improve this process and

create consensus amongst the specialists.

It is common knowledge that alcoholic patients quickly improve their health status when they stop

drinking alcohol. At times, this improve can be so significant that the patient might not need to go

through transplantation anymore. The plasticity of the ALD can really hinder the prognosis of the liver

injury and that is why a thorough assessment is crucial. Every physician would prefer to avoid liver

transplantation in cases where abstinence and other therapies would be effective in recovering the liver

functions (Lucey, 2015).

In order to establish standard indications to liver transplantation the European Association for the

Study of the Liver stated the following: “Liver Transplantation (LT) should be considered in any patient

with end-stage liver disease, in whom the LT would extend life expectancy beyond what the natural

history of underlying liver disease would predict or in whom LT is likely to improve the quality of life

(QoL)” (Burra et al., 2015). Following this definition, patients should be selected for transplantation if

they are not expected to live more than one year if the transplant is not performed or if the disease has

irreversibly decreased their QoL to unacceptable levels. However, the scarcity of liver grafts in compar-

ison with the number of patients in need of a transplant complicates the entire situation, which seemed

easy by the previous statements. In addition, there are huge costs associated with the transplanta-

tion process and one has to bear in mind that the ALD patient is an exceptional one. Therefore, it is

mandatory to meticulously select the candidates for transplant (Telles-Correia and Mega, 2015).

With regard to assess whether patients cross-check all the requirements for becoming candidates for

transplantation a multidisciplinary team gathers together on a weekly basis. They also discuss the place

in which the candidates should enter the waiting list. Usually, this meeting team is composed by: sur-

geons, both the hepatologist and the psychologist that follow the candidate through the entire process,

and two nurses, one of them being the chief-nurse. There are many parameters through which every

candidate should be evaluated, from the clinical picture to psychosocial aspects and behaviour (Burra

et al., 2015).

Regarding their clinical condition, patients can be classified according to several scores. Two rel-

evant scores are the Child-Pugh Score (mainly for cirrhotic patients) and the Model for End-Stage

Liver Disease (MELD). Though both of them are used nowadays, the latter one has gained relevance

lately (Matos, 2006). The Child-Pugh Score assigns a value from 5 to 15 to the patient depending on

the following five clinical criteria: total bilirubin, serum albumin, prothrombin time, ascites, and hepatic

encephalopaty. Based on their punctuation patients are classified into class A (5-6), class B (7-9), and

class C (10-15) (Burke and Lucey, 1998; Matos, 2006; Burra et al., 2015). Class A estimates a pre-

transplant one year survival of 100%, class B a pre-transplant one year survival of 81%, and class C a

pre-transplant one year survival of 45% (Cholongitas et al., 2005; Varma et al., 2010). Thus, class C

patients urge the transplant earlier than patients from the other classes. Child-Pugh score criteria are

outlined in table 2.2.
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Table 2.2: Child-Pugh Score. Adapted from Burke and Lucey (1998)

Child-Pugh Score

Points

Criteria 1 2 3

Encephalopathy (grade) None 1-2 3-4

Ascites None Slight Moderate-Severe

Bilirubin (mg/dL) 1-2 2-3 >3

Albumin (g/dl) >3.5 2.8-3.5 <2.8

Prothrombin time (seconds prolonged) 1-4 4-10 >10

Due to the subjectivity of some parameters, such as the degree of ascites or encephalopathy, the

Child-Pugh Score has been supplanted by the MELD score. This score was firstly used to determine

the prognosis of a patient going through implantation of a transjugular intrahepatic portosystemic shunt

(TIPS). It was modified and nowadays is used in most transplantation centers in the United States and

in Europe, not just to assess whether the patient should get a liver transplant but also for organ allo-

cation (Graziadei et al., 2016; Carrion et al., 2013). This mathematical predictive score is founded on

three biochemical parameters: serum creatinine level, serum bilirubin level and international normal-

ized ratio for prothrombin time (INR). The resulting value can be use to predict the 3-month mortality if

the patient does not receive a liver graft. In a cohort study engaging 3437 adult liver transplant candi-

dates, it was observed that mortality followed a pattern dependent on the MELD score assigned to the

patient (Wiesner et al., 2003; Carrion et al., 2013):

– < 9 – 1.9% mortality;

– 10 - 19 – 6.0% mortality;

– 20 - 29 – 19.6% mortality;

– 30 - 39 – 52.6% mortality;

– > 40 – 71.3% mortality.

Opposing to mortality, in the previous cohort study the rate of 3-month survival was also estimated

and can be seen in figure 2.2.

Patients should be indicated for transplant if they belong to class C in Child-Pugh classification or if

they have a MELD score equal or higher than 15 (Graziadei et al., 2016). However, patients with scores

below 15 (MELD) or in class B (Child-Pugh) might also be advised about the role of transplantation,

with the possibility of being referenced for it depending on an individual evaluation (for example if major

complications have already occurred) (Graziadei et al., 2016; Carrion et al., 2013). Besides this, MELD

can also be a good predictor of long-term outcomes of candidates who received a liver transplant, but

only if the score is greater than 25 (Carrion et al., 2013). Lastly, it should be noted that patients with

MELD scores above 40 have much higher risks of dying in the waiting period. Thus, these cases require

special consideration (Sharma et al., 2012).
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Figure 2.2: Estimated 3-month survival as a function of the MELD score. Extracted from Wiesner et al.
(2003).

Nonetheless, MELD score has some limitations and it should not be used as the only criterion for

indicating patients for liver transplantation. One of those limitations is that it does not consider some

complications that might be attached to liver disease, e.g., portal hypertension. These complications

may have a significant influence on the patient’s prognosis (Graziadei et al., 2016).

The candidate’s position on the waiting list, and consequently the liver grafts allocation, is conditioned

only by the MELD score. Psychosocial aspects that will be addressed in 2.2.3 exclusively contribute to

the entrance or withdrawal of the waiting list. Higher MELD scores mean top positions on the list,

i.e., candidates in more severe states will get the transplant sooner. This score, and consequently the

candidate’s position, is dynamic in the sense that candidates are always under evaluation since they

enter the candidacy list and their MELD score can be updated if they show improvement or deterioration

of their health status.

There are some particularities in this process. One of them is when liver cirrhosis co-occurs with

other complications, for example Hepatocellular carcinoma. When this is the case, patients followed

in Hospital Curry Cabral (the reference centre for liver transplantation in Lisbon) get immediately a

minimum MELD score of 22. Other singularity arises for very sick patients (MELD > 30). For patients

in these situations the risk of mortality and morbidity after transplantation should be taken into account

individually, and in the worst case scenario they might not receive the transplant (Burra et al., 2015). In

addition, a psychological assessment of the patient must be carefully and continuously carried out. This

evaluation will be approached in the next subsection.

2.2.3 Contraindications and Psychosocial Aspects

An exhaustive evaluation of the patient is necessary to determine if ALD damaged more tissues than just

the liver. It is frequent for the patient to show evidences of cardiac, renal, neural, or immune dysfunction

due to alcohol dependence or abusive consumption. These previous systems should also be assessed

apart from liver function and hepatocellular carcinoma (Lucey, 2015).

Since liver grafts for transplantation are a scarce resource when compared to the number of patients

in need of a transplant, the candidate must be carefully selected. To back up physicians in this selec-
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tion process several contraindications for liver transplantation have been defined. They are considered

contraindications in the sense that they will have a negative impact on the outcome of the process, thus

possibly excluding the candidates from the waiting list.

Contraindications to liver transplantation can be divided into absolute and relative contraindica-

tions (Farkas et al., 2014). Considering that liver transplantation is a last resort treatment, any patient

who is not ill enough to go through this treatment should not be selected. Instead, alternative treat-

ments should be assessed and followed (Lucey et al., 1992). Any patient who is excessively ill for

transplantation should also be excluded. The most common ALD associated diseases that are consid-

ered absolute contraindications are uncontrolled systemic infections (e.g. sepsis), life-limiting medical

conditions such as advanced cardiovascular, pulmonary, or neurologic disorders, and uncontrolled extra-

hepatic malignancy. Intrahepatic carcinoma with extrahepatic metastasis is also considered an absolute

contraindication (Farkas et al., 2014; Graziadei et al., 2016). There is still the case of patients having

hepatocellular carcinoma. To assess this medical condition the Milan criteria was created. This criteria

defined the following set of parameters (Farkas et al., 2014; Ferreira et al., 2012; Graziadei et al., 2016):

– if there is a single nodule, it must not exceed 5 cm;

– there can be a maximum of three nodules, each one not exceeding 3 cm;

– there cannot be evidence of extrahepatic lesion nor vascular invasion.

If the heptocellular carcinoma is within the bounds of Milan criteria then the patient is eligible for

transplantation. However, for the cases when the tumor does exceed the Milan criteria an individual

evaluation should be performed and the physician will follow the national or local guidelines. Extended

Milan criteria has been a topic of research and discussion (Farkas et al., 2014; Ferreira et al., 2012).

Lastly, and probably one of the most important but yet most controversial contraindications, is the pe-

riod of alcohol abstinence. It is generally accepted that patients should not be listed for transplantation

without undergoing abstinence for a minimum period of six months (Farkas et al., 2014; Burra et al.,

2015; Telles-Correia, 2011). It still raises debate and discordance, especially because many patients

may not survive this period. One of the objectives of the required six months of abstinence is to dimin-

ish the alcoholic relapse after transplantation, also know as recidivism. Yet, there is no sufficient and

meaningful data in the literature supporting the effectiveness of this six months preventing long-term

recidivism (Lucey, 2015; Farkas et al., 2014). Actually, Vaillant (2003) advocates that proper soberness

is only reached after 5 years of abstinence.

Relative contraindications range from psychosocial aspects to the advanced age of the patient,

comprising obesity or malnutrition, and other diseases such as hepatopulmonary or hepatorenal syn-

dromes (Farkas et al., 2014). These parameters are to be assessed by the multidisciplinary team for

each patient individually. Both absolute and relative contraindications to liver transplantations are shown

in table 2.3.

One of the main concerns for physicians, psychologists, and psychiatrists is whether the patient

will relapse drinking after receiving the liver transplant. Recidivism during the waiting period is equally

worrying, and that is why a proactive and close to the patient monitoring is performed (Beresford, 1997).
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Table 2.3: Contraindications to liver transplantation. Adapted from Graziadei et al. (2016)

Contraindications to liver transplantation

Absolute

Severe cardiac or pulmonary diseases and severe pulmonary hypertension

Alcohol addiction without motivation for alcohol abstinence and ongoing substance abuse

Hepatocellular carcinoma with extrahepatic metastases

Current extrahepatic malignancies (eventually reevaluation after successful therapy)

Sepsis

Relative

Untreated alcohol abuse and other drug-related addiction

Cholangiocellular carcinoma

Hepatic metastatic neuroendocrine tumors (NET), metastatic hemangioendothelioma

Morbid obesity

Persistent non-adherence

There has been intense research to develop an applicable patient selection criteria or strategy, though

this is a subjective evaluation (Telles-Correia and Mega, 2015). Some researchers came up with different

scales that can be helpful in predicting the probability of recidivism of each patient. One example is the

Michigan Alcoholism Prognosis Scale for Major Organ Transplant Candidates, which can be seen in

table 2.4. It takes into account factors such as the acceptance of alcoholism, prognostic indices, and

social stability, and in the end assigns points to each parameter (Burke and Lucey, 1998; Lucey et al.,

1992).

Table 2.4: Michigan alcoholism prognosis scale. Adapted from Varma et al. (2010)

Michigan alcoholism prognosis scale
Criterion Points

Acceptance of Alcoholism
Patient and family 4
Patient only 3
Family only 2
Neither 1
Prognostic indices
Substitute activities Yes 3, No 1
Behavioral consequences Yes 3, No 1
Hope/self-esteem Yes 3, No 1
Social relationship Yes 3, No 1
Social stability
Steady job 1
Stable residence 1
Does not live alone 1
Stable marriage 1
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Notwithstanding, the usefulness of these scales on the daily tasks and consultations remains un-

clear. Due to the psychological vulnerability of this type of patients, psychologists will not spend the

consultation doing questionnaires instead of trying to build a strong relationship with the candidates.

Additionally, the score calculated is not binding and has always to go through medical appreciation and

validation (Telles-Correia, 2011).

That is why some good and poor sobriety prognosis factors have been suggested: duration of absti-

nence, social support, family history of alcoholism, alcohol abuse in contrast with dependence, denial of

the alcohol dependence diagnosis, presence of mental disorders, noncompliance with the physicians,

and finally the number of years of alcoholism as well as the average daily alcohol consumption (Telles-

Correia and Mega, 2015; Lucey, 2015).

Although a longer period of abstinence is considered a good prognosis factor, it must not be treated

as an absolute indicator (Telles-Correia and Mega, 2015). Social support has been always considered a

good prognosis factor. G. Vaillant and T. Beresford do enhance on their literature the importance of the

patient having a stable partner and environment at home, as well as dedication to activities that deviate

the patient from alcohol consumption. In contrast, keeping up with alcohol-related activities is consid-

ered a poor sobriety prognosis factor (Telles-Correia, 2011). Having a family history of alcoholism or a

history of a mental disorder (such as schizophrenia) are considered poor prognosis factors. Additionally,

noncompliance with the medical team as been related to worse results after liver transplantation, thus

being also a poor sobriety prognosis factor. Lastly, but not least important, are the years of dependence

and the average daily quantity of alcohol consumed (Telles-Correia and Mega, 2015). Researchers

have tried to define a threshold for these two variables, and Yates et al. (1993) suggested that the risk

of recidivism was greater for more than 25 years of alcoholism and more than 17 drinks per day.

The psychologist has an important role in the entire process described. But her/his role goes be-

yond trying to predict the probability of alcohol relapse, whether it is previous to the transplantation or

afterwards. Identifying mental disorders that can occur before or after the transplantation, supporting,

and guiding the patient throughout the whole process, which usually lasts until the patient’s death, is

also a task of upmost importance (Burke and Lucey, 1998). Therefore, the relationship between the

patient and the medical team and its details have been subject of study. Albeit physicians may think

their intervention is the most relevant during the perioperative period, they can really influence how the

patient will behave in the long-term. A careful and caring surveillance (more intense after the surgery)

can be a powerful tool in the recovery and rehabilitation of the patient (Beresford, 1997).

To finish this section it is important to note that the concept of relapse is sometimes misused. Ab-

stinence should be the main goal of the medical team that follows the patient, but relapse can mean

different things and not all relapses are worth the same concern. Relapse of drinking is used to assess

the presence of abstinence or parse the quantified alcohol consumption. Some scientists consider a

”slip” if the patient does not exceed the threshold of 5 daily drinks for 5 consecutive days (Kotlyar et al.,

2008). Relapse of dependence is generally correlated with the psychiatric conditions of alcoholic depen-

dence or abuse. It is straightforward to conclude that the former definition has a much better prognosis

regarding survival rates when compared to the abusive drinking (Telles-Correia and Mega, 2015).
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2.3 Overview
ALD is a disease with a vast range of impacting consequences for society. Whether it is for its severity or

for its large extent, ALD is a major concern for government bodies. Alcohol is widely spread allover the

world and its consumption is common practice. But this consumption has implications in people’s health.

The liver is a vital organ and its failure may lead to death, thus being essential to treat patients suffering

from it, if possible in the early stages of the disease. Nonetheless, sometimes this is not possible and

liver transplantation emerges as the last resort treatment.

The huge incidence of this disease makes it a pretty common diagnosis. In addition, it is almost

asymptomatic at the earlier stages which leads to a high number of people suffering from chronic liver

disease at final stages. These patients demand liver transplantation to survive. The big problem is

that there are not enough liver grafts for all the patients in need. Therefore, candidates are meticulously

assessed before being selected. This assessment is a very complex and exhaustive process, which may

lead to conflicts sometimes. Clinical aspects evaluation and psychosocial assessment are examples of

key areas for the appraisal of the candidates. It is important to mention that candidates are continuously

being assessed, and they have strict rules to follow if they want to be selected or keep their place on

the waiting list. One of the most important criteria is alcohol abstinence. This work is underpinned

by alcohol abstinence, since it models the interaction between candidates and doctors regarding this

specific criterion.
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Chapter 3

Game Theory Essentials and

Literature Review

This chapter describes some fundamental concepts of game theory (GT) and reviews previous work

that handled health care issues relying on game theory. Section 3.1 provides a broad insight on the

foundations of this mathematical tool, and some indispensable concepts that will allow for a better com-

prehension of the model applied are addressed in subsections 3.1.1 and 3.1.2. Several examples of the

applicability of GT to social interactions in the medical field are presented in section 3.2. A few models

of different applications of GT - in other domains than doctor-patient relationship - are briefly described

in section 3.3. Lastly, section 3.4 gives a summary of all the work done on the field and how it launched

the work done in this dissertation.

3.1 Game Theory
A wider definition of GT is given in Gibbons (1992): “Game theory is the study of multiperson decision

problems”. It studies the strategic scenarios and decisions in a situation with several agents (two or

more), whenever their decisions are interdependent. The range of agent types goes from individuals

to firms, or combinations of both. It can be considered to be the formal study of conflict and coop-

eration (Turocy and von Stengel, 2002). Since a social interaction can be excessively complicated to

simulate, considering it a mathematical game is an abstraction which simplifies this interaction. There-

fore, it consists of three explicitly defined elements: a set of players, a set of actions for each individual

player (strategies), and a preference profile over the set of action profiles (payoffs) usually represented

in utility measures (Colman, 2003).

3.1.1 Games Representation
Games can be represented in normal form and extensive form. In the normal form representation, play-

ers simultaneously choose one of their possible strategies and the combination of the chosen strategies

will lead to a specific payoff for each player (Turocy and von Stengel, 2002). The classic example of

this representation of a game is called The Prisoners’ Dilemma, where two prisoners in custody have to
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decide whether to confess the crime or remain silent. They are kept separate so each prisoner does not

know what the other will do. There are four possible outcomes, depending on the strategy each prisoner

chooses (Gibbons, 1992):

– If neither confesses, both are sentenced to one month in jail;

– If both confess, both are sentenced to six months in jail;

– If one confesses but the other does not, the confessor is liberated (best payoff) and the other is

sentenced to nine months in jail (worst payoff).

These types of normal form games can be represented in a matrix (bi-matrix for the previous example

since we have two players with two strategies each). The representation of the payoff matrix for this

game can be seen in figure 3.1. Note that strategies are Mum (not confess) and Fink (confess).

Figure 3.1: Payoff matrix for Prisoners’ Dilemma game. Extracted from Gibbons (1992).

Although both prisoners would be better off if they both cooperated (not confessing), this will not

happen because joint cooperation is not an equilibrium (Nash equilibrium explained in subsection 3.1.2).

If one prisoner decides to not confess, the other will be tempted to confess, thus being immediately set

free while the non-confessor would have the worst payoff. This explains why they both will confess, even

if they would both be better off cooperating.

The extensive form, or game tree, is a more exhaustive representation of the game and takes into

consideration that decisions may not be taken simultaneously (Gibbons, 1992). By this, it allows to

acknowledge when each player is playing, the information each player has by the time of the action, and

the occasions when uncertainty in a situation is cleared up: “It is a complete description of how the game

is played over time” (Turocy and von Stengel, 2002). A game tree representation must contain a root

node at the top, branches, intermediate nodes with more branches coming out of them, and finally the

leafs or terminal nodes at the bottom of the tree. The top node defines the first player to take action, and

the branches coming out of it represent the set of possible actions for the first player. The intermediate

nodes represent the other player or players and the branches depict their set of possible actions as well.

Finally, the terminal nodes show the payoffs for each player, for the different strategies they may choose.

In an extensive form representation, the complete plan of actions, one for each decision point of each

player, represents that player’s strategy. An example of extensive form representation of a game can be

seen in figure 3.2.
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Figure 3.2: Extensive form representation of the Big John and Little John game. Extracted from Gintis
(2009).

In Big John and Little John game, both players eat coconuts which are hanging at the top a palm

tree. The coconut produces 10 Kc (kilocalories) of energy. Big John spends 2 Kc climbing the tree and

running back down while Little John spends an insignificant amount of energy doing the same activities.

Both players have two possible strategies: wait (w) or climb (c). The payoffs are depicted at the bottom

of the tree and they represent the amount of energy each player will obtain from the coconut if that

certain path is followed. The first number refers to the first decision taker (Big John in this case) and

the second number to the following decision taker (Little John). For example, if both players wait (w,w)

than both get 0 Kc of energy. In this case it was assumed Big John would decide first. So Big John has

to inspect how Little John will react to both Big John’s different choices. If Big John chooses to wait,

then Little John will choose to climb since this will give him 1 Kc of energy instead of 0 Kc. On the other

hand, if Big John climbs then Little John will choose to wait because this will get him 4 Kc instead of 3

Kc. Summing up, Big John will get 9 Kc of energy if he decides to wait and 4 Kc if he decides to climb.

Thus, he will decide to wait and Little John will climb (Gintis, 2009).

3.1.2 Fundamental Concepts
Following the previously introduced definition of strategy, it is imperative to present the concepts of pure

and mixed strategies. Pure strategies are the actions a player may take for any situation faced, thus

showing a complete description of how a player will play a game. The player’s strategy set is the set of

pure strategies available to that player (Gibbons, 1992). A mixed strategy is a probabilistic combination

of pure actual strategies. It is an active randomization (i.e., assigning probabilities to each pure stratey)

that determines the player’s decision. In an extreme case, a mixed strategy can be the choice of one

pure strategy, meaning that the chosen strategy gets 100% probability and the others get 0%. Using

mixed strategies can be very useful to interpret one player’s uncertainty about what another player will

do (Heap and Varoufakis, 1995).

Strategic dominance is an important concept related to strategies. It occurs when one strategy

always gives a better payoff than another strategy for one player, no matter how the other players are
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playing. It weakly dominates the other strategy if it is always at least as good. This concept can be very

helpful when solving simple games, however that is not what always happens. In more complex games,

a strategy may be better or worse for one player depending on what the opponents do (Turocy and von

Stengel, 2002).

Player preferences are represented in the form of payoff functions which associate a value to the

outcome of each action in a way such that actions with higher numbers are more favorable to the player

and are hence preferred. Mathematically, for any two strategies a and b in a set of strategies, with u(a)

and u(b) said to represent the payoff functions and taking into account that these also depend on the

other players’ decisions, u(a) > u(b) implies that the player prefers action a over b for the specific set of

strategies chosen by the other players (Osborne, 2004).

Information plays a relevant role in GT. An information set for a player establishes all the possible

moves that could have taken place in the game so far, given what that player has observed. A game has

perfect information when, at any point in time, the player making the move knows exactly all the actions

that have been made until then, i.e., the player knows the point reached at that stage of the game and

knows the moves previously made by all other players. Otherwise, if the game has imperfect information

some players cannot be sure about what has taken place so far in the game and what their position

is. Complete information is sometimes confused with perfect information, however they have different

implications. Complete information means that every player in the game knows the strategies and the

payoffs available to the other players, but not necessarily the actions taken previously (Gibbons, 1992).

To solve extensive-form games of perfect information, a commonly used technique is backward in-

duction. It starts analyzing the last moves in the game, determines the best moves in each case and

assumes them as given future actions. Then, it proceeds backwards in time again determining the best

moves until the first move of the game is reached (Turocy and von Stengel, 2002).

One of the most important concepts of game theory is the Nash equilibrium. As previously men-

tioned, dominance reasoning is not the key to foresee what might happen in many games. In these

circumstances, the solution is given by the Nash equilibrium concept, named after its creator John Nash.

It is a list of strategies, one for each player, which has the property that no player can unilaterally change

his strategy and get a better payoff. This is based on the idea that players would not want to change their

strategies given what the others had chosen to do. It is important to notice that in a two-player game, an

equilibrium point (and thus a Nash equilibrium) is a pair of strategies that are best replies to each other,

that is, maximize the player’s payoff given the strategy chosen by the other player (Heap and Varoufakis,

1995; Colman, 2003).

Lastly, a subgame perfect Nash equilibrium is a refinement of the Nash equilibrium used in sequential

(dynamic) games. Games represented by extensive forms can be conceptualized as bundle of several

subgames (as many as the number of decisions the main game contains). A strategy combination is a

subgame perfect equilibrium if it represents a Nash equilibrium of every subgame of the original game.

Intuitively, this means that if the players played any shorter game that could be represented by one

subgame of the larger game, their behavior would represent a Nash equilibrium of that smaller game.

Every finite extensive game has a subgame perfect equilibrium, that can be detected after backward
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induction (Gibbons, 1992).

To conclude this section, it is essential to remark that some of the previous concepts are substanti-

ated by some assumptions. The main assumption in game theory is that all players are rational, which

implies they all will play with the only goal of maximizing their own payoff. Another relevant assumption

is common knowledge. A fact is common knowledge if all players know it, and know they all know it, and

so on (Turocy and von Stengel, 2002).

3.2 Literature Review

This section provides a literature review of game theory applications to health care problems and also

to other domains where it is considered to be a very important tool.

To begin this review it is interesting to briefly take a look at how medical consultations can be seen

through game theory perspective. Tarrant et al. (2004) states that the medical consultation is “best un-

derstood as a two-way social interaction involving interactive decision making”. This means that the

outcomes of a consultation will be dependent on the actions and choices of both participants. Con-

sequently, game theory is a promising tool to study consultations. Nevertheless, not all consultations

run the same way since they depend on several factors, starting with the patient’s disease. This is why

there is a variety of game structures to be applied to provide insights of the underlying dynamics of the

interaction between the doctor and the patient.

Some examples of game structures can be the Prisoners’ Dilemma, the Assurance game, and the

Centipede game, to be detailed ahead. Note that there is little evidence that shared decisions are

recurring practice in consultations, but it is obvious that even if it is not the case of shared decision,

the outcome will still be influenced by both players’ decisions - the doctor’s decision about treatment or

management and the patient’s decision about whether to follow the advice or look for a second opinion,

for example. We shall now proceed to drill-down the previous structures using some medical context as

examples.

3.2.1 Prisoners’ Dilemma
The Prisioners’ Dilemma can simulate a consultation interaction if some simplifying assumptions are

made. The doctor may cooperate and act in the patient’s best interests (C) or for some reason (e.g.

medical error, misjudgment, lack of skills, or personal interests) take a decision which will not bring the

best benefits for the patient (D). The patient in turn may decide to follow the physician’s advice (C) or not

(D). A hypothetical situation for this game could be the case of a patient going to see a doctor on a busy

day complaining from a sore throat. The patient has results from some exams revealing a red throat, a

slight fever, and a slightly swollen cervical lymph nodes. The doctor checks the exams and may decide

whether to prescribe antibiotics and spend no more than five minutes dealing with the patient, or to fully

undertake a lifestyle assessment and give personalized advice about self-management, which would

extend the consultation for ten minutes. The patient then can choose between following the doctor’s

advice and prescription or withhold treatment and seek for a second opinion. We end up with four
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possible outcomes:

– (C,C): the doctor fully engages and the patient follows the advice;

– (C,D): the doctor fully engages but the patient seeks for a second opinion;

– (D,C): the doctor gives a prescription and the patient follows the treatment;

– (D,D): the doctor gives a prescription but the patient seeks for a second opinion.

Following intuition, one would suggest (C,C) to be the best all round - the doctor would do the best

for the patient and the patient follows the advice saving up valuable time of other doctors. However,

this pair of strategies is not a Nash equilibrium as explained previously. The unique Nash equilibrium

in this game is the joint non-cooperation (D,D), since both players avoid the worst outcome possible

(cooperating while the other does not). For all that, this would not have good consequences for the

quality of care and this outcome is undesirable (Tarrant et al., 2004). That is why the Prisoner’s Dilemma

is sometimes considered paradoxical and problematic, especially when considering a single game as

the previous one where cooperation is shown not to be a rational strategy by game theoretic principles.

However, the situation changes when considering interactions that are assumed to last infinitely in the

future, called the infinitely repeated games. When analyzing infinitely repeated Prisoner’s Dilemma

game it is possible to find some cooperative strategies that constitute Nash equilibrium, advocating

cooperation as a rational strategy in these cases (Gibbons, 1992). There are some factors intrinsic to

these infinitely repeated games that promote cooperation, including anticipation of future interactions

(with the possibility of foreseeing cooperation payoffs), ability to recognize each other and recall past

interactions, and lastly the threat of reprehension from the other player in future interactions. In the

medical consultation context, both the doctor and the patient are encouraged to cooperate by these

factors. The doctor is likely to dedicate time to ensure the patient gets the best assistance and feels

pleased being followed by him. It will be rewarding to carry all the process until completion. In turn, the

patient is more willing to follow treatment if there is an expectation that the doctor will monitor the future

progress (Tarrant et al., 2004).

It is important to mention that payoffs in the medical context are not equitable. The stakes are higher

for the patient who will be worse off if the doctor does not cooperate than the opposite. This way, payoffs

will have a higher impact on the patient than the impact they have on the doctor.

The previous explanation on the limitations of applying the Prisoner’s Dilemma game to medical

consultations leads us to presenting other structures of games that better incorporate cooperation.

3.2.2 The Assurance Game
The Assurance game was introduce by Sen (1969) and models interactions where cooperation leads

to the best outcomes, but carries some inherent risks. It is also known as the “Stag hunt game” which

was a situation described by Rousseau and Cranston (1984). Two individuals go out on a hunt and

simultaneously choose to hunt a stag or a hare. In order to successfully hunt a stag, a player requires
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Table 3.1: Payoff matrix for Stag hunt game. Adapted from Girtz et al. (2017).

Stag Hunt Game
Hunter 2

Stag Hare

Hunter 1
Stag 5, 5 0, 4

Hare 4, 0 2, 2

cooperation from the other player. An individual can get a hare by himself, but a hare is worth less than

a stag. The payoff matrix is depicted in table 3.1

Looking at table 3.1 one concludes that if both hunters one and two choose to hunt a stag then they

will both get a payoff of 5. But if hunter one takes a hare and hunter two a stag then the first player will

get 4 and the second gets 0, and so on.

Contrasting with Prisoners’ Dilemma, this game has two pure strategy Nash equilibria - one that is

risk dominant another that is payoff dominant. The strategy pair (Stag, Stag) is payoff dominant since

payoffs are higher for both players compared to the other pure Nash equilibrium, (Hare, Hare). On

the other hand, the latter strategy risk dominates the former since there is uncertainty about the other

player’s action. The more uncertain players are about the actions of the others, the more likely they will

choose the strategy corresponding to it. Both players prefer one equilibrium to the other - hunting a stag

is Pareto optimal and Hicks optimal. An outcome is Pareto efficient if there is no other outcome that

increases at least one player’s payoff without decreasing anyone else’s. Pareto efficiency is a weaker

form of efficiency because it does not make comparisons between players. A Hicks optimal outcome

is an outcome in which the total payoff for all of the players of a game is the most it could possibly be.

Hicks efficiency implies Pareto efficiency (Srivastava et al., 2005).

In addition to the pure strategy Nash equilibria there is one mixed strategy Nash equilibrium. This

equilibrium depends on the payoffs, but the risk dominance condition places a bound on the mixed strat-

egy Nash equilibrium. No payoffs (that satisfy the above conditions including risk dominance) can gener-

ate a mixed strategy equilibrium where Stag is played with a probability higher than one half (Rousseau

and Cranston, 1984; Sen, 1969).

The notion of trust is then compulsory to address. Although it may be complex to define trust within

the doctor-patient relationship in a game theory perspective, it has been proved to be correlated with

some determinants. Consecutive interactions reinforce the trust between doctor and patient. This can

be achieved by adequate and regular contact between them, thus showing involvement from the doctor.

Time is a valuable variable to enrich trust since it allows to build a solid and trustfully relationship. Time

can be used by physicians as a tool to show patients they care (used as a signal). Therefore, it is

possible to bridge this medical context to signaling games as well. Signaling games are incomplete

information games where the more informed player has to decide whether to signal in some way her/his

true type, and the less informed player has to decide how to respond to both the uncertainty about
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her/his opponent’s type and the signal sent, recognizing that signals may be strategically chosen. Since

medicine is a credence good, a physician-patient interaction will always be considered an incomplete

information game, with the physician being the more informed party (Sobel, 2007). The physician can

show the patient that she/he cares and will make an effort to deliver the best treatment possible so the

patient should trust her/him. This can be done by signaling, and spending time with the patient can

be considered a signal. Time spent with a patient can also be seen as representing “continuity” of a

game, since a physician is not likely to spend time with a patient she/he does not intend to see in the

future (Huttegger et al., 2014). Other contributing factor to build up trust are the expectations about

treatment and care in a sense of the patient being able to rely on the doctor if something unexpected is

needed. The patient expects the doctor to be available when needed. Lastly, the verbal and non verbal

signals transmitted during the consultation are key elements to reinforce trust. The attitudes from both

participants may contribute to a trustful relation. These signals may range from the way the physician

adjusts the transmitted information to the way the patient expresses himself or if she/he listens carefully

to what the doctor has to say (Riva et al., 2014).

Trust and assurance go hand in hand in this type of games. If players expect cooperative behavior

from each other then cooperation will be a probable outcome. If there is history of past interactions

between both players there is more information through which players may create their expectations.

If there is prediction of future interactions both players can clearly commit to cooperate in order to

achieve the best outcome. Here, communication plays a critical role in the assessment of trust and

assurance (Tarrant et al., 2004).

Tarrant et al. (2004) give an example of the Assurance game in the health care context, which is a

doctor initiating a patient into a smoking cessation programme. Both players (doctor and patient) will

benefit the most from mutual cooperation, but the doctor might be subject to some worse payoffs if

the patient is not interested in cooperating. The worst outcome the doctor can have is to worthlessly

dedicate time and effort to a patient who is not willing to commit to the programme. If the relationship

is not a trustful one, and there is no assurance that the patient will cooperate, then the doctor should

consider defection instead of cooperation.

3.2.3 The Centipede Game
The Centipede game is captivating attention in health care studies since it models a repetition of inter-

actions between a pair of players (Rosenthal, 1981). The Centipede game has many characteristics in

common with the Prisoner’s Dilemma because in both games players would be better off cooperating

but they face a temptation in each decision. The specific feature of the Centipede game is the increasing

benefit of cooperating throughout the successive encounters. The downside is the subsequent rise in

the non-cooperative outcome for unilateral non-cooperation, so temptation to defect is always enhanced

in each move. The Centipede game can reflect several factors of the doctor-patient relationship. The

more time the doctor and the patient invest on this relationship the more personal knowledge the doctor

will have on the patient, thus enabling better care (appropriate diagnosis and management plans). On

the patient’s side, more time spent with the doctor is likely to increase the patient’s confidence on the
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treatment. However, none of this is possible if the two players are not willing to cooperate. A defec-

tion move by a patient may be the decision to see another doctor or not accepting the doctor’s advice.

A doctor may defect by recommending another doctor or act in a way such that trust will be compro-

mised (Tarrant et al., 2004). This game structure was introduced by Rosenthal (1981) who showed that

the only rational strategy is to defect, and the Nash equilibrium resides on the first player defecting at

the initial move, thus ending the game. The aforementioned conclusion is not in line with intuition and

experiments proving that people can be very cooperative.

An example of a representation of centipede game is show in figure 3.3. The payoffs are represented

at the tip of each non-cooperative branch, except for the last payoff which represents the outcome of

cooperation throughout the entire game.

Figure 3.3: Centipede game. Extracted from Tarrant et al. (2004).

Player I has the first move (on the left) and defection will lead to a null outcome for both players. If

the first player chooses cooperation, then player II gets to choose. If defection is chosen, player I gets

a negative payoff while player II is rewarded with a payoff of 10. If neither defect, the game goes on

until the last move. If one player defects at some point before the end, then the game stops and the

players get their respective payoffs. It is possible to confirm cooperation is fostered as the game moves

on, but defecting while the other player cooperates is also increasingly rewarding.

3.2.4 Game Theory and Health care
Two examples of games applied to health care are now presented. Note that both of them are structured

as a Prisoner’s Dilemma game, putting in evidence the lack of studies in this area.

Diamond et al. (1986) establish differences between game theory and decision analysis and uses

the concept of expected utility, which can be explained as the product between utility (measure of one’s

degree of preference relative to a specific goal - payoff) of an outcome and its probability of occurrence.

In decision analysis, the best outcome is the one carrying the highest expected utility and it relies upon

one agent’s decision. In contrast, game theory requires more than one agent to make a decision, and

outcomes will be dependent on the actions taken by all agents. If there is uncertainty embodied in

the game one might consider the payoffs as expected utilities, otherwise the players will just want to

maximize their utility based on the others’ actions.
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The clinical problem is based on a decision a doctor may have to take when dealing with liver dis-

eased patients: the patients may have one of two diseases, each one demanding different treatment

paths. The hypothesis are: chronic progressive hepatitis, 20% of the cases, and cirrhosis, 80% of the

cases. The doctor may decide whether to proceed with a treatment with steroids or ask for a biopsy. This

latter decision will lead to a perfect diagnosis and appropriate treatment path but exposes the patient to

a 0.1% risk of dying. The decision the doctor faces is whether to perform a biopsy or not.

It is necessary to know the utilities of each treatment to approach this problem. The possible paths

to be taken are presented in figure 3.4, which was adapted from the article in question. The software

Precision Tree from Palisade was used to draw this decision tree. Note that utility is quantified in two

year survival, shown in percentage below the probability of occurrence of that branch. There is no

interaction here, it only represents the doctor’s decision and the utilities it may bring up based on the

uncertain events that are more or less likely to happen (each uncertain event has a different probability

of happening).

Figure 3.4: Decision tree for the treatment of chronic liver failure. Choice odes are denoted by a square
and chance nodes by a circle. Survival is in percent. This decision tree was built using the software
Precision Tree from Palisade. Adapted from Diamond et al. (1986).

Diamond et al. (1986) first solve the problem using decision analysis. The expected utility of each

path is the product of its utility (here considered two be two-year survival) and the probability of its

occurrence. As an example, the expected utility of having hepatitis and being treated with steroids is

85% times 20% which gives 17%. For the case of treating cirrhosis with steroids, the expected utility

is given by multiplying 48% by 80% which gives 38.4%. The expected utility of each strategy is then

given by the sum of all the expected utilities that strategy may comprise. The expected utility of choosing

steroid treatment without previously performing a biopsy is then 17% plus 38.4%, giving a total of 55.4%.
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The same reasoning is applied to the treatment without steroids, resulting in a expected utility of 53.4%.

If the doctor decides to perform a biopsy, there is the chance of dying, with its expected utility being

obviously null. When choosing the treatment after doing biopsy, for the case of biopsy survival, the

expected utility for each treatment must be multiplied by the probability of surviving the biopsy, 99.9%.

But the difference now is that the doctor knows exactly which treatment to choose because the disease

was unveiled by the biopsy. Thus, the utility of treating hepatitis with steroids and not using steroids for

cirrhosis after biopsy increases to 57%. However, the 0.1% death rate must be taken into account and

this utility lowers to 56.9%. Given that this value is still higher than the expected utility of treating all

patients with steroids without performing a biopsy, as a conclusion, the doctor should always perform a

biopsy and only treat with steroids patients with chronic progressive hepatitis.

The main difference between game theory and decision theory is that in the former outcomes depend

on the other players’ decisions. Now it is assumed that the patient may reject the doctor’s recommenda-

tion, whatever this may be.

There are now four possible strategies for the decision of whether to perform a biopsy or not, sum-

marized in table 3.2 jointly with the payoffs.

Table 3.2: Payoff matrix for Biopsy game. Adapted from Diamond et al. (1986).

Biopsy Game
Physician

Biopsy No Biopsy

Patient
Biopsy 55.6, 55.6 56.9, 56.9

No Biospy 54.4, 54.4 55.4, 55.4

It is important to mention that payoffs are still measured in two year survival of the patient, explaining

why payoffs are equal for both players. It is also assumed both players want to maximize the two year

survival, but now the biopsy risk of death is 2.8% (corresponding to the threshold pointed by the authors).

One big difference is that now one has to consider four strategies instead of two. The author sets

two probabilities, p is the probability that the physician recommends the biopsy and q the probability that

the patient accepts that recommendation. Since the physician and the patient share the same utilities, it

is feasible to assume the previous probabilities to be equal, and that the two-year survival is a function

of p and the utility matrix. Reminding that players are assumed to be rational, the optimal strategy sets

the value of p that will maximize the two year survival, computed through the following equation:

p =
2d− c− b

2(a− b− c+ d)
(3.1)

where a represents the utility of the strategy in which the biopsy is recommended by the doctor and

accepted by the patient, b the utility of the strategy in which the physician does not recommend the

biopsy but the patient does not accept that and struggles to find other doctor willing to perform it. Utility

c represents the opposite from b, the patient rejects the biopsy recommended by the physician, and d
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shows the utility of both players rejecting the biopsy.

The computation of this equation is shown in appendix A.

When replacing the utility letters with the values from the utility matrix, one finds the optimal value

of p to be exactly 5/6. This result contrasts with the deterministic strategy (always recommend biopsy)

given by decision theory, where the patient’s decision is disregarded. This value of p suggests that the

doctor should recommend biopsy to five of every six patients, and only five out of every six patients

should accept the recommendation (since q was assumed to be equal to p). The solution to this game

is in fact a mixed-strategy.

It is important to reinforce the fact that the goal of this game was to maximize the number of patients

surviving. It is also of greatest importance to mention that the doctor was considered to be altruist,

instead of egoist. Both players had the goal to maximize the patient’s utility, which can sometimes not

be case in real life and change the game’s results. Physicians also have their interests, and their payoffs

must be represented and be considered separately, which can sometimes create conflict (Diamond et al.,

1986).

Djulbegovic et al. (2015) describe a different problem recurring to game theory, adopting the Pris-

oners’ Dilemma structure. Interestingly, the authors add emotions to this game, namely trust, regret,

guilt, and frustration. All of the previous emotions will account for the payoffs and will be briefly ex-

plained now. Trust was previously described in detail, so the only important thing to remember is that it

is helpful to avoid the Prisoners’ Dilemma game, since trust promotes cooperation (Riva et al., 2014). A

very important notion is that medicine is a credence good, meaning the situation between physician and

patient is asymmetrical: patients are vulnerable because doctors have much more knowledge, which

can sometimes lead to trust abuse circumstances. Additionally, physicians are incapable of assuring

absolutely correct treatment or recommendations every time they treat a patient. This incapacity may

sometimes lead to a feeling of regret, that can be felt by both players. An example of regret is when a

doctor gives unnecessary treatment to a patient that can eventually be harmful. The feeling of guilt may

affect physicians who realize that they did not act taking into account the patients’ best interests. Last of

all, frustration can be considered a feeling of disappointment when a player is unable to do something.

As an example, a doctor may get frustrated if the patient refuses the recommended treatment. All these

previous feelings will have impact on any of diverse clinical outcomes (Djulbegovic et al., 2015).

Now, after introducing the elements added to the game (namely to the payoffs matrix) the clinical

situation is explained. A physician who is seeing a patient, does not know if the patient has a disease or

not, and has to decide whether to recommend a specific treatment assuming it is not feasible to obtain

more information, i.e., it is not possible to do more diagnostic testing. In turn, the patient may choose

between accepting or rejecting the doctor’s recommendation.

The payoffs matrix is represented in table 3.3:

Note that Rx and NoRx stand for recommend and not recommed treatment, respectively. Regarding

the payoffs, P11 represents the utility of the patient’s outcome when she/he trusts the doctor and accepts

the recommended treatment. The letter D was chosen for the doctor’s outcomes. As an example, D21

is the utility of the doctor’s outcome when the treatment was recommended but the patient did not trust
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Table 3.3: Payoff matrix for Treatment game. Adapted from Djulbegovic et al. (2015)

Treatment Game
Doctor

Rx NoRx

Patient
Trust (P11, D11) (P12, D12)

NoTrust (P21, D21) (P22, D22)

the doctor, thus rejecting the treatment.

The first step taken is to access if there is strategic dominance. If P11 > P21 and P12 > P22 then

the patient has a dominant strategy, which is to always trust the doctor’s decision. For the doctor, using

the same reasoning one gets that if D11 > D12 and D21 > D22 then the doctor should always choose

treatment (Rx) over no treatment (NoRx).

As previously mentioned, these payoffs are related to utilities that refer to a wide range of clinical

outcomes (e.g. life expectancy, mortality and morbidity rates, amongst others). The utilities are denoted

by V for the physician and U for the patient, and are expected to differ even for similar outcomes, since

patient and doctor have different expectations and interests. The clarification of the different outcomes

is depicted in table 3.4:

Table 3.4: Outcome utilities for patient and doctor, arising from the medical situation. Based on informa-
tion in Djulbegovic et al. (2015).

Outcome Utilities for Patient (U ) and Doctor (V )

V1, U1 Treatment administered when disease is present

V2, U2 Treatment administered when disease is absent

V3, U3 Treatment not administered when disease is present

V4, U4 Treatment not administered when disease is absent

After defining the utilities, it is important to state some assumptions that will allow to appraise each

one in relation to the others. The first assumption is that the doctor values more outcomes associated

with treatment administered when the disease is present than treatment not administered when the

disease is absent (V1 > V4). It is considered to be a plausible assumption since the willingness to act is

higher than to do nothing. It is considered to be worse failing to administer treatment when necessary

than administering treatment when it would not have been necessary. Secondly, outcomes associated

with no treatment when the disease is absent will obviously be more valued than outcomes associated

with treatment administration without the presence of the disease (V4 > V2). This assumption is in
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line with the “first do no harm” principle of the practice of medicine. Last assumption for the doctor’s

utilities ordering is that outcomes associated with treatment administration when the disease is absent

are more valued than the failure to administer treatment when necessary, i.e., when the disease was

present (V2 > V3). The utilities for the patient’s outcomes are assumed to follow the same pattern as

the doctor’s. A patient usually sees a doctor when she/he does not feel right, and creates expectations

about a diagnostic and a recommended treatment. It is also good to know there is no disease and no

necessary treatment, but here it is assumed that having the disease and being treated matches the

patient’s expectations better than not having the disease and not being treated (U1 > U4). When the

disease is absent, it is obvious that any patient would rather not receive treatment than being overtreated

(U4 > U2). However, when comparing the cases of being unnecessarily overtreated and undetreated

when the disease was present, any patient would rather be overtreated than not receiving the treatment

needed and not having her/his treatment expectations met (U2 > U3).

Although the authors restricted their assumptions to the previous ones in order to allow better inter-

pretation of the results, other assumptions and utilities comparisons could have been made. However,

these comparisons would require solid and logic rationale. If, for some reason, the assumptions made

would change the sorted utilities then all the results of the game could also change. This could be used

to perform sensitivity and robustness analysis to the model.

It is also credible to assume that the patient’s utility of being treated when sick is higher than the

doctor’s utility when failing to administer treatment to a patient in need (U1 > V3). Analogously, the

patient will benefit more of not being treated when unnecessary than the doctor when unnecessarily

treating the patient (U4 > V2).

In order to make it all clearer, the assumptions considered are the following:

– V3 < V2 < V4 < V1

– U3 < U2 < U4 < U1

– V2 < U4 and V3 < U1

The last step to finish engineering the model is to define how the previously explained emotions cor-

relate with the utilities in order to obtain the final payoffs. In this study, trust was taken into account on

the patient’s decision, so it does not directly contribute to the payoff. Instead, without trust the patient

chooses the opposite of the doctor’s recommendation. Regret (R) is considered to be related with the

difference in utility between the outcome obtained from the decision taken and the best outcome possi-

ble. Guilt (G) was considered to be possibly felt only by physicians when there is an abuse of patient’s

trust whether it is deliberate or by honest mistake. G represents the decrease in the doctor’s utility by

a fraction of the difference between her/his and the patient’s utilities, when unnecessary treatment is

prescribed or the necessary treatment is withheld. Ultimately, frustration (F ) represents the difference

in utilities between the patient and the doctor, or vice versa, when one of the players is forced by the

other to do what is less optimal and will obtain smaller utilities. Similarly to the previous game example,

this study only considered one interaction, but addressed two different situations: one where the patient
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demands treatment, but does not get it if the doctor does not recommend it, and the other in which

the patient gets the demanded treatment (e.g., if the patient sees another physician who is willing to

administer treatment). As these two situations will use slightly different utilities but the same reasoning,

only the first situation is considered to avoid unnecessary repetitions.

All the possible decisions, uncertainties, and the utilities associated to each outcome are organized in

a decision tree, shown in figure 3.5. Note that p represents the probability of the disease being present,

and therefore (1− p) represents the probability of its absence.

Figure 3.5: A game theory model related to decision whether a physician should give treatment when
no further diagnostic testing is available, and whether a patient should accept the recommendation (The
patient demands treatment but does not get it). Extracted from Djulbegovic et al. (2015).

Now it is possible to compute the payoffs. The method to compute them was the same as used

in decision theory, computing the expected value E. Hence, the expected payoffs are obtained by

multiplying the probability of an outcome with the utility associated to that outcome. It is important to

mention that each strategy will have two possible outcomes: one for the presence of the disease and

the other for its absence. For example, for case of the doctor choosing to recommend treatment and the

patient not trusting this recommendation, one will have two outcomes depending on whether the disease

is present, with different utilities each. The computation of all the payoffs is shown below:

P11 = E[Trust,Rx] = p · U1 + (1− p) · (U2 −Rp · (U4 − U2)) (3.2)

P21 = E[NoTrust,Rx] = p · (U3 −Rp · (U1 − U3)) + (1− p) · U4 (3.3)

P12 = E[Trust,NoRx] = p · (U3 −Rp · (U1 − U3)) + (1− p) · U4 (3.4)
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P22 = E[NoTrust,NoRx] = p · (U3 − (Rp + Fp)(U1 − U3)) + (1− p) · (U4 − Fp · (U4 − U2)) (3.5)

D11 = E[Rx, Trust] = p · V1 + (1− p) · (V2 −G · (U4 − V2)−Rd · (V4 − V2)) (3.6)

D21 = E[Rx,NoTrust] = p · (V3 − Fd · (V1 − V3)) + (1− p) · V4 (3.7)

D12 = E[NoRx, Trust] = p · (V3 −G · (U1 − V3)−Rd · (V1 − V3)) + (1− p) · V4 (3.8)

D22 = E[NoRx,NoTrust] = p · (V3 −G · (U1 − V3)−Rd · (V1 − V3)) + (1− p) · V4 (3.9)

To make it clear for the reader, payoffs P11 and D11 will be explained and the same reasoning is

followed for all the other payoffs.

P11 is the patient’s payoff when the doctor decided to recommend treatment and this recommendation

was trusted by the patient (thus explaining why P11 = E[Trust,Rx]). The element p · U1 refers to the

utility the patient gets in the case of the disease being present (represented by the probability p). The

second element, (1 − p) · (U2 − Rp · (U4 − U2)), refers to the case when the disease is absent (given

by the probability (1 − p)), knowing the treatment was administered. U2 is the utility the patient gets

when unnecessary treatment is administered and the patient’s regret factor, Rp, is due to having trusted

the doctor when she/he should not have done so. It is important to remember that regret was set to

denote the difference in utilities for the player (patient in this case). For the case of disease absence,

the best utility for the patient would have been not being treated (thus, U4), and that is why it appears

Rp · (U4 − U2).

Now looking at the doctors payoff, D11, the first element, p · V1, is analogous to the patient’s case:

V1 is the utility the doctor gets if the disease is present (with probability p), and the treatment was

administered. The differences from the patient’s payoff appear when calculating the utility for the case

when the disease is absent (again with probability (1− p)). V2 is the previously mentioned utility for the

doctor when unnecessary treatment is administered, but this time it is not only doctor’s regret (Rd) that is

added to the equation, one can see a term referring to guilt felt by the doctor, G. Once again, regret was

set to denote the difference in utilities for the player (now it is the doctor), and for the case of the disease

absence the doctor would have preferred to not treat the patient (V4). Therefore the regret term appears

as Rd · (V4 − V2). The doctor feels guilty for prescribing unnecessary treatment, and this is represented

by the decrease in her/his utility by a fraction of the difference between the patient’s best utility for the

disease context (present or absent) and the actual doctor’s utility, thus ending with G · (U4 − V2).

The last step of the model analysis is to study all the possible strategies. In the first place, the pure

strategies are addressed and only after that the authors focus on mixed strategies.
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Some pure strategies were previously mentioned in the strategic dominance assessment, but they

are repeated now.

1. If P11 > P21 and P12 > P22 then the patient has a dominant strategy, which is to “Trust” the

doctor’s decision. Now the doctor knows the patient will trust (1st row of the payoff matrix), so

her/his strategy only depends on the payoffs D11 and D12, choosing Rx if the former is larger and

NoRx in the other case.

On the other hand, if P11 < P21 and P12 < P22 then the patient will rationally choose “NoTrust”.

The doctor will now choose Rx if D21 > D22 and NoRx if D22 > D21.

2. Analogously for the doctor, if D11 > D12 and D21 > D22 then the doctor has a dominant strategy,

which is to recommend treatment Rx. Knowing this, the rational patient will choose to Trust the

doctor if P11 > P21 and NoTrust the other way round.

The doctor will recommend no treatment NoRx whenever D11 < D12 and D21 < D22. In this case,

the patient chooses Trust if P12 > P22 and NoTrust if P12 < P22.

After determining the necessary conditions for the existence of equilibrium in dominant strategies,

we now look for Nash equilibria in pure strategies. Although the author did not perform this step, it was

considered valuable to carry it out in this work. To do so, one must look for conditions for a player’s

strategy to be a best response to the other player’s strategy and vice-versa:

– If P21 > P11 and D21 > D22 the action profile (Rx, NoTrust) is a Nash equilibrium, the strategies

are best replies to each other;

– If P12 > P22 and D12 > D11 the action profile (NoRx, Trust) is a Nash equilibrium, the strategies

are best replies to each other;

– If P11 > P21 and D11 > D12 the action profile (Rx, Trust) is a Nash equilibrium, the strategies are

best replies to each other;

– If P22 > P12 and D22 > D21 the action profile (NoRx, NoTrust) is a Nash equilibrium, the strate-

gies are best replies to each other.

Moving towards mixed strategies, the authors seek for the circumstances in which the patient will be

neutral disregarding the doctor’s choice and afterwards do the same for the doctor’s case.

Starting with the patient, and assuming the doctor chooses Rx x per cent of the time and NoRx

(1 − x) per cent of the time, then the patient will be neutral if E[Trust] = E[NoTrust]. For the doctor’s

case, and assuming the patient chooses to Trust y percent of the time and NoTrust (1− y) per cent of

the time, the doctor will be neutral if E[Rx] = E[NoRx]. By the previous order, one gets:

for the patient

E[Trust] = x · P11 + (1− x) · P12 = x · (P11 − P12) + P12 (3.10)

E[NoTrust] = x · P21 + (1− x) · P22 = x · (P21 − P22) + P22 (3.11)
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then one gets

x · (P11 − P12) + P12 = x · (P21 − P22) + P22 (3.12)

which gives

x =
P22 − P12

(P11 − P21) + (P22 − P12)
=

1

1 + P11−P21

P22−P12

(3.13)

whilst for the doctor

E[Rx] = y ·D11 + (1− y) ·D21 (3.14)

E[NoRx] = y ·D12 + (1− y) ·D22 (3.15)

Following the previous reasoning the authors come to

y =
D22 −D21

D11 −D12 −D21 +D22
=

1

1 + D11−D12

D22−D21

(3.16)

So if the doctor plays Rx during x percent of the time and NoRx the rest of the time, the patient

will have the same payoff regardless the chosen strategy. The same happens for the doctor since the

patient should choose Trust during y per cent of time. As a result, there is a Nash equilibrium in mixed

strategies for (Patient,Doctor)=(y,x). As an important note, the fractions P11−P21

P22−P12
and D11−D12

D22−D21
are both

considered to be positive so that 0 < x < 1 and 0 < y < 1 and makes it possible to consider mixed

strategies.

For interpretation purposes, in Djulbegovic et al. (2015) utilities are used to denote benefits and

harms of the treatment, both for the patient who receives it and for the doctor who administrates it. On

the one hand, for the patient one has BP = U1 − U3 and HP = U4 − U2. On the other hand, for the

doctor it is set that BD = V1 − V3 and HD = V4 − V2. To determine the benefit of the treatment it makes

sense to narrow the population to the cases of patients who suffer from the disease, leaving us with

utilities U1/V1 (disease present and treatment administered) and U3/V3 (disease present but treatment

not administered). This way, it is obvious that the benefit of the treatment can be computed by sub-

tracting the utilities obtained when disease is present but the treatment is not administered, to the ones

earned when the disease is also present but the necessary treatment was administered. Regarding

the harms, it is only calculated for the case when the disease is absent, U4/V4 and U2/V2. Following

the previous reasoning, the harm of the treatment can be computed by subtracting the utilities that ad-

ministration of unnecessary treatment generates to the utilities of correctly withholding the unnecessary

treatment (Pauker and Kassirer, 1975, 1980). Using these notations, the author computes P and D

conditioned by the utilities, and benefits and harms both players get. The resulting expressions for x and

y are shown in appendix A.

In conclusion, the authors summarize the best possible strategies to follow (now taking into consid-

eration the benefits and harms):

1. If P11 − P21 > 0, or equivalently p
1−p ·

BD

HD
> 1 then the patient has a dominant strategy, which

is Trust. The doctor should then assess whether D11 is larger than D12 and choose Rx in that

case or NoRx in the other case. Note that having p
1−p ·

BD

HD
> 1 is equivalent to p > 1

1+
BD
HD

, which
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shows that the most rational strategy for the patient is to Trust whenever the doctor’s treatment

assessment predicts a higher expected net benefit (BD) than the expected net harms (HD).

2. If D11−D12 > 0 and D22−D21 < 0 the doctor has a dominant strategy: Rx. Thus, it is rational for

the patient to select Trust when −[1− p
1−p

BP

HP
] and NoTrust otherwise.

3. If D11 −D12 < 0 and D22 −D21 > 0 contrasting with the previous strategy, the doctor now has the

opposite dominant strategy: NoRx. It was shown that P22 − P12 < 0, so the patient in this case

should always choose to Trust the doctor. In other words, it is rational for the player to trust when

the doctor recommends no treatment.

4. Lastly, when P11−P21

P22−P12
> 0 and D11−D12

D22−D21
> 0 the best solution are mixed strategies. The patient

should choose Trust y per cent of times and NoTrust (1 − y) percent of the times. The same

reasoning is applied to the doctor, concluding that it is rational to choose Rx x per cent of times

and NoRx (1− x) per cent of times. This shows a Nash equilibrium: (Patient,Doctor)= (y, x).

It is not impossible to avoid a Prisoner’s Dilemma game in a clinical interaction. For that it is impera-

tive to reinforce trust between patients and physicians, for example by bringing closer their interests. It

is important to reverse the discredit of health care and make it more transparent. This can be achieved

by encouraging doctors to give clearer explanations and help patients managing the huge amounts of

information they can access nowadays (Djulbegovic et al., 2015).

3.3 Other Applications of Game Theory
Game theory is also used in several domains, such as economics, political science and psychology, logic

and computer science, and even biology. Actually, it is applied to a wide range of behavioral relations is

considered a valuable tool for the science of logical decision making in humans, animals, and computers.

Some application examples in different study fields are presented in this section, namely Sociology

in subsection 3.3.1, Biology in subsection 3.3.2, and Economics in subsection 3.3.3.

3.3.1 Game Theory in Sociology
It is pretty common to find game theory applied to sociological and anthropological studies, for instance

exploring how human beings interact and live as a society. Santos et al. (2018) address cooperation in

a society, and how it can influence each person’s way of acting with others. The main focus was on how

reputation can regulate cooperation between individuals. For this, it was considered a binary system for

reputation - it is either good or bad. The individual’s reputation is dependent on the settled social norms

that define what is considered to be a good or a bad action, and consequently improve or deteriorate

each individual’s reputation. Santos et al. (2018) use the Donation Game as a major basis for the study.

This type of game assumes there is a donor and a receptor, with the former one offering some sort of

benefit to the latter one at the expense of loosing something (in an altruistic act). The typical matrix for

these games is presented in table 3.5.
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Table 3.5: General payoff matrix for the Donation game.

Donation Game
Player 2

Cooperate Defect

Player 1
Cooperate b− c, b− c −c, b

Defect b, −c 0, 0

If both players donate, then both will get the cost of their donation subtracted to the benefit from the

others’ donations. If both players defect, then nothing happens and the payoffs are null. Lastly, if one

player cooperates by donating, and the other defects, then the donor only gets the negative cost - as a

loss - of the donation, while the receptor gets the benefit of the donation received.

The concept of indirect reciprocity is anchored to this study, and it is considered to be “the most

elaborate and cognitively demanding of all known cooperation mechanisms, and is the most specifically

human, because it involves reputation and status” (Santos et al., 2018, page 1). It suggests that when an

individual helps other there is no prospect of any kind of retribution from the individual who was helped,

but from a third party which observes this donation.

One of the conclusions reached is quite simple and straightforward: “help good people and refuse

help otherwise, and we shall be nice to you; otherwise, you will be punished”. There is a critical un-

derlying concept behind this conclusion, which is stern judging. “Under stern-judging, helping a good

individual or refusing help to a bad individual leads to a good reputation, whereas refusing help to a

good individual or helping a bad one leads to a bad reputation” (Pacheco et al., 2006). It is as simple as

help the good ones (and refuse to help the bad ones) to become good and to maintain that reputation.

Acting contrarily will make individuals lose their good labels.

Santos et al. (2018) state that this results “show that cooperation under indirect reciprocity can

emerge even when the cognitive capacity of individuals is limited”, making reference to toddlers be-

haviors. Additionally, the association of high cooperation and low complexity may indicate that even the

most uncomplicated social norms can trigger cooperation in complex environments.

Other studies in sociology study how participants in a society gather in groups, and uses game theory

to explain organization within these groups - many times it is hierarchical - and also how elements of

the groups interact between themselves. An example of groups formation can be the gangs created

in prisons (Burns et al., 2017). Kaminski (2004) dwells on the life at a polish prison invoking game

theory to do so. Despite seeming to be inserted in an irrational and unpredictably violent environment,

prisoners must be very keen on strategic decision-making in order to increase their chances of surviving

through the imprisonment period. A clever move can shorten a sentence; a bad decision can lead

to rape, beating, or social isolation. Kaminski (2004) reinforces this idea by saying that inmates act

rationally and are scheming most times, contrasting with the general idea that they would act driven by

pathological emotion.
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Besides sociology, research in other fields, like political science, have applied game theory. Levy

and Razin (2004) used a game-theoretic approach to point out that the democratic peace can be due

to the public and open debates in democracies, that send clear and reliable information regarding the

intentions to other states. On the contrary, nondemocratic leaders are not so clear when sending signals.

Therefore, it is not so easy to decode what their intentions are, and if they will keep their promises. Thus

there will be mistrust and unwillingness to make concessions if at least one of the parties in a dispute is

nondemocratic.

3.3.2 Game Theory in Biology
Other fields of application of game theory are for example biology and animal behavior studies. Related

to this, one must introduce Evolutionary Game Theory, which studies dynamic populations in biology.

It defines a framework of contests, strategies, and analytics into which Darwinian competition can be

modelled. This specific application of game theory emerged from the need of explanation of some

aspects of animal behavior. Following classical game theory, each player will act selfishly. But that is not

what happens when observing animal behavior. Although it goes against Darwin’s thoughts of natural

selection occurring at an individual level, gentlemanly actions made by animals suggest they may act for

benefit of the species instead of for own profit.

This theory was first introduced in Smith and Price (1973), where game theory was applied to demon-

strate that “limited war” strategy benefits not only individual animals but also the species they belong to.

Limited wars is the term used to characterize intraspecific animal fights where there is no serious injury

infliction to none of the participants. Usually, two male animals fight for territory, food, dominance, a

female reproduction partner, amongst other advantages. Intuitively, and following the natural selection

reasoning, the winner will transmit its genes to the next generation at higher frequencies than the loser,

so it would not be surprising if “natural selection would develop deathly weapons or fighting styles for a

‘total war’ strategy of battles between males to the death”. However, this is not what happens and the

most accepted justification is that it would possibly lead to the species extinction.

Smith and Price (1973) focus both conflicts where serious injury is possible and also where it is im-

possible, with the winner individual being the one who lasted longer. Before performing the simulations,

the authors introduce the concept of evolutionary stable strategy (ESS): “roughly, an ESS is a strategy

such that, if most of the members of a population adopt it, there is no ”mutant” strategy that would give

higher reproductive fitness”. A set of five strategies with different levels of hostility and precaution were

defined for simplification purposes, along with the assumptions necessary to determine the payoffs as-

sociated with the hostile encounters of individuals with the distinct strategies. One of the five strategies

is a “total war” strategy while the others are “limited war” strategies. The simulation results emphasized

the advantage of “limited wars” strategies when compared with the “total war” strategy, named Hawk

strategy. It is important to mention that this result is subject to changes when the assumptions made

to determine the payoffs change. Following this simplification, the authors try to infer how the model

would behave if applied to real animals, concluding that dangerous attacks are rarely used in intraspe-

cific encounters. However, the best response to an “escalated” attack is to escalate in return. To finish,
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study the conflict in contests where injury is impossible. As previously mentioned, in these situations

the winner is the individual who lasts longer, i.e., the one who endures until the opponent retreats. The

authors show that no pure strategy represents an ESS, but it is possible to find a mixed strategy which

is an ESS. As a consequence, species that have genetically polymorphic populations will be favoured,

meaning that individuals whose behavior changes from conflict to conflict are more likely to succeed.

Therefore, there can not exist populations with a stable uniform behavior.

3.3.3 Game Theory in Economics
To illustrate how game theory can be applied to Economics, a study intended to identify the conditions

under which the stakeholders in the health care market could interact in a cooperative way - bene-

fiting the collective - was chosen. Agee and Gates (2013) compare the traditionally used in the USA

fee-for-service pricing system with an alternative framework. This alternative framework suggests al-

tered pricing and cooperation incentive strategies for doctors, hospitals, and insurers. It assumes that

providers agree to manage all outpatient bills while the insurer agrees to deal with all inpatient bills, and

that insurance premiums are tied to patients’ healthy behaviors.

If doctors and hospitals act only for own profit, making pricing decisions autonomously approximate to

the Nash equilibrium, and not taking into account the consequences these decisions might have on the

other parties (insurers included), then providers will collectively increase health care prices, undermining

the value of insurance, and at the same time reduce profits (Wright, 2006).

Game Theory sets two crucial aspects that promote cooperation between providers and insurers:

the first one is the communication between entities so that each stakeholder knows what are the other

stakeholders’ interests; the second aspect relies in formalizing price contracts between interested parties

so no entity is hampered by the others’ choices of final price.

As a conclusion, Agee and Gates (2013) state that data gathered and treated during the study prove

that the alternative pricing framework - encompassing the assumptions mentioned above - would allow

providers and insurers to achieve lower administrative costs and higher profits. Additionally, patients

could obtain lower health insurance costs.

Another remarkable example of game theory application is the creation of the revolutionary system

for matching kidney donors with patients in need of a kidney transplantation (Roth, 2015). The author

is the 2012 Nobel prize for economics joint winner, for working with operational investigation models

(especially matching models). With this revolutionary system, it is easier to match biologically compat-

ible donors and receptors. As an example, imagine someone who is very sick and needing a kidney

transplantation to survive. A family member is willing to donate a kidney but they are not a biological

match. Certainly, there are more diseased people in need for a kidney transplant, and certainly more

closely related people willing to donate one. The kidney exchange system locates and matches the

couples: donate a kidney which is compatible with the stranger, while the stranger has a closely related

person willing to donate her/his biological matching kidney in exchange; the operations are performed

simultaneously to make sure no one backs out. This system illustrates an economist’s understanding of

incentives: if you can’t get someone to give an organ out of altruism, and you can’t pay him either, find
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two parties who are desperate to align their incentives.

3.4 Summary
Game Theory is widely used to study interactions between two or more entities. It is used in areas as

disparate as political science and biology, economics and philosophy, and so on and so forth. In the

health care context, there have been some efforts to develop studies applying game theory to inter-

actions between private and public stakeholders, and also modelling the physician-patient interaction.

However, there is still a lot of work to be done since it looks like we are still in an embryonic stage.

A game comprises the players, their strategies, and the payoffs each player gets from a specific

combination of strategies. The Prisoners’ Dilemma is a simple approach to an interaction in the con-

sultation context. However, when used to study a single interaction, it commonly results in conflict and

non-cooperative payoffs, which may contrast with real life situations. Repeated Prisoners’ Dilemma or

other game structures, such as the Centipede game, avoid the non-cooperative results and can resem-

ble medical interactions with patients. In general, physicians and patients cooperate in order to achieve

a common goal which will benefit them both.

There is still a long way toward developing game theory applications to health care situations but

efforts are being put into it and upgraded models will arise. Game theory provides a new picture of the

whole medical consultation scenario, specially when considering the interaction between doctors and

patients. Both agents have estimable goals and aspirations, which are interdependent. It is necessary

to find game structures where cooperation constitutes an equilibrium and investigate deeper what are

the dynamics that may lead to outcomes enhancing patients’ health and the quality of care provided.

Additionally, and due to the enormous variety of health issues, each different situation may comprise

very complex features and games should be robustly built taking that diversity into consideration.
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Chapter 4

Model

4.1 Model Description

This section describes the model, including the players, the strategies, the payoffs, and the game equi-

libria. Subsection 4.1.1 introduces the players and explains of the environment in which they interact.

The strategies for each player are presented in subsection 4.1.2, while the payoffs each player gets from

the different combinations of strategies are fully detailed in subsection 4.1.3.

4.1.1 Players
Every game theory model is built by firstly defining the players. It should be clear by now that the

players in this game are the doctor - commonly a hepatologist - and the patient. Nevertheless, the

doctor in this case can be seen as an entity representing the entire multidisciplinary team described in

section 2.2, usually incorporating surgeons, the hepatologist and the psychologist that follow the patient

more closely, and two nurses. Since no one is making decisions on their own, assuming the doctor to

represent the multidisciplinary team is considered to be reasonable. Contrasting with the joint decision

taking team, the patient decides on her/his own. It is clear that the patient’s decision can always be

influenced by family or friends, but this will not be considered separately here. Therefore, the patient is

a single decision maker.

4.1.2 Strategies
The patient has two pure strategies: Cooperation, and No Cooperation. By cooperating, the patient

follows the doctor’s advice and complies with the requirements (most importantly staying abstinent). The

patient may choose to not cooperate by drinking alcohol or stop following the doctor’s recommendations

in any other way (taking any forbidden risk behavior, missing appointments, among others).

The doctor has a larger set, containing three pure strategies: Cooperation, No Cooperation T (tem-

porary), and No Cooperation D (definitive). The doctor’s cooperation can be seen as a reward to the

patient, keeping the patient as a candidate in the liver transplantation waiting list (or introduce the pa-

tient’s name if it was not there yet). By not cooperating, the doctor excludes the patient from that list.

However, this can be done temporarily, changing the treatment focus for keeping the patient abstinent.
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If by any reason the doctor permanently excludes the patient from the list, the game ends and the most

likely outcome for the patient is death.

4.1.3 Payoffs
Defining the payoffs is a crucial task when designing a game since they are the drivers for the actions

taken. So, payoffs must be set meticulously and should be as approximate as possible to reality, which

can sometimes represent a big challenge. As explained in subsection 3.1.2, payoffs are the numerical

representation of the players’ preferences regarding the outcomes. Usually, they are represented in

utility measures. The payoffs were defined as a generic value represented by a letter - depending on the

player they are associated to - and a number - depending on the actions taken that led to that payoff. It

is then possible to create a payoff order.

Logically, the payoffs will be assigned with the letter P for the patient, and with the letter D when they

refer to the doctor. Furthermore, the numbers assigned regarding the actions taken will be set according

to the following reasoning:

– for the doctor, 1 means cooperation, 2 means temporary non-cooperation, and 3 means definitive

non-cooperation

– for the patient, 1 means cooperation and 2 means non-cooperation

The resulting payoffs are represented in table 4.1.

Table 4.1: Payoffs for the Doctor (D) and for the Patient (P ), dependent on the actions taken by both
players.

Payoffs for Doctor (D) and Patient (P )

D11, P11 Mutual cooperation (C, C)

D21, P21 Doctor’s temporary non-cooperation and Patient’s cooperation (NCt, C)

D31, P31 Doctor’s definitive non-cooperation and Patient’s cooperation (NCd, C)

D12, P12 Doctor’s cooperation and Patient’s non-cooperation (C, NC)

D22, P22 Doctor’s temporary non-cooperation and Patient’s non-cooperation (NCt, NC)

D32, P32 Doctor’s definitive non-cooperation and Patient’s non-cooperation (NCd, NC)

The next step is to sort the payoffs by order in a substantiated way. With the help of an expert

judgment, a final payoff order was accomplished as well as the establishment of the positive and negative

payoffs. This expert is an experienced doctor, working in a reference hospital in Lisbon in the area of

liver transplantation. Starting with the doctor’s payoffs, one gets D11 > D22 > D32 > D21 > D31 > D12.
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From these, the only payoff considered positive with certainty is D11. The negative payoffs are D21, D31,

and D12. Lastly, D22 and D32 are considered to be possibly negative or positive.

The explanation is as follows:

– D11 > D22: every doctor would rather have the patient cooperating, and cooperate according to

that, than having to exclude (even if temporarily) a non cooperative patient;

– D22 > D32: assuming one of the doctor’s interests is the patient’s well-being, then it is preferred

to exclude a patient temporarily, targeting the treatment to the patient’s abstinence, than to do it

definitely – almost certainly leading to the patient’s death;

– D32 > D21: any doctor would prefer to exclude a patient who did not cooperate than a patient who

did. This patient gets excluded temporarily by any external reason, for example the suspicion of a

manifestation of an absolute contraindication. Furthermore, excluding definitely a non-cooperative

patient can also be considered relieving for the doctor because it will save her/him time, that can

be dedicated to cooperative patients;

– D21 > D31: it represents the same situation as in the previous case, but here it is stated that

the doctor would rather exclude temporarily a cooperating patient than to do it definitely, which is

considered to be obvious if the objective is the patient’s well-being;

– D31 > D12: lastly, the worst payoff for the doctor (and for the society) comes from cooperating

with a non cooperative patient. If the non cooperative patient gets away and ends up receiving the

transplant, she/he might keep drinking alcohol and waste a liver graft that could have been given

to a cooperative patient who had a better prognostic.

For the patient, the payoffs order is P11 > P12 > P21 > P22 > P31 > P32. The payoffs P11, P12, and

P21 are considered to be positive, while P22, P31, and P32 are regarded as negative payoffs.

The reasoning for this ordering is the following:

– P11 > P12: the patient is better off cooperating than not cooperating, even if continuity on the list is

not at stake (which is the case here). Cooperation by not drinking is beneficial for patient’s health,

while drinking or not cooperating may be harmful for the patient’s health;

– P12 > P21: the patient is always better off staying on the list than being excluded (even if only

temporarily);

– P21 > P22: in case of being excluded from the list, it is better for the patient to cooperate and stay

alcohol abstinent. This will benefit her/his health and might reduce the time the patient is excluded

from the list;

– P22 > P31: for the patient long-term well-being, being excluded definitely is always worse than

temporarily, since it will lead to death sooner or later;

– P31 > P32: although both situations are bad, the patient will always benefit from being alcohol

abstinent, instead of damaging her/his health even more by drinking.
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Similarly to what is done in Djulbegovic et al. (2015), the payoffs can be expressed in terms of utilities.

For that, three utilities per player are defined. The letter U concerns the patient’s utilities and the letter

V refers to the doctor’s utilities. U1 and V1 denote the utility the patient and the doctor respectively earn

if the patient is kept on the list, eventually ending up with the transplantation being performed. U2 and

V2 are utilities referring to the case when the patient is temporarily removed from the list. Finally, U3 and

V3 pertain to the case when the patient is definitely excluded from the list. Naturally, U1 > U2 > U3 and

V1 > V2 > V3.

As in Djulbegovic et al. (2015), it was assumed that the both the patient and the doctor may feel

regret (R) or frustration (F ) in some final results. Additionally, the doctor may also feel guilt (G). These

emotions are further explained below. The emotions obtained in temporary decisions are distinguishable

from the ones arising after definitive decisions using the superscript t or d, respectively. Emotions appear

as fractions of the difference between the obtained utility and the highest utility (U1 or V1). The last

elements of the payoff expressions are the benefit (B) a patient gets for staying alcohol abstinent and

the harm (H) resulting from drinking alcohol.

Lastly, there are two additional parameters, β and γ. β represents how much the doctor values

saving a liver graft to a patient with a better prognostic, instead of giving it to a patient who might

have a worse prognostic. Thus, this value will be added to the doctor’s payoffs correspondent to the

definitive non-cooperation. The value of γ represents the instant pleasure the patient gets by drinking

(or not cooperating). Therefore, γ is added to the patient’s payoffs representing her/his non-cooperation.

Different doctors may be associated with different values of β and different patients may be assigned

with different values of γ. The payoffs are depicted in table 4.2.

Since mutual cooperation results in the best payoffs, it is associated with the best utilities both for the

doctor and the patient. The patient receives the additional health benefit for cooperating. If the patient

does not cooperate but the doctor does, the patient gets the utility of staying in the list (U1) but with a

subtracting element that represents the harm that drinking carries. However, this negative element may

be offset by the instantaneous pleasure of drinking the patient gets.

As previously mentioned, a player may feel regret or frustration. The former is associated with the

cases where the player did not choose the strategy that would be a best response to the other player’s

strategy, for that situation. This can be seen as feeling regret for causing the other player to loose

utility. As an example, in D21 the doctor regrets choosing No Cooperation T because the patient chose

Cooperation, and it would have been better for both players if the doctor had chosen Cooperation.

Note that the doctor’s non-cooperation does not necessarily mean the doctor made a mistake, there

might have been suspicions of a contraindication or any other cause. The same reasoning applies for

the explanation of the regret felt by the patient. In turn, frustration is defined to represent a player’s

disappointment for not being able to persuade the other player to cooperate and act as it would be

best for herself/himself. To illustrate this, payoff D32 is analyzed. Since the doctor definitely excludes

the patient from the list, the utility she/he gets is V3. Although the doctor probably took this decision

to punish the patient’s non-cooperation, there will still be a feeling of frustration for not being able to

persuade the patient to cooperate. This is represented by F dD (the d refers to a definitive decision),
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Table 4.2: Representation of the payoffs in terms of utilities, for the doctor and for the patient.

Payoffs represented in terms of utilities

Doctor

D11 = E[C,C] = V1

D12 = E[C,NC] = V1 −G · (V1 − V2)

D21 = E[NCt, C] = V2 −RtD · (V1 − V2)

D22 = E[NCt, NC] = V2 − F tD · (V1 − V2)

D31 = E[NCd, C] = V3 −RdD · (V1 − V3) + β

D32 = E[NCd, NC] = V3 − F dD · (V1 − V3) + β

Patient

P11 = E[C,C] = U1 +B

P12 = E[C,NC] = U1 −H + γ

P21 = E[NCt, C] = U2 − F tP · (U1 − U2) +B

P22 = E[NCt, NC] = U2 −RtP · (U1 − U2)−H + γ

P31 = E[NCd, C] = U3 − F dP · (U1 − U3) +B

P32 = E[NCd, NC] = U3 −RdP · (U1 − U3)−H + γ

multiplied by the loss in utility relative to the highest one, V1 − V3. Apart from the frustration, the doctor

receives an additional utility for preserving a liver graft and saving it to a patient with a better prognostic,

represented by β.

To finish, it is important to mention a payoff that is an exception, specifically the worst payoff for the

doctor: D12. This payoff refers to the case when the doctor cooperates with the non-cooperative patient,

which can end up with this patient receiving liver transplant. If a non-cooperative patient is rewarded

with a liver transplantation there is a loss for society because the liver graft could have been allocated to

a patient with a better prognostic, and the doctor feels guilty (G) about it because she/he contributed for

that loss. G is assumed to have the highest value of all the emotions and is only attributable to the doctor.

Regarding the other two emotions, and analogously for both players, regret (where Rd > Rt) is assumed

to be greater than frustration (where F d > F t). This is considered to be a reasonable assumption since

regret refers to an action taken by the player that affected negatively the other player. It is acceptable

that one feels worse when the other is impaired by an action taken be her/him, than when she/he is not

able to persuade the other to act according to her/his own interests. Naturally, definitive emotions are

stronger than the temporary ones. Additionally, it seems reasonable to admit that Rd − F d > Rt − F t,

that is, when the decision is definite the difference between regret and frustration is larger than when

the decision is temporary. This requisite was validated by an expert. Concerning the benefits or harms

that alcohol abstinence or consumption may bring to patient’s health, with the judgment of an expert
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it was set that the harm of drinking alcohol is greater in absolute value than the benefit that alcohol

abstinence represents. In sum, |H| > |B|. This presumption is based on the fact that if the patient

keeps drinking alcohol she/he will likely die, while staying alcohol abstinent is unlikely to lead to absolute

healing or make the transplantation unnecessary. It may happen but only in a limited number of cases,

while alcohol consumption at this stage is almost always fatal. In addition, H and B are lower than the

values of the utilities U and V .

4.2 Model Equilibria
This section computes the different equilibria this game might encompass. Subsection 4.2.1 solves

the game in strategic form and finds the Nash equilibria in pure strategies. In subsection 4.2.2 the

equilibrium in mixed strategies is computed. Lastly, subsection 4.2.3 shows the game in extensive form,

and finds the equilibria for different layouts of the game.

4.2.1 Strategic Form equilibria in Pure strategies
The liver transplantation process involves repeated interactions through time. Actually, it even is some-

times an infinite process. A single interaction of the repeated game is considered here. In the normal

form game both players act simultaneously or, in other words, players act without observing the other’s

choice. This means that the doctor chooses to maintain or exclude the patient from the list without

knowing if she/he cooperated or not. Likewise, the patient decides to cooperate or not without knowing if

she/he is maintained or excluded from the list. Sequential games (see ahead) allow for more information

when deciding.

The simultaneous game can be represented by the matrix depicted in table 4.3.

Table 4.3: Representation of the simultaneous game in normal form.

Normal Form
Doctor

Cooperation No Cooperation T No Cooperation D

Patient
Cooperation P11, D11 P21, D21 P31, D31

No Cooperation P12, D12 P22, D22 P32, D32

Initially, the values of γ and β are considered to be low enough so that the order of preferred strate-

gies remains unchanged (and equal to the previously mentioned one) for both players. The resulting

boundary conditions for the parameters are shown in appendix B. Later on, γ and β will be allowed to

fluctuate and the changes to the results are analyzed.

Remember that the ordered payoffs are:

– doctor: D11 > D22 > D32 > D21 > D31 > D12;

– patient: P11 > P12 > P21 > P22 > P31 > P32.
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Scanning the doctor’s payoffs order one notices that D11 > D21 > D31 and that D22 > D31 >

D12, showing that there are always preferred actions to the definitive non-cooperation for the different

situations - patient’s cooperation and non-cooperation. Therefore, the doctor’s strategy of permanently

excluding the patient from the list is dominated by others, and this strategy will never be rationally chosen.

Now going through the patient’s payoffs order one has P11 > P12, P21 > P22, and P31 > P32, so the

patient always prefers to act cooperatively no matter what the doctor chooses to do. Hence, Cooperation

is a dominant strategy. This may be considered a reasonable result if the health benefits of staying

abstinent are substantial. Given that the patient always cooperates, the doctor will also cooperate, and

(C, C) is the equilibrium.

The subsequent step is to determine if there are any Nash equilibria in pure strategies. In order to

do so, it is necessary to find two strategies that are best replies to each other. In other words, if one

player chooses one strategy, the other player will choose the strategy that carries the best payoff taking

into account the first player’s choice. To check if this strategy pair represents a Nash equilibrium, one

has to reverse the order and check if the strategy chosen by the first player is also a best response to

the strategy chosen by the second one.

The patient’s best reply to a cooperative action from the doctor is to also cooperate (because

P11 > P12). Reversing the situation, the doctor’s best reply to a cooperative action from the patient

is also to cooperate (because D11 > D21). Therefore, the strategy pair (C, C) constitutes a Nash equi-

librium. Checking now for a non-cooperative move from the doctor, the patient will rationally choose

to act cooperatively (because P21 > P22 and P31 > P32). Inversely, the doctor’s best reply to a coop-

erative move from the patient is also a cooperative move (because D11 > D21 > D31). If the patient

chooses the strategy No Cooperation, the doctor will reply with a non-cooperative decision (because

D22 > D32 > D12). Thus, there are no more Nash equilibrium strategy pairs.

As a conclusion, (C, C) is the only Nash equilibrium. Although it would be great for society if everyone

always cooperated, this does not correspond to what happens in real life. The inclusion of sufficiently

high β and γ may change this result. Let us define the boundary conditions for β and γ.

Starting with the patient’s parameter γ, one has to check the necessary conditions to make the

patient not cooperate for the different choices the doctor may do. In other words, and since the patient

was considered to be always cooperative - P11 > P12, P21 > P22, and P31 > P32 - it is essential to find

the intervals of γ that change this payoff order. The resulting conditions are shown in table 4.4. It is easy

to see that γNCd
> γNCt

> γC . The extended demonstration of these results is addressed in appendix

B.

The same reasoning can be applied for the doctor’s payoffs, yet with some disparities. The parameter

β is added to payoffs D31 and D32, since they are the ones referring to a definitive exclusion of the

patient from the waiting list. This value represents the benefit the doctor gets from saving a liver graft for

a patient with a better prognostic, which is not guaranteed to happen if the doctor excludes the patient

only temporarily. Once again, it is necessary to find the value intervals of β that will change the doctor’s

payoff order. In response to a cooperative action from the patient, the doctor prefers to cooperate, then

to exclude temporarily, and lastly to exclude definitively (D11 > D21 > D31). If the doctor is dealing with
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Table 4.4: Boundary conditions for γ

Conditions for the payoff order variation as a function of γ

P12 > P11 ⇔ γ > B +H = γC

P22 > P21 ⇔ γ > B +H + (U1 − U2) · (RtP − F tP ) = γNCt

P32 > P31 ⇔ γ > B +H + (U1 − U3) · (RdP − F dP ) = γNCd

a non-cooperative patient, the most preferred strategy will be to not cooperate temporarily, followed by

a definitive non-cooperation, and lastly a cooperative action (D22 > D32 > D12). All in all, one has to

find the values of β that will lead to D31 > D21, D31 > D11, and D32 > D22. Note that D12 is not taken

into account here because it is the least preferred payoff, and since it does not have β added it will stay

as the worst. Additionally, it is important to remark that even if D31 > D21 the doctor will still rationally

choose to cooperate, which will have implications in the results. The resulting conditions for β are shown

in table 4.5.

Table 4.5: Boundary conditions for β

Conditions for the payoff order variation as a function of β

D32 > D22 ⇔ β > (V2 − V3) + F dD · (V1 − V3)− F tD · (V1 − V2) = βNC

D31 > D21 ⇔ β > (V2 − V3) +RdD · (V1 − V3)−RtD · (V1 − V2) = βC

D31 > D11 ⇔ β > (V1 − V3) +RdD · (V1 − V3) = βCC

The extended demonstration of these results and the proof that βCC > βC > βNC are shown in detail

in appendix B.

After having set the intervals in which β and γ may vary, all the possible combinations were checked

to see if there were any Nash equilibria for them. The results are presented in table 4.6.

A more detailed explanation of the findings is as follows:

– γ < γC < γNCt < γNCd
: as previously mentioned, with this values of γ the patient would have no

incentives to not cooperate. This is noticeable since the player chooses to cooperate in all Nash

equilibria obtained with this values of γ. Evaluating the doctor’s choices, one observes that there

are also no incentives to not cooperate, except for when β > βCC . So, (C, C) is a Nash equilibrium.

This is a reasonable deduction since the doctor prefers to cooperate with a cooperative patient.

The exception arises when D31 > D11 due to the high value of β. This is still an acceptable result

because sometimes doctors are obliged to exclude patients, not due to their non-cooperation but

due to the appearance of absolute contraindication, for example the development of hepatocellular
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Table 4.6: Nash Equilibria obtained from variation of parameters γ and β.

Nash Equilibria as a function of β and γ

γ < γC < γNCt
< γNCd

β < βNC < βC < βCC P ⇒ C ; D ⇒ C D ⇒ C ; P ⇒ C

βNC < β < βC < βCC P ⇒ C ; D ⇒ C D ⇒ C ; P ⇒ C

βNC < βC < β < βCC P ⇒ C ; D ⇒ C D ⇒ C ; P ⇒ C

βNC < βC < βCC < β P ⇒ C ; D ⇒ NCd D ⇒ NCd ; P ⇒ C

γC < γ < γNCt < γNCd

β < βNC < βC < βCC No Equilibrium No Equilibrium

βNC < β < βC < βCC No Equilibrium No Equilibrium

βNC < βC < β < βCC No Equilibrium No Equilibrium

βNC < βC < βCC < β P ⇒ C ; D ⇒ NCd D ⇒ NCd ; P ⇒ C

γC < γNCt
< γ < γNCd

β < βNC < βC < βCC P ⇒ NC ; D ⇒ NCt D ⇒ NCt ; P ⇒ NC

βNC < β < βC < βCC No Equilibrium No Equilibrium

βNC < βC < β < βCC No Equilibrium No Equilibrium

βNC < βC < βCC < β P ⇒ C ; D ⇒ NCd D ⇒ NCd ; P ⇒ C

γC < γNCt
< γNCd

< γ

β < βNC < βC < βCC P ⇒ NC ; D ⇒ NCt D ⇒ NCt ; P ⇒ NC

βNC < β < βC < βCC P ⇒ NC ; D ⇒ NCd D ⇒ NCd ; P ⇒ NC

βNC < βC < β < βCC P ⇒ NC ; D ⇒ NCd D ⇒ NCd ; P ⇒ NC

βNC < βC < βCC < β P ⇒ NC ; D ⇒ NCd D ⇒ NCd ; P ⇒ NC

carcinoma. If this is the case, then it is expectable that the value the doctor gets by not letting

the patient receive the transplant will rise steeply. The doctor will not cooperate with the patient

no matter what, but the patient will cooperate even if the doctor does not cooperate because the

pleasure experienced by drinking alcohol is not sufficiently high. Additionally, the patient knows

that staying alcohol abstinent is beneficial for her/his health. Therefore, (NCd, C) constitutes a

Nash equilibrium.

– γC < γ < γNCt
< γNCd

: as expected, now the patient has some incentives to choose No

Cooperation. If a patient experiences more pleasure by drinking, he is tempted to not cooperate

if it is known that the doctor will not exclude her/him from the list. This is why the previous Nash

equilibrium (C, C) does not exist anymore. The only existent equilibrium for this conditions is the

same as the previous one for the case where β > βCC , (NCd, C).
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– γC < γNCt
< γ < γNCd

: now γ is higher than γNCt
, meaning that the patient will prefer to

not cooperate if it is known that the doctor will exclude her/him temporarily, whereas the doctor

will choose temporary non-cooperation if the patient does not cooperate if β < βNC (because

D22 > D32). This way, and if these parameter conditions are verified, (NCt, NC) is a Nash

equilibrium. Furthermore, analogously to the previous cases, if β > βCC , the Nash equilibrium

(NCd, C) is once again evidenced, for the same reasons as before.

– γC < γNCt
< γNCd

< γ : patients associated with such a high γ will never cooperate because

alcohol provides them a high level of pleasure. For low values of β, the doctor will still prefer to

exclude the patient temporarily. So, (NCt, NC) is a Nash equilibrium, equivalently to the previous

case. For doctors associated with higher β (high enough so that D32 > D22), the preferred action

to respond to the patient’s non-cooperation is No Cooperation D. As the patient never cooperates,

No Cooperation will also be the best response to the doctor’s definitve non-cooperation. That is

why (NCd, C) constitutes a Nash equilibrium for the last three ranges of values for β.

A simpler game would be obtained by restraining β to its lower values and vary γ to verify how the

equilibria change along the different values of pleasure patients feel when drinking. This would allow to

make the problem computationally more tractable. Additionally, it seems reasonable to exclude very high

β other than very high γ, since it is very common to have patients struggling to keep the abstention. If

this is done, then the doctor has a dominated strategy: No Cooperation D. Therefore, the game matrix

can be reduced into a 2× 2 matrix. The new matrix representing the game is presented in table 4.7.

Table 4.7: Representation of the abbreviated simultaneous game in normal form. The dominated strat-
egy for β < βNC was eliminated.

Normal Form Short
Doctor

Cooperation No Cooperation T

Patient
Cooperation P11, D11 P21, D21

No Cooperation P12, D12 P22, D22

The results found meet the expectations, since lower values of γ imply that the patient is more prone

to cooperate, and so is the doctor. For higher values of γ, it is exactly the opposite. However, there is

an interval for γ where there is no Nash equilibrium: γC < γ < γNCt < γNCd
. This happens because,

for such γ, P12 > P11 and P21 > P22, meaning that the patient feels enough pleasure when drinking

to not cooperate if the doctor does so, trying to deceive her/him. Yet, the patient cooperates if the

doctor decides to temporarily exclude her/him. The patient knows that her/his health is at steak, and it is

important to be reintegrated into the waiting list, thus it is better to cooperate in case of being excluded.

This temporary exclusion can then be seen as a warning, to which the patient responds cooperatively

(for γ < γNCt
), and non-cooperatively (for γNCt

< γ). The Nash equilibria for each γ is presented in

table 4.8.
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Table 4.8: Nash Equilibria (or absence of it) obtained from variation of parameter γ having β < βNC .

Nash Equilibria (or absence of it) as a function of γ

γ < γC < γNCt
< γNCd

P ⇒ C ; D ⇒ C D ⇒ C ; P ⇒ C (C, C)

γC < γ < γNCt < γNCd
P ⇒ C ; D ⇒ C D ⇒ C ; P ⇒ NC ——

γC < γNCt
< γ < γNCd

P ⇒ NC ; D ⇒ NCt D ⇒ NCt ; P ⇒ NC (NCt, NC)

γC < γNCt
< γNCd

< γ P ⇒ NC ; D ⇒ NCt D ⇒ NCt ; P ⇒ NC (NCt, NC)

4.2.2 Strategic Form equilibria in Mixed strategies

Let us now determine the conditions for the patient to be indifferent regardless what the doctor does,

and the conditions for the doctor to be indifferent regardless what the patient does. Being indifferent

means that one player will receive the same expected payoff under any chosen action, no matter how

the other player acts.

Starting with the doctor, considering low values for β (β < βNC) and respecting the payoff order

obtained with the judgment of our expert, we are left with a 2 × 2 matrix as in table 4.7. The expected

payoff for the doctor when choosing No Cooperation D is inferior to the expected payoffs for the other

two strategies under the probability p that leads to ED[C] = ED[NCt]. Thus the strategyNo Cooperation

D is dominated. This strategy will never be chosen and can be eliminated. The complete validation is

computed in appendix C.

Assuming the patient cooperates p percent of the time and acts non-cooperatively (1 − p) per cent

of the time, one has to check the conditions for the doctor’s indifference between Cooperation and No

Cooperation T . This requirement is expressed by equation 4.1, where ED refers to the expected value

for the doctor for a chosen strategy.

ED[Cooperation] = ED[NoCooperationT ] (4.1)

Explicitly writing this equation it is possible to obtain the value of p that leads to the doctor’s indiffer-

ence.

p ·D11 + (1− p) ·D12 = p ·D21 + (1− p) ·D22

pV1 + (1− p)[V1 −G · (V1 − V2)] = p[V2 −RtD · (V1 − V2)] + (1− p)[V2 − F tD · (V1 − V2)]

p =
G− F tD − 1

G+RtD − F tD
(4.2)

In conclusion, the doctor will be indifferent between playing Cooperation or No Cooperation T if the

patient plays Cooperation in p percent of the time, and No Cooperation the rest of the time (i.e., 1 − p

percent of the time), with p = G−F t
D−1

G+Rt
D−F t

D
.

Doing the same for the patient, if the doctor chooses Cooperation q per cent of the time and No
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Cooperation T (1 − q) per cent of the time, the patient’s indifference is obtained when the expected

values for the patient (EP ) of both strategies are equal, i.e., if equation 4.3 is verified.

EP [Cooperation] = EP [NoCooperation] (4.3)

The value of q is then obtained by solving this equation.

q · P11 + (1− q) · P21 = q · P12 + (1− q) · P22

q · (U1 +B) + (1− q) · [U2 − F tP · (U1 − U2) +B] =

= q · (U1 −H + γ) + (1− q) · [U2 −RtP · (U1 − U2)−H + γ]

q = 1− γ − (B +H)

(RtP − F tP ) · (U1 − U2)
(4.4)

Obviously, the probabilities p and q must respect 0 < p < 1 and 0 < q < 1. The extended proof

of both cases is presented in appendix C, where some conditions derived from the payoffs’ order will

have influence on these two values. Nevertheless, a brief display of proof and remarks on the resulting

conclusions is made now.

For p =
G−F t

D−1
G+Rt

D−F t
D

to be positive, both the numerator and denominator signs must match. From

D31 > D12 one gets that G >
(V1−V3)·(1+Rd

D)−β
V1−V2

, and when the value of β is replaced by its upper bound

(for the case when β is such that the payoffs order given by the expert is respected), then one obtains

G > 1 + F tD. This means that the numerator is positive, so it is mandatory that the denominator has the

same sign. Since G > RtD > F tD, it is a trivial task to conclude that G + RtD − F tD > 0. Thereby, it is

now proved that p > 0. Additionally, it is now also pretty obvious that G−F tD − 1 < G+RtD −F tD, which

allows one to conclude that p < 1. Therefore, it has been proven that 0 < p < 1.

Equivalently, it is necessary that q = 1− γ−(B+H)
(Rt

P−F t
P )·(U1−U2)

is positive and less than 1 for the existence

of an equilibrium in mixed strategies. For q > 0, one must check that B+H−γ > −(RtP −F tP ) ·(U1−U2).

This implication is easily confirmed with the fact that B +H > γ arising from P11 > P12. Consequently,

B +H − γ is a positive value, and naturally higher than the negative value of −(RtP − F tP ) · (U1 − U2).

The problem appears when checking the conditions for q < 1. Solving this inequality for γ leads to

γ > B +H, which is exactly the opposing condition for the previous requirement. Therefore, for values

of γ such that γ < B+H there is no equilibrium in mixed strategies. However, γ is not fixed and it varies

from patient to patient. If γ is considered to be higher than B +H, then q < 1 is verified and one needs

to check for q > 0. Solving this inequality for γ one obtains γ < B +H + (RtP − F tP ) · (U1 − U2), which

is higher than just B + H (actually it corresponds to γNCt ). In conclusion, the necessary condition for

0 < q < 1 to be verified, and consequently for the existence of equilibrium in mixed strategies, is that

γC < γ < γNCt
< γNCd

. That is, for very low values of γ the patient always prefers to cooperate, so

does not randomize between cooperating and not cooperating. For high values, she/he always does not

cooperate. Only for intermediate γ does the patient randomize between the two strategies.

It is interesting to see which of the two players is more cooperative under the mixed strategies equi-

librium. This is done by comparing the values of p and q. The extensive computation of this comparison

is done in appendix C, and here only the results are presented. It was verified that the relation be-
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tween these two probabilities is dependent on the value of γ, which, as already seen, is bounded by

γC = B +H < γ < B +H + (RtP − F tP ) · (U1 − U2) = γNCt . The results are:

– If γC < γ <
(Rt

D+1)·(Rt
P−F t

P )·(U1−U2)
G−F t

D+Rt
D

+ B +H, then q > p and the doctor will cooperate with more

probability than the patient;

– If (Rt
D+1)·(Rt

P−F t
P )·(U1−U2)

G−F t
D+Rt

D
+B+H < γ < γNCt

, then p > q and the patient will cooperate with more

probability than the doctor.

In short, for lower values of γ the doctor cooperates with higher probability, and for higher values

of γ the patient cooperates with higher probability. Though this result may seem counterintuitive as a

patient associated with higher γ is more prone to not cooperate, one is dealing with an equilibrium in

mixed strategies, so the players must be indifferent between choosing one of their strategies. For higher

values of γ, the patient has to cooperate with higher probabilities to maintain the doctor’s indifference of

choosing between Cooperation and No Cooperation T . Otherwise, the doctor will not be indifferent any-

more and will tend to adopt the non-cooperative strategy with higher probability (because q decreases

with the increase of γ). It is also possible to assess how the other parameters contribute to determine

which player cooperates with higher probabilities. This is done in the comparative statics analysis below.

Let us now analyze how the probabilities q and p are influenced by the other variables - a comparative

statics analysis. The resulting partial derivatives for both q and p are presented in table 4.9.

Table 4.9: Comparative statics for q and p.

Partial Derivatives of q and p

q = 1− γ−(B+H)
(Rt

P−F t
P )·(U1−U2)

∂q
∂B = 1

(Rt
P−F t

P )·(U1−U2)
> 0

∂q
∂H = 1

(Rt
P−F t

P )·(U1−U2)
> 0

∂q
∂γ = − 1

(Rt
P−F t

P )·(U1−U2)
< 0

∂q
∂(Rt

P−F t
P )

= γ−(B+H)
(Rt

P−F t
P )2·(U1−U2)

> 0

∂q
∂(U1−U2)

= γ−(B+H)
(Rt

P−F t
P )·(U1−U2)2

> 0

p =
G−F t

D−1
G−F t

D+Rt
D

∂p
∂G =

F t
D−G+1

(G−F t
D+Rt

D)2
+ 1

G−F t
D+Rt

D
> 0

∂p
∂Rt

D
=

F t
D−G+1

(G−F t
D+Rt

D)2
< 0

∂p
∂F t

D
=

G−F t
D−1

(G−F t
D+Rt

D)2
− 1

G−F t
D+Rt

D
< 0

Starting this analysis for the doctor, one has to figure out how q will fluctuate when a variable changes.

Additionally, checking how some partial derivatives depend on the other variables may possibly lead to

interesting results. The conclusions reached are the following:
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– ∂q
∂B > 0: it may seem counterintuitive but, as γC < γ < γNCt

, it results that P12 > P11, and the

patient tends to not cooperate when the doctor does so. Since this analysis refers to the equilibrium

in mixed strategies, both players must be indifferent between their strategies. So, if B increases

the patient will have more incentives to cooperate because the benefit for her/his health will be

larger. This will lead to a patient’s preference for cooperating, unbalancing the indifference. To

counteract this unbalance, the doctor has to cooperate with higher probability (higher q), so the

patient feels safer when choosing No Cooperation, and keeping the patient’s indifference. It is

noticeable that the higher the difference between RtP and F tP or between U1 and U2, the weaker is

the impact of the benefit for patient’s health of staying alcohol abstinent on the doctor’s probability

of cooperating. The patient will attach higher importance to emotions or to the utility of staying in

the list, and health benefit will not be seen as such a powerful incentive to cooperation.

– ∂q
∂H > 0: in this case it is possible to address the same reasoning as the one used for the previous

situation. H represents the harm for the patient’s health that not cooperating carries. If H is

higher, the patient will again have more incentives to cooperate, and the doctor cooperates with

higher probability, increasing the patient’s temptation to not cooperate. This way, the patient’s

indifference is maintained. Regarding the dependence of this partial derivative on other variables,

it follows again the exact same reasoning. An increase in (RtP −F tP ) or in (U1−U2) will reduce the

significance that the patient gives to the harm associated with drinking alcohol, thus having less

effect on her/his choices, and consequently on the doctor’s.

– ∂q
∂γ < 0: patients associated with higher values of γ feel more pleasure when not cooperating.

Thus, an increase in γ works as an incentive for the patient to not cooperate. It is important to

mention again that γ ranges between γC and γNCt (otherwise there is no equilibrium in mixed

strategies). For this range, the patient has P12 > P11 but P21 > P22, i.e., the patient prefers

non-cooperation if the doctor cooperates but will act cooperatively if the doctor chooses to not

cooperate. Employing the same rationale as before, the doctor will have to counteract the new

patient’s unbalance. If the patient has now incentives to choose No Cooperation, the doctor will

have to choose No Cooperation T with higher probability, encouraging the patient to cooperate.

This result is in perfect accordance with reality, since a doctor will not want to cooperate with

patients that are more prone to not cooperate. Similarly to the previous cases, this partial derivative

depends on (RtP −F tP ) and on (U1−U2). The lower values these differences assume, the more the

patient will be moved by her/his pleasure on drinking, thus deterring the doctor from cooperating if

this pleasure is high.

– ∂q
∂(Rt

P−F t
P )
> 0: RtP is assigned to the patient’s payoffs associated with non-cooperative strategies,

with a negative value. In turn, F tP is assigned to the patient’s payoffs associated with cooperative

behaviours along with the doctor’s non-cooperation, also with a negative sign. The increase in

this difference - whether for increase in RtP , decrease in F tP , or uneven variations on both values -

will give the patient incentives to cooperate, due to the increasing regret of not cooperating or the

decreasing frustration of cooperating with a non-cooperative doctor. Analogously to the previous
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cases, the doctor will cooperate with higher probability (q increases) to reverse the incentives for

cooperation the patient gets. Since P12 > P11, the patient is tempted to not cooperate if the doctor

does so. This effect is more important for patients with higher propensity to drink (increases with

γ).

– ∂q
∂(U1−U2)

> 0: once again, the increase in this difference promotes the patient’s cooperation,

since U1 will be higher in relation to U2. The patient will be valuing more staying in the list as

this difference increases. The doctor will foster the patient’s non-cooperation by cooperating with

higher probability. Once again, this effect is more important for patients with higher propensity to

drink (increases with γ).

The same comparative statics may be performed for the probability of the patient’s cooperation, p.

The conclusions reached are the following:

– ∂p
∂G > 0: G refers to the guilt a doctor feels when she/he cooperates with a patient that deceives

her/him. An increase in this emotion of guilt will act as an incentive for the doctor’s non-cooperation,

since it is an emotion that the doctor wants to avoid. To offset this pattern, the patient will cooperate

with higher probability p. If the patient feels the doctor will easily exclude her/him from the list, this

is an incentive to cooperation.

– ∂p
∂Rt

D
< 0: the doctor feels RtD when choosing to exclude a cooperating patient. Higher levels of

regret will promote the doctor’s cooperation, hence unbalancing the equilibrium in mixed strategies.

A decrease in p means that the patient will cooperate with lower probability. This patient’s non-

cooperative trend will boost the doctor to not cooperate, maintaining her/his indifference between

the strategies.

– ∂p
∂F t

D
< 0: analogously to the previous case, an increase in the doctor’s frustration leads to a

higher propensity to the doctor’s cooperation. To compensate for that and maintain the doctor’s

indifference, the patient will tend to not cooperate and force the doctor to follow her/his footsteps

and not cooperate as well. That is why p decreases with an increase of F tD.

After analyzing the properties of the probabilities of each player acting cooperatively, it is also inter-

esting to assess the correspondent expected values for the players’ payoffs, as well as how these will be

influenced by the variables. Since the values of p and q are the ones creating the equilibrium in mixed

strategies, i.e., making the players indifferent between their two strategies (leading to equations 4.1 and

4.3), it is only necessary to analyze one of the expected values for the payoffs of one of the possible

strategies. The validation of equations 4.1 and 4.3 is computed in appendix C. The expected payoffs for

the equilibrium p and q, are given in equations 4.5 and 4.6.

ED[C]p = ED[NCt]p = ED = V 1− G · (V1 − V2) · (1 +RtD)

G− F tD +RtD
(4.5)

EP [C]q = EP [NC]q = EP = U1 +B − γ − (B +H)

RtP − F tP
· (1 +RtP ) (4.6)
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The comparative statics analysis is presented in table 4.10

Table 4.10: Comparative statics for ED and EP .

Partial Derivatives of ED and EP

ED = V1 − G·(V1−V2)
G+Rt

D−F t
D
· (1 +RtD)

∂ED

∂V1
= 1− G·(1+Rt

D)
G+Rt

D−F t
D
< 0

∂ED

∂V2
=

G·(1+Rt
D)

G+Rt
D−F t

D
> 0

∂ED

∂G = − (1+Rt
D)·(Rt

D−F t
D)·(V1−V2)

(G+Rt
D−F t

D)2
< 0

∂ED

∂F t
D

= −G·(1+Rt
D)·(V1−V2)

(G+Rt
D−F t

D)2
< 0

∂ED

∂Rt
D

= −G·(G−F t
D−1)·(V1−V2)

(G+Rt
D−F t

D)2
< 0

EP = U1 +B − γ−(B+H)
Rt

P−F t
P
· (1 + F tP )

∂EP

∂U1
= 1 > 0

∂EP

∂B =
F t

P+1
Rt

P−F t
P
+ 1 > 0

∂EP

∂H =
F t

P+1
Rt

P−F t
P
> 0

∂EP

∂γ = − F t
P+1

Rt
P−F t

P
< 0

∂EP

∂F t
P

=
(B+H−γ)·(Rt

P+1)
(Rt

P−F t
P )2

< 0

∂EP

∂Rt
P
=

(γ−(B+H))·(F t
P+1)

(Rt
P−F t

P )2
> 0

Beginning with the doctor’s expected value, one has to figure out whether the partial derivatives are

positive or negative to assess how ED fluctuates when a variable changes. Additionally, checking how

some partial derivatives depend on the other variables may lead to interesting inferences. The findings

are presented now:

– ∂ED

∂V1
< 0: it may seem unreasonable that the doctor’s expected value decreases with the increase

of her/his best possible utility, V1. However, and remembering again that this analysis is valid

only for γC < γ < γNCt
, the patient’s preferred response to the doctor’s cooperation is a non-

cooperative action (P12 > P11). In this case, the doctor’s payoff (D12) is the worst possible and that

is why the expected value for the doctor decreases with an increase in V1.

– ∂ED

∂V2
> 0: V2 contributes positively for the payoffsD21 andD22, thus an increase in V2 is expected to

increase the doctor’s expected payoff. Although V2 contributes negatively in the previous payoffs,

and additionally in D12, this is not enough to offset the positive contribution because the negative

values are multiplied by a fraction of an emotion (F tD or RtD), and are hence smaller than V2.

– ∂ED

∂G < 0: an increase in the value of the doctor’s guilt decreases the expected value of the

doctor’s payoff. This is a straightforward conclusion if one invokes the argument used in the first
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example. The preferred patient’s action to respond to a cooperative move from the doctor, is to be

uncooperative. This leads the doctor to feel guilty, and as this guilt grows the expected value for

the payoff declines.

– ∂ED

∂F t
D
< 0: the reasoning used previously can be employed here again. Frustration is felt by doctors

when they are unable to persuade the patient to cooperate. Therefore, F tD contributes negatively

for the payoff a doctor might get. If F tD increases, then the expected payoff naturally decreases.

– ∂ED

∂Rt
D
< 0: it is once again possible to extend the rationale applied in the previous case to this one.

Regret is felt by doctors when they do not cooperate with a cooperative patient, and consequently

is added to the payoff with a negative sign. If RtD increases, it is then obvious that the expected

payoff decreases.

A similar analysis is performed for the patient’s expected value. The conclusions are the following:

– ∂EP

∂U1
> 0: the expected payoff for the patient varies in direct proportion with U1. This is a natural

result since U1 represents the utility of staying in the list. The higher U1 is, the better the expected

payoff for the patient. Although U1 also contributes negatively to the patient’s payoff when she/he

is excluded, it is reduced by U2 and multiplied by a fraction of regret. Therefore, U1 contribution is

more significant in P11 and P12, and, since it is positive, an increase in U1 leads to an increase in

the expected value of the patient’s payoff.

– ∂EP

∂B > 0: the higher the benefit carried by alcohol abstinence, the more the patient cooperates.

This leads to a substantial increase in the patient’s expected payoff, enhanced as well by the

positive contribution ofB. This increase can even be reinforced if the emotionRtP decreases (since

it is associated with the non-cooperative strategies), or if F tP increases (since it is associated with

the cooperative strategies).

– ∂EP

∂H > 0: once again, the higher the harm provoked by alcohol consumption the more incentives

for cooperation the patient has. And if the patient is more cooperative, the payoff rises. Additionally,

this impact is more significant for higher values of F tD and for lower values of RtD, just like before.

– ∂EP

∂γ < 0: although γ contributes positively in two payoffs (P12 and P22), it works as an incentive for

non-cooperation. This leads to a decrease in the expected payoff for the patient. Now, the impact

of γ is influenced by the emotions RtP and F tP in the reverse order as previously. A decrease in RtP
strengthens the influence that γ has in the expected payoff, while an increase in F tP weakens it.

– ∂EP

∂F t
P
< 0: an increase in F tP leads to a decrease in the value of the payoffs correspondent to

cooperative strategies chosen by the patient. If such value decreases, the patient is less willing to

cooperate. Consequently, the patient’s expected payoff decreases.

– ∂EP

∂Rt
D
> 0: in contrast to the previous situation, an increase in this emotion will lead to an increase

in the patient’s expected payoff. This is due to the negative contribution of RtD for the payoffs

arising from the patient’s non-cooperative strategies. This will work has an incentive to the patient’s

cooperation, and eventually leads to an increase in the patient’s expected payoff.
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4.2.3 Extensive Form equilibria
Using a game in its extensive form is a more realistic approach to this problem. In such game, decisions

are not taken simultaneously and this is closer to what happens in a medical consultation. It is reason-

able to assume that the doctor is the first player to take a decision, since the doctor has the first choice of

assigning the patients to the liver transplantation waiting list, depending on their diagnostic results. The

patient then may decide to cooperate with the doctor or not. However, it is also interesting to investigate

how the game changes if the patient is the first to take a decision. This can be seen as the patient going

to the first consultation with the game already being played. If the patient has been consuming alcohol

during the time period before the consultation, then she/he has not cooperated. Otherwise, it can be

considered that the patient has cooperated.

The first step to analyze an extensive-form game is to perform backward induction, as described

earlier in subsection 3.1.2. To do so, it is necessary to assess the second player’s actions as a response

to each possible choice taken by the first player. Then, the first-mover will choose the strategy that will

benefit her/him the most.

To begin with the simpler case, both the previously mentioned games will be considered to be played

for low enough β such that the doctor’s strategy No Cooperation D is dominated, and thus being ex-

cluded from the game.

As mentioned in subsection 3.1.1, an extensive form game can be represented by a tree. Let us start

by analyzing the game where the doctor chooses first, and then the same analysis is performed for the

game in which the patient decides before the doctor. The results are then compared. The tree referring

to the first play of the game starting with the doctor’s decision is illustrated in figure 4.1.

Figure 4.1: Tree representation of the extensive form game, illustrating the interaction between the
doctor and the patient in a consultation. Each player has two strategies, and the doctor decides first.

For γ < γC , the patient will have no incentive to not cooperate, that is, P11 > P12 and P21 > P22. So,

the patient always cooperates. Given that D11 > D21, the doctor replies with cooperation. Therefore, for

γ < γC the equilibrium is the strategy pair (C, C).

When γ exceeds γC but not γNCt
, the patient has incentives to try to deceive the doctor if she/he

cooperates, which means P12 > P11. When the doctor does not cooperate, the patient still prefers to

cooperate (because P21 > P22). Hence, the doctor chooses not to cooperate, since D21 > D12.

For values of γ greater than γNCt
, the patient never cooperates (P12 > P11 and P22 > P21). Here the
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doctor chooses again to not cooperate with the patient (D22 > D12). The results are summed up in table

4.11, where the backward induction equilibrium is presented for each interval of γ.

Table 4.11: Backward induction equilibrium for each interval of γ, when the doctor decides first, and
resulting payoffs.

Backward Induction equilibria as a function of γ; D chooses first

γ Equilibrium Strategies (D, P ) Equilibrium Payoffs

γ < γC < γNCt
< γNCd

(C, C) (D11, P11)

γC < γ < γNCt
< γNCd

(NCt, C) (D21, P21)

γC < γNCt < γ < γNCd
(NCt, NC) (D22, P22)

γC < γNCt
< γNCd

< γ (NCt, NC) (D22, P22)

Let us now consider the tree referring to the first play of the game starting with the patient’s decision

(figure 4.2).

Figure 4.2: Tree representation of the extensive form game, illustrating the interaction between the
doctor and the patient in a consultation. Each player has two strategies, and the patient decides first.

For γ < γC , the patient has no incentives to deceive the doctor, thus choosing always Cooperation.

The doctor also prefers to cooperate, since D11 > D21. As a result, the equilibrium is the strategy pair

(C, C).

Increasing γ the patient starts feeling tempted to choose No Cooperation. For γC < γ < γNCt ,

the patient deceives the doctor if she/he cooperates, but acts cooperatively if the doctor decides to not

cooperate. The doctor cooperates as a reply to a cooperative move (D11 > D21) but does not cooperate

if the patient chooses No Cooperation (D22 > D12). Since P11 > P22, the patient chooses to cooperate.

Once again, the strategy pair (C, C) is the equilibrium.

It is possible to extend the previous reasoning to the remaining intervals of γ (γNCt
< γ < γNCd

and

γNCd
< γ). The patient always has to choose between cooperating and getting the payoff P11 or not
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cooperating and getting the payoff P22. As the former payoff is always higher than the latter, the patient

prefers to cooperate no matter what.

Summing up, the only subgame perfect Nash equilibrium for this game is the strategy pair (C, C),

regardless of the value of γ. The results are presented in table 4.12.

Table 4.12: Backward induction equilibrium for each interval of γ, when the patient decides first, and
resulting payoffs.

Backward Induction equilibria as a function of γ; P chooses first

γ Equilibrium Strategies (P , D) Equilibrium Payoffs

γ < γC < γNCt < γNCd
(C, C) (P11, D11)

γC < γ < γNCt
< γNCd

(C, C) (P11, D11)

γC < γNCt
< γ < γNCd

(C, C) (P11, D11)

γC < γNCt < γNCd
< γ (C, C) (P11, D11)

Changing the order of play may completely change the results, as observed in this analysis. Re-

markably, the first observable result is that if the patient decides first the game ends up being “much

more cooperative”, in a sense that the strategy pair (C, C) is the equilibrium more often. This can be

explained by the fact that if the patient decides first, she/he gets the chance to anticipate the doctor’s

choices as a reply to her/his own. The patient finds out that the doctor will act non-cooperatively as a

response to a non-cooperative move, and that the doctor will cooperate if the patient acts likewise. In

sum, the doctor will follow the patient’s decision. This allows the patient to choose the strategy that will

provide him the best payoff, and in this case it is Cooperation, resulting in P11 - which is higher than P22

that would have been obtained if the strategy pair was (NC, NCt).

The game with the doctor being the first to decide helps her/him to choose what is best for her/him

taking into account the patient’s type (defined by the value of γ). For patients associated with low values

of γ, the doctor tends to be more cooperative. But as this value rises the doctor will be cautions and tend

to not cooperate. Note that for intermediate values of γ (γC < γ < γNCt
) the best strategy for the doctor

to lead the patient to cooperate is to choose No Cooperation T . If the doctor cooperates, the patient will

prefer to not cooperate (because P12 > P11). Thus, the doctor has the first-mover advantage and can

induce the player to cooperate, except if γ > γNCt . For high values of γ, the doctor will always choose

No Cooperation T . To sum up, the doctor may induce the patient to cooperate by cooperating if γ is low,

and by not cooperating temporarily if γ is intermediate. Otherwise, the patient will never cooperate and

the doctor will act in the same way. Being able to predict the patient’s decision allows the doctor to act

in order to avoid being deceased and, if possible, induce the patient to cooperate.

Let us now allow β to take higher values so that the doctor has more incentives to not cooperate and

the strategy No Cooperation D may no longer be dominated.
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Both the games with the doctor and the patient choosing first will be analyzed again, but this time

the doctor is allowed to exclude the patient definitely from the list. It is important to stress that the game

may not even take place when the doctor decides first. Since one is dealing with a game with one play,

namely representing the first consultation after the doctor had access to the patient diagnostic tests

(process explained in section 2.2), if the doctor decides to not even include the patient in the waiting list

for liver transplantation, then there will be no game. In this case the doctor gets D30 = β as payoff and

the patient gets P30 = 0. This situation may represent cases where patients’ health status is already too

serious for considering the possibility of being transplanted. Therefore, the doctor will save a liver graft

to a patient with better prognostics, thus being rewarded with β. The game in which the doctor decides

first is shown in figure 4.3.

Figure 4.3: Tree representation of the extensive form game, illustrating the interaction between the
doctor and the patient in a consultation, with the doctor acting first.

Once again, it is necessary to apply backward induction through all the possible combinations of γ

and β. To comprehend the reasoning applied to this analysis, it is important to remember the boundary

conditions for these parameters, presented in tables 4.4 and 4.5.

If γ and β take low values (γ < γC and β < βC - note that βNC is not even taken into consideration

because the results only change when β > βC), then neither player will have an incentive to not coop-

erate and (C, C) is the only equilibrium. Players receive D11 and P11, which are the best payoffs for

them.

Maintaining γ < γC keeps the patient without incentive to not cooperate, so she/he cooperates

no matter what the doctor does. Therefore, the doctor decides by comparing the payoffs D11, D21,

and D30. As D11 > D21 for any β, the doctor does not choose the strategy No Cooperation T when

dealing with such low values of γ. Increasing β, (C, C) may no longer be the equilibrium. For the

interval βC < β < βCC , the equilibrium solution will depend on the relation between V1 and β. If

V1 > β, the doctor’s payoff for mutual cooperation will be higher than the payoff for No Cooperation D

(D11 > D30), and the strategy pair (C, C) is again a subgame perfect Nash equilibrium. Conversely, if

V1 < β (D11 < D30) the doctor will choose to exclude definitely the possibility of inserting the patient

in the list and there is no game. Taking β to its highest values (β > βCC) will make the doctor choose

immediately No Cooperation D, and again the games ends before it has even started. For the last two

cases, the players get D30 and P30 as payoffs.
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Increasing γ to γC < γ < γNCt
, the patient feels tempted to not cooperate more often. If the doctor

cooperates, the patient chooses No Cooperation and this leads to the payoff combination (D12, P12). As

this represents the worst payoff for the doctor, it is possible to conclude that she/he will never cooperate

with patients associated with such values of γ. This leaves us with the choice between No Cooperation

T and No Cooperation D. If the doctor chooses No Cooperation T , the patient chooses Cooperation

(because P21 > P22). If the doctor chooses No Cooperation D, the game does not even begin and the

doctor gets D30 = β as payoff. So, the doctor must take the decision by comparing D21 and D30. If

D21 > β, the doctor will choose No Cooperation T and induce the patient’s cooperation. But if β takes

values such that D21 < β, the doctor will choose the definitive non-cooperation strategy and there will

be no game.

Patients associated with higher γ values, high enough so that γNCt < γ < γNCd
, tend to be much

less cooperative. So it is expected that the doctor assumes a much more cautious attitude towards

the patient. Analogously to the previous situation, the branch corresponding to the doctor’s cooperation

can be disregarded for such range of γ, since the doctor never chooses to cooperate. This leads us

once again to the situation where the doctor must choose between the temporary and the definitive

exclusion of the patient from the list. This time, the patient prefers to not cooperate if the doctor chose

No Cooperation T (P22 > P21). So, if the doctor chooses No Cooperation T , she/he gets D22 as payoff.

Yet again, deciding to definitely not insert the patient in the list gets the doctor the payoff D30. In a simple

way, the doctor’s decision will now be dependent on how the values D22 and D30 = β are related. The

doctor will choose No Cooperation T whenever D22 > β, and will choose No Cooperation D otherwise.

Lastly, for even higher values of γ (γNCd
< γ), the results will be exactly the same as for the previous

case. This is due to the fact that the doctor will never choose cooperation again, and that the patient

will still choose No Cooperation as a reply to being temporarily excluded from the list. This reduces

the game to the doctor’s decision between the temporary and the definitive exclusion of the patient,

respectively carrying D22 and D30 as payoffs. The doctor’s choice is thus the temporary exclusion if

D22 > D30, or the definitive exclusion otherwise.

The results of the previous analysis are summed up in table 4.13.

To wrap it up, doctors associated with high values of β are much more prone to not cooperate with

patients and the probability that they will not give patients a chance to enter the list is high. As the doctor

has the first-mover advantage, she/he will be able to predict the patient’s decision based on their type

(value of γ). Doctors will be much more cautious with patients associated with high values of γ, thus

resulting in much less cooperation. If the doctor and the patient at stake are associated with low values of

β and γ, respectively, the game has much more chances of becoming collaborative. For γC < γ < γNCt

and β < D21, the doctor may induce the patient to cooperate by choosing the temporary non-cooperative

strategy.

When the games with two strategies for each player were compared, the conclusion reached was that

if the patient has the first-mover advantage, then the game ends up comprising much more cooperation.

To see if this results expand to the more complex game, the previous analysis is now performed with the

patient as first mover. The tree representing this game is shown in figure 4.4.
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Table 4.13: Backward induction equilibrium for each interval of γ and β, when the doctor decides first,
and resulting payoffs.

Equilibria as a function of β and γ; D chooses first

γ β Equilibrium Strategies (D, P ) Equilibrium Payoffs

γ < γC < γNCt < γNCd

β < βC (C, C) (D11, P11)

βC < β < V1 < βCC (C, C) (D11, P11)

βC < V1 < β < βCC (NCd, −) (β, 0)

βCC < β (NCd, −) (β, 0)

γC < γ < γNCt < γNCd

β < D21 (NCt, C) (D21, P21)

D21 < β (NCd, −) (β, 0)

γC < γNCt
< γ

β < D22 (NCt, NC) (D22, P22)

D22 < β (NCd, −) (β, 0)

Figure 4.4: Tree representation of the extensive form game, illustrating the interaction between the
doctor and the patient in a consultation, with the patient acting first.

Starting for γ < γC , the subgame perfect Nash equilibrium is once again (C, C), except for βCC < β.

For such values of γ, the patient has no incentives to not cooperate and always prefers to choose

Cooperation, no matter what the doctor may possibly decide to do. Therefore, the doctor’s decision is

based on the comparison between D11, D21, and D31. For β < βCC , D11 is always the best payoff the

doctor can get. This way, the strategy pair (C, C) is the equilibrium solution. The exception arises for

βCC < β, where D31 > D11 and the doctor chooses No Cooperation D even if the patient cooperated.

For such case, the subgame perfect Nash equilibrium is the strategy pair (C, NCd).

Patients associated with higher values of γ are expected to cooperate less. However, this is not what

happens when the patient has the first-mover advantage. The patient can predict how the doctor will act

in reply to a patient’s non-cooperative strategy. For γC < γ < γNCt
, P12 > P11 and the patient prefers

to not cooperate in reply to a cooperative move from the doctor. However, if the patient chooses to not
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cooperate, the doctor replies by excluding the patient from the list (temporarily or definitely, depending

on β). But if the patient cooperates, the doctor replies with cooperation for any β < βCC . As P11 > P22

and P11 > P32, i.e., the payoff for staying in the list is higher than the payoff for any kind of exclusion,

the patient chooses to cooperate and the doctor cooperates back. So, (C, C) is an equilibrium solution

for γC < γ < γNCt
and β < βCC . For βCC < β, one obtains the same subgame perfect equilibrium as

before - (C, NCd).

Using the previous reasoning in the entire range of γ, one reaches the conclusion that, as long as

β < βCC , the strategy pair (C, C) constitutes the only subgame perfect Nash equilibrium.

The difference arises when βCC < β, values for which the doctor always chooses the strategy No

Cooperation D, regardless of what the patient might have chosen before. This way, the patient’s decision

is only based on the comparison between P31 and P32. If γ < γNCd
, P31 > P32 and the patient prefers to

cooperate, resulting in the equilibrium (C, NCd). For γNCd
< γ, P31 < P32 and the patient chooses No

Cooperation. Hence, the equilibrium when both parameters take the highest values is (NC, NCd).

Summarizing the results, for β < βCC the subgame perfect Nash equilibrium is (C, C), no matter

the value of γ. For β > βCC , the equilibrium will depend γ. The patient anticipates the doctor’s non-

cooperation, but prefers to cooperate if she/he is associated with a γ such that γ < γNCd
. This leads to

the equilibrium strategy pair (C, NCd). Otherwise, if γNCd
< γ, then the patient prefers to not cooper-

ate after predicting the doctor’s definitive non-cooperation, thus resulting in the subgame perfect Nash

equilibrium (NC, NCd).

The results are presented in table 4.14.

Table 4.14: Backward induction equilibrium for each interval of γ and β, when the patient decides first,
and resulting payoffs.

Equilibria as a function of β and γ; P chooses first

γ β Equilibrium Strategies (P , D) Equilibrium Payoffs

∀ γ β < βCC (C, C) (P11, D11)

γ < γNCd βCC < β (C, NCd) (P31, D31)

γNCd
< γ βCC < β (NC, NCd) (P32, D32)

Not surprisingly, the game in which the patient takes the first-mover advantage can be considered

“more cooperative” than the game in which it is the doctor taking the first decision, in the sense that

the equilibrium (C, C) is reached for a larger parameter range. This result goes in accordance with

what was observed in the simplified game, and the explanation follows the same reasoning. Having the

first-mover advantage allows the patient to predict how the doctor will react and reply to her/his choices.

This gives the patient leverage over the doctor, and allows her/him to choose the strategy that will lead

to the best payoff possible for her/him. So, the patient reaches the conclusion that it is almost always

better to cooperate, in order to avoid the risk of being excluded. Additionally, the doctor will never get
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the chance to exclude the patient temporarily, a misfortune the patient could possibly bear. But being

definitely excluded means the patient will eventually die, sooner than later. And that is why the patient

prefers to cooperate most of the times and avoid such exclusion that would jeopardize her/his survival

chances. Furthermore, the doctor will also act much more cooperatively, except when βCC < β.

4.3 Summary
In this game, the players are the doctor and the patient. Both of them can cooperate or not. Players

have own incentives for non-cooperation, which may vary and are represented by the parameters γ

(corresponding to the patient’s pleasure on drinking alcohol) and β (corresponding to the importance the

doctor gives to saving the liver graft to another patient).

The Nash equilibria for the strategic form game depends on the values of γ and β. For lower values

of these two parameters, the equilibrium is (C, C). But as these parameters increase, the players start

having more incentives to not cooperate. If patients and doctors are associated with higher values of

γ and β, the equilibria starts being constituted by non-cooperative strategies. The equilibrium in mixed

strategies is obtained when players are indifferent regarding their options and randomize them. There

only exists an equilibrium in mixed strategies if γC < γ < γNCt
. The results show that it depends on γ

who is more cooperative. For lower γ, the doctor cooperates with higher probability. Otherwise, it is the

patient cooperating with higher probability. The probabilities with which the players cooperate are also

dependent on parameters such as B, H, G, and both players’ emotions of regret and frustration.

From the analysis of the extensive form game it was shown that a change in the first mover makes

the results contrast sharply. The game where the doctor decides first has the strategy pair (C, C) as

an equilibrium for low values of γ. As this values increases, the doctor anticipates the patient’s non-

cooperation, and becomes more cautious to avoid being deceived. But when the patient is set to be the

first mover, the only equilibrium is (C, C), for any value of γ (except for βCC < β). This happens because

the patient anticipates the doctor’s non-cooperation as a reply to her/his own non-cooperation.
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Chapter 5

Discussion

This chapter discusses the results obtained in this dissertation. The findings are presented and dis-

cussed, and some possible implications are debated. Two different game theory dynamics were applied

and different results were obtained.

The strategic form game is shown in table 4.3. The payoffs were ordered with the judgment of an

expert. Sticking to this payoff order, both the patient and the doctor would never have incentives to not

cooperate. Therefore, the game would have mutual cooperation as unique equilibrium. However, things

do not work this way in reality and usually players do have incentives to not cooperate with each other.

So, parameters γ and β represent those incentives.

Observing table 4.6, it is possible to draw some conclusions on how cooperative both players will

be depending on the type of incentive to not cooperate they are associated to. For low values of γ

(γ < γC) the patient is very cooperative, and prefers to cooperate no matter what the doctor does. For

β < βCC the doctor repays with cooperation, since the incentive for non-cooperation is not high enough.

Nevertheless, for βCC < β this incentive is high enough to make the doctor exclude the patient definitely

from the list. So, for the lowest possible values of γ there are two possible Nash equilibria: (C, C) and

(NCd, C).

Oddly, for γC < γ < γNCt the only equilibrium is the same as for the lowest values of γ and highest

values of β - (NCd, C). For values of β below βCC , there are no equilibria. This type of patient has now

some incentives to try to deceive the doctor, and will prefer to not cooperate when the doctor cooperates.

As expected, the doctor’s reservations about the patient will now make her/him more cautious, and less

cooperative. However, this type of patient is concerned with her/his health and aware of the harms

alcohol consumption carries, and would prefer to cooperate if excluded from the list (whether temporarily

or definitely). This move can be seen as a warning given by the doctor.

For γNCt
< γ in combination with low values of β (β < βNC), the Nash equilibria is the strategy pair

(NCt, NC). The patient has significant incentives for non-cooperation, but this type of doctor is more

benevolent and chooses to exclude the patient only temporary, giving her/him time to become abstinent.

Higher values of β mean harsher doctors and they will tend to choose the strategy No Cooperation D. If

γ < γNCd the patient is aware that drinking alcohol will accelerate her/his death, and despite feeling high
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levels of pleasure when drinking she/he is able to suppress the desire for alcohol and cooperate with

the doctor’s advice, even if the latter excluded her/him definitely from the list. This situation is described

by the strategy pair (NCd, C), which constitutes a Nash equilibrium for the conditions at issue. Lastly, if

γNCd
< γ the only possible Nash equilibrium is (NCd, NC) for values of β such that βNC < β.

To sum up, patients and doctors associated with lower values of γ and β, respectively, tend to be

more cooperative. But as these parameters are raised, cooperation tends to disappear and be replaced

by non-cooperation. Some benevolent doctors may not immediately exclude patients with higher levels

of pleasure obtained by drinking, but under specific conditions.

It would be interesting then to find ways to shape the parameters in order to increase cooperation

rates. However, it would not be recommendable to decrease β a lot, so that any patient would be

maintained in the list, even if she/he had not cooperated. This could possibly lead to major losses for

society. The ideal setting would be having patients associated with the lowest γ possible, but doctors

associated with intermediate β to maintain selectivity. By trying to decrease γ, one is making an attempt

to deviate patients from the temptation of drinking alcohol and alert them to the importance of following

the rules of the process strictly. Patients are very often referred to communities such as Alcoholics

Anonymous, but some may quit for several reasons. One could suggest a more incisive approach, such

as private lectures with the patients showing them shocking images of what alcohol does to health.

Additionally, it could possibly be very helpful if patients going through this extremely difficult process

could talk and listen to someone who successfully made through it. Having a cured patient, who got the

liver transplant, giving speeches could inspire others.

The analysis of the equilibrium in mixed strategies yields the probability that both players cooperate

when they are indifferent between cooperating or not. There exists equilibrium in mixed strategies only

for γC < γ < γNCt . This condition is actually pretty feasible. If γ assumes lower values, the patient

will always prefer to cooperate, and this strategy is dominant, thus being chosen with probability p = 1.

For higher values of γ the dominant strategy would be No Cooperation, and the strategy Cooperation

would be chosen with probability p = 0. Therefore, the necessary conditions for the existence of mixed

strategies is that the patient has slight incentives for non-cooperation.

For low values of γ the doctor cooperates with higher probability, and for higher values of γ it is the

patient who cooperates with higher probability.The rationale is the following: the equilibrium in mixed

strategies implies that both players are indifferent between choosing one of their possible strategies,

if the other player chooses Cooperation with a certain probability. For higher values of γ, the patient

has to cooperate with higher probabilities to maintain the doctor’s indifference of choosing between

Cooperation and No Cooperation T . Otherwise, the doctor will not be indifferent anymore and will not

randomize her/his choices. Actually, she/he tends to adopt the non-cooperative strategy with higher

probability.

A comparative statics analysis is performed to assess how the probability of cooperation (for both

players) varies as a function of the parameters. The probability, q, with which the doctor cooperates

depends on the γ associated with the patient, as well as with the values of benefit and harm, and the

differences between emotions felt or utility values. Both B and H are positively correlated with q, so an
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increase in each of the parameters (or both) works as an incentive to the patient’s cooperation. Bridging

the model with reality, this goes in accordance with what would happen. A doctor will cooperate with a

higher probability if the patient is also more cooperative. But the parameter explanation is that the doctor

will cooperate in order to foster the patient’s non-cooperation and maintain the indifference (remember

that γC < γ < γNCt
so P12 > P11). In contrast, γ is negatively correlated with the probability of the

doctor’s cooperation. Once again, it is perfectly plausible that a doctor will cooperate less with a patient

who feels higher levels of pleasure from drinking alcohol, and is naturally more prone to not cooperate.

The previously mentioned policy recommendations may also be applied to increase the patients’

perception on how the parameters B and H are influenced by alcohol abstinence or not. By increasing

B or H, patients would be more aware of the benefits from stop drinking and of the harms provoked

by alcohol consumption, and would naturally cooperate with higher probabilities. Consequently, doctors

would also end up being more cooperative.

The value of p indicates the probability with which the patient cooperates. It is dependent basically

only on the emotions felt by the doctor. As G increases, the doctor will be much more cautious to avoid

that a patient deceives him. Therefore, it will be much easier for this doctor to exclude the patient. To

assure her/his maintenance in the list, the patient has to cooperate with higher probability. The other

two emotions (RtD and F tD) have the opposite effect. An increase in each of them works as an incentive

for the doctor to cooperate and, as this patient has a slight incentive for not cooperate, it may reduce the

probability with which the patient will cooperate.

The way a doctor interacts with a patient may be a key aspect for the patient’s adherence to the

recommendations. If the doctor shows real commitment, and makes the patient feel respected and

esteemed, the patient will definitely feel worse when ending up disappointing the doctor. To avoid this,

the patient cooperates with higher probability. Talking to the patient, asking about her/his personal and

professional life is definitely a great trick to make the patient open up with the doctor. But more important

than asking these information on the first consultation, is to remember that information the next time the

patient comes. This way, the patient feels the doctor cares about her/him, and is more likely to cooperate.

The extensive form game may simulate the reality in a closer way, since decisions are not taken

without knowing what the other player is doing. For example, the patient usually knows if she/he has

been excluded from the list. If, for some reason, she/he does not known, it is unlikely that the doctor

hides this information if asked by the patient. On the other hand, the only way the doctor does not know

if the patient cooperated or not is if she/he successfully deceived the doctor, which is unlikely given that

medical exams give information about what the patient has been drinking. Two different games were

constructed: one with the doctor being the first-mover and one with the patient deciding first. This was

helpful because it is not straightforward to establish a beginning moment for this game. It may be with

the doctors’ decision of integrating or not the patient in the list after analyzing the diagnostic exams;

yet, it may also be considered to begin much before that. The patient going to the consultation has a

long track record of risky behaviours, and it may be considered that the patient was given the chance to

cooperate or not before the first consultation. The results obtained differ in a very interesting way.

Starting with the game in which the doctor decides first, it is possible to conclude that the results go
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in accordance with the ones obtained in the strategic form analysis. For low values of γ one obtains an

equilibrium arising from mutual cooperation. As γ increases, the equilibrium changes to non-cooperative

strategies. The main difference comparing to the strategic form is that the doctor is much less cooper-

ative, even when β is in its lowest possible interval. This may be explained by the fact that the doctor

can anticipate what the patient will do as a reply to her/his own decision. If the doctor can anticipate the

slightest patient’s temptation to deceive her/him, the doctor will choose to not cooperate. Note that the

doctor’s non-cooperation can also be used to induce the patient’s cooperation if the latter is associated

with values of γ in the range γC < γ < γNCt
. This can be seen as a warning sent by the doctor to the

patient.

The interesting part comes when the game changes and the patient now is the first to play. The

results show that the only equilibrium will be mutual cooperation (C, C), no matter the value of γ. In

other words, no matter how much pleasure the patient gets from drinking alcohol, she/he will always

prefer to cooperate. Once again, this can be explained by the fact that the patient can now anticipate the

doctor’s move, knowing that the doctor knows how the patient acted. And the patient knows the doctor

will not cooperate knowing the patient did not. So, the patient knows she/he will not get away with a

non-cooperative decision and will end up cooperating no matter what.

These conclusions extend to the game in which the doctor may exclude the patient definitely. How-

ever, a major difference now is that the game may not even begin if the doctor gets the chance to decide

first and excludes definitely the patient. In this situation, the doctor gets β and the patient gets a null

payoff. This β is now free to fluctuate and it will have an influence in the results. As previously, low

values of γ combined with low values of β give rise to cooperative games, and as these increase the

cooperation is replaced by non-cooperative strategies. High values of β will make the doctor choose to

not even integrate the patient in the list - if β > V1 = D11. In two circumstances, the doctor might choose

temporary non-cooperation to try to induce the patient to cooperate. For γC < γ < γNCt
this warning

results, but for higher values it will not produce the desired effect.

Lastly, and in accordance with the abbreviated game, having the patient as the first mover will also

enhance cooperation. There are only two non-cooperative equilibria. In one of these the patient cedes

to the pleasure of drinking and will not cooperate (if γNCd
< γ), whilst in the other the patient prefers to

cooperate even if the doctor excludes her/him. Note that these two situations only happen for excessively

high values of β.

The conclusion drawn from the extensive form game suggest that an empowered patient tends to

be more cooperative. It could be useful to make the patient understand that her/his behaviors are

fundamental for her/his survival. Showing the patient that it is the doctor who is deciding based on what

she/he did, and not the other way round, could lead to more cooperative patients. Instead of giving them

orders or requisites they must comply with, doctors could give them options to make.
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Chapter 6

Conclusions and Future Work

Game theory arises as a looming tool to solve an immense amount of socio-economic issues. It is widely

used to study multiperson decision problems, in the most diverse areas. However, its full potential has

not been properly explored and applied to health care problems, such as the one addressed in this

dissertation.

The liver transplantation process is very complex, especially because it involves a specific type of

patients going through an extremely delicate period in their lives. There are not two equal patients and

all of them must receive the needed care. The main problem in all this process is the unbalance between

liver grafts available for transplantation and the number of patients that are in need of one. Unfortunately,

the latter exceeds the former since liver grafts available for transplantation are a very scarce resource.

This unbalance demands that the patients considered eligible for liver transplantation are selected after

passing a very strict series of requirements. Knowing this, patients will try as hard as possible to be

considered eligible, even if that implies sometimes trying to deceive doctors. And it is in this negotiation

process between the doctor and the patient where game theory can be very useful.

The first obstacle in building such a game arose when defining the payoffs for both players. This is

a difficult task because one is trying to quantify abstract concepts. Additionally, and as emotions play a

crucial role in processes like this, they had to be taken into account. Moreover, the values for the benefit

or harm to the health of the patient are also difficult to measure precisely. This leaves us with parameters

γ and β, inserted to replicate possible incentives to non-cooperative behaviours.

It was proven that doctor’s cooperation would be more likely to happen for lower values of β. However,

low β may lead the patient to think that the doctor has no incentives to exclude her/him from the list no

matter what she/he does, and it would possibly raise the temptation for the patient’s non-cooperation.

However, a doctor associated with high values of β might also be too intransigent and eventually turn

the patient off. It would thus be advisable for the doctor to take an intermediate attitude, not too rigid but

also not too benevolent. Nevertheless, it is important that the doctor is able to adapt her/his behaviour

to the different patients she/he faces.

The parameter that can be best managed is γ. It may be possible to help the patient experience

lower values of pleasure when drinking, thus reducing the value of γ she/he is associated with. This dis-
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sertation demonstrated that patient’s cooperation (and consequently the cooperative equilibrium) occurs

for low values of γ. If it is possible to lower this parameter, then the health policy implications arising

from this dissertation advise to do so.

There are entities creating targeted programmes for alcoholic patients, such as the Alcoholics Anony-

mous. However, these programmes may not be enough to scare off patients, for numerous reasons. As

an example, talks with fellow patients who successfully went through the transplantation process could

work as an eye-opening experience, as well as having private sections with doctors where they were

shown chocking illustrations of how harmful alcohol can be. Additionally, it is not uncommon to see alco-

holic patients totally abandoned by their families, patients who lost their jobs, and so on. A crucial pillar

for this type of patients is life stability, and having their time occupied. The more occupied a patient is,

the less time she/he will spend drinking or thinking how enjoyable a drink would feel. Although it can be

hard to bring the family back together, it would not be so hard to provide patients an occupation. It was

stated that a major share of patients suffering from alcoholic liver disease that are admitted at hospitals

are aged between 20 and 60 years, being the most socioeconomically active age group (da Rocha et al.,

2017). These patients can be encouraged to stay abstinent if they are shown they are able to work, or if

they are taught a task in order to find a job. In Germany there is a law stating that “All employers (public

and private) with a workforce of 20 employees or more are required to fill 5% of their jobs with severely

disabled employees” (Kock, 2004). In fact, employers are not obliged to create jobs for disabled people

nor lay off non-disabled people in order to replace them by disabled people. But if they do not comply

with this law, they must pay a monthly fee. Following this example, one could think of a sort of courses

or workshops where alcoholic patients could learn some tasks and then be hired by some specific com-

panies. This way, patients would feel they are worth something and that they have a reason to stay away

from relapse drinking, and at the same time rebuild their lives, whether it is socially or professionally.

Another key aspect to bear in mind is that the patient tends to be much more cooperative if she/he

is given the first-mover advantage, as proven in the extensive form game analysis. This fact could serve

as basis for further health policy implications. Perhaps, the way doctors give patients the news, whether

good or bad, could change in order to make them feel more empowered. Instead of making the patient

feel she/he is deciding as a reply to the doctor’s decision, let the patient take the lead. As an example,

the patient should be aware that she/he ought to cooperate even before the first consultation, and that

this cooperation would be taken into account. In fact, it would be much more pleasant for both the

doctor and the patient if the first consultation runs in a friendly environment and if the patient could be

congratulated and stimulated to keep up with the good effort. Everyone prefers to be cheered up than

to take a reprimand in the first contact.

Although the study is completed, there are some suggestions that may lead to very important ex-

tensions in future works. These games were analyzed assuming perfect and complete information

scenarios. By this, one means that players watch the other player’s moves and both players’ type and

payoffs are common knowledge. Yet, this does not correspond to what happens in real life very often.

Medicine is a credence good, and the doctor is more (and better) informed than the patient, and she/he

might decide how much of that information to give to the patient. Additionally, the patient may possess
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information that would be useful for the doctor but decide to hide it for any reason. Thus, there may be

asymmetry of information. As an example, the doctor may not tell the patient she/he was excluded from

the list, although this is not very common. Another example could be the patient hiding that she/he drank

alcohol, which much more common. In this game, γ and β were common-knowledge for both players,

but it might not be what happens in reality.

Game theory comprises a big amount of game dynamics. Signaling games are a tool to deal with

some asymmetric information scenarios. The doctor may send a signal to the patient about his severity

type (β). Or, in other hand, the patient may send a signal to the doctor to show her/his type (γ, namely).

An example of a signal sent by the patient could be showing awareness for the problem she/he pos-

sesses and autonomously joining communities like the Alcoholics Anonymous. In principle, the doctor

would possess a higher amount of information than the patient, and could play with it. Additionally, and

as it happens commonly in real life negotiations, threats and promises could enrich the game and lead

to more fruitful conclusions. Using repeated games can also enrich conclusions. In fact, infinitely re-

peated games can be applied in situations like the liver transplantation process once it is impossible to

stipulate the end of the game. Actually, if one considers the post-transplantation surveillance patients

are submitted to, the process can be considered to be infinite since it only ends when the patient dies.

This study could be used as a ground for deeper and more complex studies applying game theory

to health care issues. It is important to strike problems in processes such as the liver transplantation

for alcoholic liver diseased patients, since problems like these are harmful for the society and end up

creating large expenses for the governments. But ALD is not the only disease representing a burden

for governments and society, that involves negotiation between the doctor and the patient. Obesity, for

instance, is also a disease for which the treatment process could also be modeled using game theory.

It is important that tools like game theory start being employed more frequently to try to solve such

issues. And even if it is not possible to reach a one-fits-all solution, at least it should be possible to

deliver more efficient and complete decision aid tools to doctors and other responsible entities. Doctors

and practitioners must take decisions dealing with human lives, so they should have access to as many

efficient tools as possible in order to be aided and reduce the number of erroneous decisions.
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Appendix A

Background Articles

A.1 Mixed strategy in Diamond et al. (1986)

The clinical game is characterized by two pure strategies for each of the two players, with the possible

outcomes being praised equally by both players. So it is possible to define a 2× 2 matrix M, comprising

the four different outcomes:

M =

a b

c d


The probability of the doctor recommending biopsy was set to be p and q refers to the probability of

the patient accepting the recommendation. It was also assumed that p = q, so it is plausible to look at p

as the probability of each player choosing one strategy and (1− p) the probability of choosing the other

strategy. With this, it is possible to define an utility function U given by:

U = a · (p) · (p) + b · (p) · (1− p) + c · (1− p) · (p) + d · (1− p) · (1− p)

= (a− b− c+ d) · p2 + (b+ c− 2d) · p+ d

As a quadratic function, it will have a single extremum which shows the point where the derivative of

the function is zero. Therefore, to find p one has to differentiate the function with respect to p and set it

equal to zero.

dU

dp
= 2(a− b− c+ d) · p+ (b+ c− 2d) = 0

p =
2d− c− b

2(a− b− c+ d)

Since one is looking for a maximum utility, it is required that the second derivative of the utility function

is negative (in this case it is the denominator of the second equation). Given that p is a probability, it can

neither be negative or higher than one. Therefore, the numerator must be also negative and lower in

absolute value so that p lies in the interval (0,1). This occurs when 2d < (b+ c), since (2d− c− b) < 0,

and when 2a < (b+ c), since (2d− c− b) < 2(a− b− c+ d) (Diamond et al., 1986).
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A.2 Expressions for x and y in Djulbegovic et al. (2015)

For the patient one has

P11 − P21 = p · U1 + (1− p) · (U2 −Rp · (U4 − U2))− p · (U3 −Rp · (U1 − U3))− (1− p) · U4

= −(1 +Rp)(1− p)(U4 − U2)

[
1− p

1− p
U1 − U3

U4 − U2

] (A.1)

and
P22 − P12 = p · (U3 − (Rp + Fp)(U1 − U3)) + (1− p) · (U4 − Fp · (U4 − U2))

− p · (U3 −Rp · (U1 − U3))− (1− p) · U4

= −Fp · (1− p)(U4 − U2)

[
1 +

p

1− p
U1 − U3

U4 − U2

] (A.2)

thus ending up with

x =
1

1 +
−(1+Rp)(1−p)(U4−U2)

[
1− p

1−p
U1−U3
U4−U2

]
−Fp·(1−p)(U4−U2)

[
1+ p

1−p
U1−U3
U4−U2

] =
1

1 +
(1+Rp)

[
1− p

1−p

Bp
Hp

]
Fp·
[
1+ p

1−p

Bp
Hp

] (A.3)

Considering that 1 − p is assumed to be greater than or equal to zero and U4 > U2, the sign of

P11−P21 is the same as the sign of −
[
1− p

1−p
Bp

Hp

]
. Equivalently, P22−P12 is always less than zero since

it was assumed that Fp, (1− p), and U4 − U2 are all non-negative.

Analogously, for the doctor one has

D11 −D12 = p · V1 + (1− p) · (V2 −G · (U4 − V2)−Rd · (V4 − V2))

− p · (V3 −G · (U1 − V3)−Rd · (V1 − V3))− (1− p) · V4

= p · (1 +Rd) · (V1 − V3)− (1− p) · (1 +Rd) · (V4 − V2)

−G · (1− p) · (U4 − V2) +G · p · (U1 − V3)

= p · (1 +Rd) ·BD − (1− p) · (1 +Rd) ·HD

+G · p · (U1 − V3)−G · (1− p) · (U4 − V2)

= −(1− p) ·HD

[
(1 +Rd) · (1−

p

1− p
· BD
HD

) +G · (U4 − V2
HD

− p

1− p
· U1 − V3

HD
)

]

(A.4)

and

D22 −D21 = p · (V3 −G · (U1 − V3)−Rd · (V1 − V3)) + (1 + p) · V4

− p · (V3 − Fd · (V1 − V3))− (1− p) · V4

= −G · p · (U1 − V3)−Rd · p · (V1 − V3) + Fd · p · (V1 − V3)

= −(Rd − Fd) · p · (V1 − V3)−G · p · (U1 − V3)

= −(1− p) ·HD ·
p

1− p

[
(Rd − Fd) ·

BD
HD

+G · U1 − V3
HD

]
(A.5)

hence giving

y =
1

1 + D11−D12

D22−D21

=
1

1 +
(1+Rd)(1− p

1−p ·
BD
HD

)+G·(U4−V2
HD

− p
1−p ·

U1−V3
HD

)

p
1−p ·

[
(Rd−Fd)·

BD
HD

+G·U1−V3
HD

] (A.6)
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As a remark for the doctors case, and since (1 − p) ≥ 0 and HD ≥ 0, the sign of D11 − D12 is the

same a the sign of −
[
(1+Rd)(1− p

1−p ·
BD

HD
)+G · (U4−V2

HD
− p

1−p ·
U1−V3

HD
)
]
. Likewise, the sign of D22−D21

is the same as the sign of −
[
(Rd − Fd) · BD

HD
+G · U1−V3

HD

]
(Djulbegovic et al., 2015).

85



86



Appendix B

Boundary Conditions for parameters

Deriving from the payoffs order, established with the judgment of an expert, it is possible to draw a set

of boundary conditions for all the parameters that constitute the payoffs. Additionally, depending on

whether the payoffs are positive or negative, it is also possible to determine more conditions. Recalling

this order:

– doctor: D11 > D22 > D32 > D21 > D31 > D12

– patient: P11 > P12 > P21 > P22 > P31 > P32

For the doctor, the only payoff considered positive with certainty is D11. The negative payoffs are

D21, D31, and D12. Lastly, D22 and D32 are considered to be possibly negative or positive. For the

patient’s case, P11, P12, and P21 are considered to be positive, while P22, P31, and P32 are regarded as

negative payoffs.

Remember that it was assumed that F tD < F tD < RtD < RdD < G for the doctor, and that F tP < F tP <

RtP < RdP and B < H for the patient.

The conditions obtained are summarized in table B.1.

Looking at the boundary conditions, it is possible to conclude that some are redundant. It is then

necessary to find the highest lower bound and the lowest upper bound for both γ and β, so they can be

conditioned to an interval.

For β, the boundary conditions arise from D22 > D32 and from D32 > D21. As a result, one gets

(V2 − V3) + F dD · (V1 − V3) − RtD · (V1 − V2) < β < (V2 − V3) + F dD · (V1 − V3) − F tD · (V1 − V2). It is

important to verify that the lower bound is in fact inferior to the upper bound. Equation B.1 validates it,

since RtD > F tD.

(V1 − V3)−RtD · (V1 − V2) < (V2 − V3) + F dD · (V1 − V3)− F tD · (V1 − V2)

−RtD · (V1 − V2) < −F tD · (V1 − V2)

RtD > F tD (B.1)

Doing the same operation for γ, it resulted that the boundary conditions derived from conditions

P11 > P12 and P12 > P21. In other words, the upper bound derives from P11 > P12 and the lower bound
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Table B.1: Boundary Conditions for the parameters that constitute the payoffs, obtained from the payoffs
order.

Boundary Conditions for parameters

Doctor

D11 > D22 =⇒ F tD > −1

D22 > D32 =⇒ β < (V2 − V3) + F dD · (V1 − V3)− F tD · (V1 − V2)

D32 > D21 =⇒ β > (V2 − V3) + F dD · (V1 − V3)−RtD · (V1 − V2)

D21 > D31 =⇒ β < (V2 − V3) +RdD · (V1 − V3)−RtD · (V1 − V2)

D31 > D12 =⇒ β > (V1 − V3) · (1 +RdD)−G · (V1 − V2)

Patient

P11 > P12 =⇒ γ < B +H

P12 > P21 =⇒ γ > B +H − (U1 − U2) · (1 + F tP )

P21 > P22 =⇒ γ < B +H + (U1 − U2) · (RtP − F tP )

P22 > D31 =⇒ γ > B +H − (U2 − U3) +RtP · (U1 − U2)− F dP (U1 − U3)

D31 > P32 =⇒ γ < B +H + (U1 − U3) · (RdP − F dP )

from P12 > P21. As a result, one gets B+H − (U1−U2) · (1+F tP ) < γ < B+H. The other bounds may

be considered redundant for being lower than the lower bound or higher than the upper bound. Once

again, it is important to verify that the upper bound is superior to the lower bound. But in this case it is

easier because the lower bound is obtained by subtracting (U1−U2) · (1+F tP ) to the upper bound, thus

resulting in a lower value.

The conditions obtained from the payoffs negativity analysis are shown in table B.2.

Note that the payoffs D22 and D32 are missing from the table. This is due to the fact that it is not

straightforward to consider them positive or negative. However, from the first one it is obtained that

F tD can be larger or lower than V2

V1−V2
. Since from D21 < 0 one obtains that RtD > V2

V1−V2
, and since

F tD < RtD, it is possible to conclude that F tD can be greater or less than this value as long as it is less

than RtD. The same happens for the latter payoff, where it results that F dD can be greater or less than
β+V3

V1−V3
. Since F dD < RdD, and RdD > β+V3

V1−V3
, so F dD can be larger or lower than β+V3

V1−V3
as long as it is less

than RdD.

For the patient’s emotions RP and FP it is possible to solve the inequations, using the upper bound

for γ, and cross the results with the magnitude order hypothesis. From this, it is possible to obtain:

– F tP <
U2+B
U1−U2

; F dP >
U3+B
U1−U3

– RtP >
U2+B
U1−U2

; RdP >
U3+B
U1−U3

Since U2+B
U1−U2

> U3+B
U1−U3

and F tP < F tP < RtP < RdP , RdP must be also higher than U2+B
U1−U2

. F dP may also

be higher than this bound, but always as long as it is lower than the two regrets.
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Table B.2: Negativity Conditions for the parameters that constitute the payoffs.

Negativity Conditions for parameters

Doctor

D11 > 0 =⇒ V1 > 0

D12 < 0 =⇒ G > V1

V1−V2
> 1

D21 < 0 =⇒ RtD > V2

V1−V2

D31 < 0 =⇒ RdD > β+V3

V1−V3

Patient

P11 > 0 =⇒ U1 +B > 0

P12 > 0 =⇒ U1 > H − γ

P21 > 0 =⇒ U2 +B > (U1 − U2) · F tP

P22 < 0 =⇒ U2 + γ < H +RtP · (U1 − U2))

D31 < 0 =⇒ U3 +B < (U1 − U3) · F dP

D32 < 0 =⇒ U3 + γ < H + (U1 − U3) ·RdP

Lastly, the computation of the thresholds that γ and β may cross when their variation is allowed, is

presented now. Starting with γ, the first barrier to surpass is the one that will make P12 > P11. It is

necessary that inequation B.2 is verified.

U1 −H + γ > U1 +B

γ > B +H = γC (B.2)

Increasing γ to a point where P22 > P21, is the next barrier to be transcended. For that, γ must

respect the condition shown in inequation B.3.

U2 −RtP · (U1 − U2)−H + γ > U2 − F tP · (U1 − U2) +B

γ > B +H + (U1 − U2) · (RtP − F tP ) = γNCt
(B.3)

Lastly, γ may be increased up to a point where a patient that is definitely excluded from the list will

prefer to not cooperate than to cooperate, i.e., P32 > P31. For that, γ must respect the condition shown

in inequation B.4.

U3 −RdP · (U1 − U3)−H + γ > U3 − F dP · (U1 − U3) +B

γ > B +H + (U1 − U3) · (RdP − F dP ) = γNCd
(B.4)

Note that it was validated by an expert that (RdP − F dP ) · (U1 − U3) > (RtP − F tP ) · (U1 − U2), so it is

possible to confirm that γNCd
> γNCt

> γC .
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It is then necessary to apply the same reasoning for the boundary conditions of β. The first barrier

that β overcomes when increasing is the one leading to D32 > D22. For that, β must respect the

condition shown in inequation B.5.

V3 − F dD · (V1 − V3) + β > V2 − F tD · (V1 − V2)

β > (V2 − V3) + F dD · (V1 − V3)− F tD · (V1 − V2) = βNC (B.5)

The next change in the payoff order that the increase in β triggers is D31 > D21. For that, β must be

such that inequation B.6 is verified.

V3 −RdD · (V1 − V3) + β > V2 −RtD · (V1 − V2)

β > (V2 − V3) +RdD · (V1 − V3)−RtD · (V1 − V2) = βC (B.6)

Lastly, the barrier demanding higher values of β is the one in which the doctor starts to prefer exclud-

ing definitely a cooperating patient than to cooperate, i.e., P31 > P11.

V3 −RdD · (V1 − V3) + β > V1

β > (V1 − V3) +RdD · (V1 − V3) = βCC (B.7)

It is then trivial to verify that βNC < βC < βCC .
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Appendix C

Equilibrium in mixed strategies

C.1 Proving the strategy NCd is dominated

In order to assume that the strategy No Cooperation D is dominated by others in mixed strategies it is

necessary to show that ED[C] = ED[NCt] > ED[NCd]. For that, it is necessary to verify this condition

for the value of the probability that leads to the indifference between the strategies Cooperation and No

Cooperation T . To validate this, it is necessary that equation C.1 is respected.

ED[NCt] > ED[NCd] (C.1)

For that, it is necessary to use the values of the expected payoffs: ED[NCt] = V2 − F tD · (V1 − V 2) +

p · [(F tD −RtD) · (V1 − V2)] and ED[NCd] = V3 + β − F dD · (V1 − V3) + p · [(F dD −RdD) · (V1 − V3)], with the

value of p being replaced by p = G−F t
D−1

G+Rt
D−F t

D
.

The inequation leads to a condition for β, shown in inequation C.2.

V2 − F tD · (V1 − V 2) + p · [(F tD −RtD) · (V1 − V2)] > V3 + β − F dD · (V1 − V3) + p · [(F dD −RdD) · (V1 − V3)]

β < (V2 − V3) + F dD · (V1 − V3)− F tD · (V1 − V2)

+p · [(RdD − F dD) · (V1 − V3)− (RtD − F tD) · (V1 − V2)] (C.2)

Therefore, it is necessary to compare this upper bound for β with the upper bound obtained from

the payoff order - β < (V2 − V3) + F dD · (V1 − V3) − F tD · (V1 − V2). If this upper bound is higher than

the one obtained from the payoffs order, than β will always be below it and the necessary condition for

ED[C] = ED[NCt] > ED[NCd] is always checked.

Given that (RdD − F dD) > (RtD − F tD), it results that the parcel multiplied by p is positive. So, the new

upper bound will be higher than the bound from the payoff order if p > 0, resulting that the new upper

bound is equal to the older one summed up with a positive amount. Since p is a probability, it is positive.

However, this demonstration is done next in this appendix. If p > 0 it is then demonstrated that the

strategy No Cooperation D is dominated and can be excluded from the analysis in mixed strategies.

91



C.2 Validating the probabilities p and q

In order for the equilibrium in mixed strategies to exist it is necessary that 0 < p < 1 and 0 < q < 1.

These conditions will now be demonstrated here.

As previously mentioned, p =
G−F t

D−1
G−F t

D+Rt
D

for the indifference between ED[C] and ED[NCt]. Let us

analyze this probability and check if it respects the necessary conditions. In order for p to be higher

than zero, both its numerator and denominator must be positive or negative. There is no doubt that

the denominator is positive: (G − F tD + RtD) > 0, if G > RtD > F tD as it was defined by hypothesis.

The numerator will be positive if G > 1 + F tD. Consulting the boundary conditions for the parameters

established in appendix B, it is possible to change the inequation obtained from D31 > D12, and solve

it in order to G. Then, as β shows up with a negative sign, it can be replaced by its upper bound

(β < (V2 − V3) + F dD · (V1 − V3)− F tD · (V1 − V2)) and the result is the one in inequation C.3.

G >
(V1 − V3) · (F dD + 1)− β

V1 − V2

G >
(V1 − V3) · (F dD + 1)− (V2 − V3)− F dD · (V1 − V3) + F tD · (V1 − V2)

V1 − V2
G > 1 + F tD (C.3)

So, it is validated that the numerator of p is also positive. Therefore, one can state that p > 0. Let

us compare the numerator with the denominator to see if the latter is higher than the former and p will

always be less than 1. The computation is shown in inequation C.4.

G− F tD − 1 < G− F tD +RtD

−1 < RtD (C.4)

It is always true that RtD > −1. In conclusion, it is possible to safely state that 0 < p < 1.

Proceeding to the probability q = 1 − γ−(B+H)
(Rt

P−F t
P )·(U1−U2)

, one has to apply the exact same reasoning,

but now taking into account that it depends on γ. Checking for q > 0, results in the inequation C.5.

1− γ − (B +H)

(RtP − F tP ) · (U1 − U2)
> 0

B +H − γ > −(RtP − F tP ) · (U1 − U2) (C.5)

This result is possible for γ < B+H = γC . So, if γ < γC , it is possible to state that q > 1. Let us now

check if q < 1. The demonstration is shown in inequation C.6.

1− γ − (B +H)

(RtP − F tP ) · (U1 − U2)
< 1

B +H − γ < 0

B +H < γ (C.6)

This result goes against the requirement for 0 < q. Thus, for γ < γC there is no equilibrium in mixed

strategies. However, it is possible to verify if for values of γ such that γC < γ, this equilibrium exists. For

that, it is necessary to rearrange inequation C.7 and solve it in order to γ.
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B +H − γ > −(RtP − F tP ) · (U1 − U2)

B +H + (RtP − F tP ) · (U1 − U2) > γ (C.7)

Interestingly, it results that γ < γNCt
must be respected in order to have q positive. As this re-

quirement does not go against the requirement for q < 1, it is possible to state that there will only be

equilibrium in mixed strategies if γC < γ < γNCt , and one will have 0 < q < 1. This result makes sense,

since if γ < γC the patient would not have any incentive to not cooperate and would choose the strategy

Cooperation with probability 1. For γNCt
< γ, the patient would never cooperate, and consequently

there would be no equilibrium in mixed strategies.

Lastly, to finish this analysis it is important to compare p and q in order to see which of the players will

cooperate with higher probability. Let us assume, by hypothesis, that q > p, i.e., the doctor cooperates

with higher probability than the patient. The verification of this relation is shown below.

1− γ − (B +H)

(RtP − F tP ) · (U1 − U2)
>

G− F tD − 1

G− F tD +RtD
B +H − γ

(RtP − F tP ) · (U1 − U2)
>
G− F tD − 1− (G− F tD +RtD)

G− F tD +RtD
B +H − γ

(RtP − F tP ) · (U1 − U2)
>

−RtD − 1

G− F tD +RtD

−γ > (−RtD − 1) · (RtP − F tP ) · (U1 − U2)

G− F tD +RtD
−B −H

γ <
(RtD + 1) · (RtP − F tP ) · (U1 − U2)

G− F tD +RtD
+B +H (C.8)

After this, it is necessary to compare the upper bound obtained in C.8 with the upper bound for γ

obtained from the payoff order (for γC < γ < γNCt ). Recall that γNCt = B +H + (RtP − F tP ) · (U1 − U2).

If the upper bound from C.8 is higher than γNCt , then one has q > p for any value of γ, and the doctor

cooperates always with higher probability. This computation is shown below.

(RtD + 1) · (RtP − F tP ) · (U1 − U2)

G− F tD +RtD
+B +H > B +H + (RtP − F tP ) · (U1 − U2)

(RtD + 1) · (RtP − F tP ) · (U1 − U2)

G− F tD +RtD
> (RtP − F tP ) · (U1 − U2)

RtD + 1

G+RtD − F tD
> 1

RtD + 1 > G+RtD − F tD

F tD + 1 > G (C.9)

Condition C.9 is impossible as previously shown. So, the upper bound obtained in C.8 is not superior

to γNCt
. One can conclude then, that q > p, i.e., the doctor will cooperate with higher probability for

γC < γ <
(Rt

D+1)·(Rt
P−F t

P )·(U1−U2)
G−F t

D+Rt
D

+ B +H. Otherwise, if (Rt
D+1)·(Rt

P−F t
P )·(U1−U2)

G−F t
D+Rt

D
+ B +H < γ < γNCt

,

then p > q and the patient cooperates with higher probability.
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C.3 Validating ED[C] = ED[NC] and EP [C] = EP [NC]

Starting with the doctor’s payoffs, for the probability p one has ED[C] = V1 − G·(V1−V2)·(1+Rt
D)

G−F t
D+Rt

D
and

ED[NCt] = V2 + (V1 − V 2) · [ (F
t
D−Rt

D)·(G−F t
D−1)−F t

D

G−F t
D+Rt

D
]. From equation 4.1 one must have:

V2 + (V1 − V 2) · [ (F
t
D −RtD) · (G− F tD − 1)− F tD

G− F tD +RtD
] = V1 −

G · (V1 − V2) · (1 +RtD)

G− F tD +RtD
(C.10)

(F tD −RtD) · (G− F tD − 1)

G− F tD +RtD
− F tD = 1 +

G · (−1−RtD)
G− F tD +RtD

(F tD −RtD) · (G− F tD − 1) = (G− F tD +RtD) · (1 + F tD) +G · (−1−RtD)

G · F tD − (F tD)
2 − F tD −RtD ·G+RtD · F tD +RtD = G− F tD +RtD +G · F tD − (F tD)

2 +RtD · F tD −G−RtD ·G

RtD = G+RtD −G

It was then proven that ED[C] = ED[NCt] for the equilibrium value of p, thus validating equation 4.1.

Doing the same for the patient one gets:

U1 +B − γ − (B +H)

RtP − F tP
· (1 + F tP ) = U1 −H + γ − γ − (B +H)

RtP − F tP
· (1 +RtP ) (C.11)

B +H − γ =
B +H − γ
RtP − F tP

· (1 +RtP )−
B +H − γ
RtP − F tP

· (1 + F tP )

B +H − γ =
(B +H − γ) · (1 +RtP − 1− F tP )

RtP − F tP

B +H − γ =
(B +H − γ) · (RtP − F tP )

RtP − F tP
B +H − γ = B +H − γ

It was now proven that EP [C] = EP [NC] for the equilibrium value of q, thus validating equation 4.3.
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