
Analysis of Imagery Sensors and Methodologies
Towards Early Fire Detection

Maria João Santos Lopes de Sousa

Thesis to obtain the Master of Science Degree in

Mechanical Engineering

Supervisors: Prof. Alexandra Bento Moutinho

Prof. Miguel Abrantes de Figueiredo Bernardo de Almeida

Examination Committee

Chairperson: Prof. Paulo Jorge Coelho Ramalho Oliveira

Supervisor: Prof. Miguel Abrantes de Figueiredo Bernardo de Almeida

Member of the Committee: Prof. João Rogério Caldas Pinto

November 2017

ii

Acknowledgments

First I want to thank my supervisors for the opportunity to develop my master’s thesis on Project Fire-

camp2. Taking on a challenging problem such as fire detection provided me with a learning experience

that ended up exceeding my expectations.

I would like to thank Prof. Alexandra Moutinho for the close supervision over the course of this work,

and for always believing in my ability to overcome the difficulties faced during this process.

To Prof. Miguel Almeida for his availability to clarify the doubts I had, and for the preparation of the

experimental trials conducted in the Laboratory of Forestry Fire Studies in Lousã.

These tests were a team effort, and I thank Cláudia Pinto, and Abdelrahman Abouali from ADAI, who

collaborated on setting up the experiments. To David Salvador for his collaboration and swift work under

pressure in the preparation and development of the experimental tests. To Diogo Henriques for lending

the multirotor used in these trials, but also for conducting the image acquisition tests at Boom Festival,

which led to part of the dataset extensively used in this thesis.

I have to especially thank the people who first worked with me on this project in the Computer Vision

course. To Eduardo Araújo for his enthusiasm for this topic, and to Ricardo Maia who drove the work

forward when setbacks were encountered. Besides being great lab partners, more importantly, they are

even better friends.

I wish to thank my friends André Varela, André Antunes, Daniela Melo and Tomás Hipólito for their

support over the last few months, which helped to keep me motivated and the work on track.

To the friends who made this experience at IST worthwhile, Beatriz Arraiano, Teresa Soveral, Patrı́cia

Branquinho, Diogo Ruivo, Joana Correia, Joana Neto and Mónica for their constant support.

To Rita Silvestre for her lasting friendship and understanding of my extended absences.

At last, I thank my family for their unwavering support throughout my life. To Jorginho, for never

letting me win, catching up with you has been the thrill of my lifetime, and always pushed me to learn

new things. To my parents for being the epitome of excellence, not only as professionals but in character.

Distance for sure gives perspective, and I am incredibly fortunate to have them as my greatest influence.

iii

iv

Resumo

Devido às alterações climáticas, as condições de risco de incêndio são mais frequentes o que pre-

cipita a maior ocorrência destes fenómenos. Com a escalada da gravidade destes eventos, existe uma

maior urgência na diminuição do tempo de resposta das equipas de emergência, pelo que se torna

imperativa a rápida detecção de focos de incêndio. Este trabalho visa estudar diferentes tipos de sen-

sores e explorar técnicas de visão computacional para a detecção destes incidentes numa fase inicial.

Duas linhas de investigação são examinadas, para compreender os méritos e limitações de câmaras

de gama térmica e visı́vel. Para a primeira abordagem, uma heurı́stica de segmentação de cores foi

concebida para compreender a resposta do sensor e a codificação RGB da câmara. Em segundo lu-

gar, recorreu-se a uma abordagem de sistemas inteligentes centrada no estudo de imagens da gama

visı́vel usando uma rede neuronal profunda. Dado que este trabalho está inserido no Project Fire-

camp2, para avaliar o desempenho de ambas as metodologias, os resultados de teste são comparados

para um conjunto de cenários experimentais com enfoque no risco de incêndio num contexto de camp-

ismo. Enquanto que a abordagem com imagem térmica estende a capacidade sensorial permitindo uma

detecção mais rápida, a abordagem de aprendizagem profunda com imagens em cores tem potencial

para proporcionar algoritmos mais robustos e com maior generalização. A análise comparativa entre as

duas demonstrou que, para uma aplicação de detecção de fogo, o desenvolvimento de algoritmos deve

abranger tanto imagens térmicas como da gama visı́vel.

Palavras-chave: detecção de fogo, imagem térmica, imagem RGB, aprendizagem profunda,

segmentação de cor, imagens aéreas.

v

vi

Abstract

Due to climate change, fire risk conditions are more frequent which precipitates the greater occur-

rence of these phenomena. With the escalation in the severity of these events, there is an increased

urgency of diminishing the response time from emergency teams, so the rapid detection of fire out-

breaks becomes imperative. This work aims to study different types of sensors and explore computer

vision techniques to detect these incidents at an early stage. Two main lines of research are examined,

to understand the merits and limitations of thermal and visible range cameras. For the first approach,

a color segmentation heuristic was devised to understand the sensor response and the RGB encoding

of the camera. Second, an intelligent systems approach centered on the study of visible range images

using a deep neural network. Since this work is inserted in Project Firecamp2, to evaluate the perfor-

mance of both methodologies, the test results are analyzed for a set of experimental scenarios with

a focus on fire risk in a camping context. While the thermal imaging approach extends the sensing

ability enabling faster detection, the deep learning approach with color images has the potential to pro-

vide more robust algorithms with greater generalization. Overall, the comparative analysis between the

two approaches taken demonstrated that for a fire detection application the development of algorithms

should encompass both thermal and visible range images.

Keywords: fire detection, thermal imaging, RGB imaging, deep learning, color segmentation,

aerial images.

vii

viii

Contents

Acknowledgments . iii

Resumo . v

Abstract . vii

List of Tables . xiii

List of Figures . xv

Nomenclature . xvii

1 Introduction 1

1.1 Fire Hazard Identification and Risk Assessment . 1

1.2 Project Firecamp2 . 3

1.3 Proposed Approach . 4

1.4 Objectives and Contributions . 5

1.5 Thesis Outline . 5

2 Data Acquisition System 7

2.1 Hardware Architecture . 7

2.1.1 Raspberry Pi . 8

2.1.2 RGB Camera . 9

2.1.3 Thermal Camera . 10

2.2 Experimental Tests . 12

3 Thermal Imaging 15

3.1 Thermal Imaging Data . 16

3.2 Sensor Measurements . 19

3.3 Adaptive Color Scale . 21

3.3.1 Controlled Fire Example . 22

3.3.2 Boom Festival Example . 23

3.4 Discussion . 24

4 Color Segmentation Heuristic 25

4.1 Color Segmentation . 25

4.2 Validation Examples . 28

ix

4.2.1 Straw Examples . 28

4.2.2 Tent Example . 29

4.2.3 Boom Festival Example . 31

4.3 Results . 31

4.4 Discussion . 34

5 Deep Neural Networks 35

5.1 Neural Networks for Visual Recognition . 37

5.1.1 Deep Learning Frameworks . 39

5.1.2 Transfer Learning . 40

5.2 Convolution Neural Networks . 42

5.2.1 Convolution . 43

5.2.2 Fully-Connected Layer . 46

5.2.3 Convolution Layer . 47

5.2.4 Pooling Layer . 48

5.2.5 Dropout Layer . 49

5.3 Inception v3 Model . 50

5.3.1 Network Architecture . 50

5.3.2 Feature Extraction . 51

5.3.3 Hidden Units Activation . 52

5.3.4 Classifier . 53

5.4 Optimization . 54

5.4.1 Gradient Descent . 54

5.4.2 Loss Function . 55

5.4.3 Error Backpropagation . 56

6 Implementation 59

6.1 Firecamp2 Dataset . 59

6.2 Data Preprocessing . 60

6.3 Training . 61

6.3.1 Model Retraining . 61

6.3.2 Hyperparameter Selection . 63

6.4 Testing Results . 64

6.4.1 Straw Example . 64

6.4.2 Tent Example . 65

6.4.3 Drone Example . 66

6.5 Discussion . 67

6.5.1 Performance Analysis . 67

6.5.2 Comparison of Results . 68

x

7 Conclusions 71

Bibliography 75

xi

xii

List of Tables

2.1 Summary of the specifications of the visible range camera. 9

2.2 Summary of FLIR Vue Pro specifications. 11

2.3 Summary of the experimental tests. 14

2.4 Summary of the analyses applied to the experimental tests. 14

3.1 Sensor resolution. 17

3.2 Camera Temperature Limits. 20

3.3 Camera Parameters. 20

4.1 Segmentation thresholds. 26

6.1 Dataset division. 60

6.2 Time intervals for the first fire alarm for the experimental tests. 69

xiii

xiv

List of Figures

2.1 Image acquisition system mounted on a drone. 7

2.2 Implementation scheme with partial pinout and respective connections. 8

2.3 3D printed part to mount the camera module adjacent to the thermal camera. 9

2.4 Installation of Raspberry Pi Camera Module V2. 9

2.5 Electromagnetic spectrum. 10

2.6 On-board thermal cameras. 10

2.7 LEIF in Lousã, Portugal. 12

2.8 Experimental setup with a drone and static platform. 12

2.9 Experimental setup for the burning of a tent. 13

2.10 Images acquired with (a) FLIR SC660, (b) FLIR Vue Pro and (c) Pi Camera V2. 13

3.1 GrayRed color palette. 15

3.2 Fire ignition detection with a radiometric thermal camera. 16

3.3 Temperature profile for a fire ignition. 16

3.4 Comparison of thermal imaging data. 18

3.5 Temperature versus A/D Counts. 19

3.6 Evolution of the range and median raw values for a controlled fire. 22

3.7 Fire ignition detection with a radiometric thermal camera. 22

3.8 Raw measured with Flir Vue Pro from high altitude with a 5 second timelapse. 23

3.9 Raw measured with FLIR Vue Pro for community kitchen area. 23

3.10 Heat detection with a nonradiometric thermal camera. 24

4.1 Division in color segmentation classes. 26

4.2 Fire detection with radiometric camera for Test 1. 26

4.3 Fire detection with Flir SC660 (radiometric). 28

4.4 Fire detection with Flir Vue Pro (nonradiometric). 28

4.5 Perspectives with 3 different cameras. 29

4.6 Image data from the burning of camping tent. 29

4.7 Tent burning captured by Flir SC660 (radiometric). 30

4.8 Tent burning captured by Flir Vue Pro (nonradiometric). 30

4.9 Tent burning captured by RPi Camera Module. 30

xv

4.10 Color segmentation results. 32

4.11 Color segmentation results. 33

5.1 Artificial Intelligence: applications, domains, methods. 36

5.2 Comparison of DNN models. 38

5.3 Deep Learning libraries. 39

5.4 Novel deep learning frameworks. 39

5.5 Transfer Learning scheme. 41

5.6 Example of a simple convolutional neural network. 42

5.7 Gaussian Function. 44

5.8 Filter Matrix. 45

5.9 General neural network model with an input layer, a single hidden-layer, and an output layer. 46

5.10 Example of a convolutional layer of depth 6. 47

5.11 Parameter sharing for the slices of neurons in the convolutional layer. 47

5.12 Example featuring a max pooling operation with a 2x2 filter and a pooling stride of 2. . . . 48

5.13 Dropout example. 49

5.14 Inception V3 network architecture. 50

5.15 Example of the first Inception module of Block B. 51

5.16 Sigmoid activation function. 52

5.17 ReLU activation function. 52

5.18 General backpropagation procedure for a single hidden-layer network. 56

6.1 Samples from Firecamp2 Dataset. 59

6.2 Tensorboard representation of the operations added to retrain Inception V3. 62

6.3 Comparison of models with different learning rate and batch size of 100. 63

6.4 Color images from the straw burning trial. 64

6.5 Straw burning (static): predicted scores and the ground truth over time. 64

6.6 Color images from the tent burning trial. 65

6.7 Tent burning: predicted scores and the ground truth over time. 65

6.8 Color images from the straw burning trial captured from a drone. 66

6.9 Straw burning (drone): predicted scores and the ground truth over time. 66

6.10 Performance evaluation of the testing set. 67

6.11 Comparison of the segmentation heuristic for thermal images (left) versus the Inception

classification for color images (right). 68

xvi

Nomenclature

Greek symbols

δh Local gradient at the hidden layer.

δo Local gradient at the output layer.

µd Mean value of a Gaussian distribution

σ Softmax activation function.

σg Standard deviation of a Gaussian distribution.

Roman symbols

η Learning rate.

ŷ Predicted output.

b Bias of a neuron.

f Activation function of a hidden-layer neuron.

g Gaussian function.

h Impulse response of a 1-D signal.

hj Output of a neuron in a hidden-layer.

I Input image matrix.

K Filter kernel matrix.

L Loss function.

u Output of a pooling layer.

W Weight matrix between hidden-layer and output layer.

w Weights matrix between input layer and hidden-layer.

x Input signal.

y Output signal.

xvii

zj Input of a neuron in a hidden-layer.

Subscripts

i, j, k Computational indexes.

m,n Filter indexes.

Superscripts

T Transpose.

xviii

Chapter 1

Introduction

Fire is a concerning natural hazard on a global scale, that has a brutal impact on the environment by

disturbing the climate and natural ecosystems. This phenomenon has drastic effects on communities on

a social and economic level, since it can lead to the loss of lives and material damages.

Every year the Mediterranean basin is invariably under high fire risk, with recurrent wildfires that

amount to a large number of hectares of area burned [1]. This has led to continued research focused on

the fire incidence in this geographical zone, and what factors drive this region to be so fire-prone [2].

In the next section, we delve into the problem at hand, by first conducting a revision of other efforts

made to address fire risk assessment and identification. Then, what follows is a description in brief detail

of the reasoning behind the proposed approach, along with a listing of the objectives this work sets out

to accomplish. At the end of this introductory chapter, an outline is presented to establish a road map

for what is in store in subsequent chapters of this thesis.

1.1 Fire Hazard Identification and Risk Assessment

Fire hazard risk results of the interplay between climate and geology making these factors critical in

environmental management and risk assessment. In fact, this problem has fallen under the scope of

several scientific fields, and to start, it is important to frame the developments and contributions of each.

Although most fires are human-caused, their periodic recurrence is to a great extent due to cyclical

processes that occur in nature. In the spring season, when humidity levels and precipitation are higher,

there is a boost in plant growth. In the summer, there are often long periods of intense drought where

vegetation and soil dry up making them more fire-prone.

Fire ignition and propagation potential is strongly tied to three determinant factors: fuel, oxygen, and

heat. These elements develop in consequence of the aforementioned ecosystem cycles that involve

vegetation growth and climate conditions. For that reason, forestry fire hazard has been extensively

studied by fields related to ecology, biogeography, and geology [3].

Meteorological conditions have also been attentively examined by the field of geography, to study how

1

land topography and geology interact with weather variations across seasons. The evolution over time

of variables like precipitation, wind speed, relative humidity and temperature help to better characterize

fire regimes [4, 5].

Over the years, these analyses were enriched by the technological advances of geographic infor-

mation systems (GIS) and with the valuable contribution from remote sensing with satellite images. For

instance, applications include fire risk assessment [6, 7], burnt area maps [8, 9], fuel mapping [10] and

decision support systems [11].

From an environmental management point of view, these methods provide a criterion for developing

preventive initiatives, and prioritizing resource allocation in both monitoring and emergency response

stages. However, the studies mentioned until now either using statistical approaches or satellite imagery

have a serious limitation. By relying heavily on long-term data, they are unable to provide actionable

information in real-time for ground teams. Despite placing certain areas under high alert based on

quantification of risk due to past events, these studies overlook the urgency of diminishing the delay in

response time from when a fire starts until first responders attend to it.

By nature, fire occurrence is a process with a high degree of uncertainty, both on a spatial and

temporal level, making it difficult to pinpoint the threat. Therefore, the immediate identification and

prompt action from emergency response teams are key for minimizing its dire consequences.

Following this line of reasoning, there has been considerable interest in applying computer vision

techniques to identify fire using color imaging as well as from the thermal infrared range.

Fire detection has been the object of a plethora of different approaches that propose color mod-

els for flame pixel classification using RGB [12], YCbCr [13], HSI [14] or the YUV [15] color spaces.

Toreyin et al. propose a method for flame detection in color video using temporal and spatial wavelet

analysis [16].

Regarding uses of thermal infrared images for the same purpose, there have been some research

efforts [17, 18, 19], yet the acquisition cost of thermal imaging systems is a roadblock for the widespread

use of this technology.

Despite the fact that classic computer vision algorithms register high success percentages in classi-

fication, by being based on fine-tuned heuristics they lack the generalization to be successfully applied

to new datasets and different scenarios [20]. To mitigate this limitation, researchers increasingly employ

computer vision algorithms in tandem with intelligent systems approaches. As noted by Cetin et al. in

their review of video-based fire detection [21], from 2007 onwards most of the approaches integrate

intelligent systems for classification.

A different approach to the fire detection problem has been through video-based smoke detection,

which in the case of a true positive has the merit of providing a fire alarm by spotting smoke from far away

distances. In this category, the methods used can be divided into three distinct groups (1) histogram-

based smoke detection, (2) temporal-analysis-based techniques, (3) rule-based techniques.

Chen et al. propose a rule-based system for smoke detection based on pixel intensity, with a chro-

matic decision rule, deduced from analyzing the color of smoke, and a second decision rule based on

diffusion that attends to spreading attributes of smoke [22].

2

The early-warning fire monitoring system proposed in [23] combines a two-class Support Vector

Machine (SVM) classifier with luminescence maps to remove non-fire pixels, though according to the

study the method is not suitable for real-time applications due to requiring excessive computational time.

Still regarding video sequences, Tung and Kim introduce a four-stage smoke detection algorithm com-

prised by segmentation of moving regions, fuzzy c-means clustering to select smoke regions, followed

by parameter extraction and ultimately a SVM classifier [24].

More recently, in 2015, a noteworthy contribution explores smoke detection using convolution neural

networks (CNNs), having achieved promising results [25]. Since then, CNNs have risen to be considered

the state-of-the-art in computer vision applications and there is an increased interest in applying this and

other deep neural network architectures to video analysis [26].

1.2 Project Firecamp2

The Mediterranean-type climate, due to its characteristic traits, enables the development of condi-

tions of high-ignition propensity. In this environment camping parks present an elevated risk because,

on top of material damages, fire related incidents can have fatal consequences.

In this context, the combination of combustion inducing equipment and highly combustible parapher-

nalia associated with camping activity, can lead to fire incidents. These present a considerable danger

and often require the evacuation of thousands of people. Moreover, the human presence acts as another

source of potential fire causes either by negligence or risk behaviors. These factors increase fire risk

and make camping sites a hotbed for the occurrence and rapid propagation of wild fires.

Although the spacious nature of this kind of setting is naturally appealing for recreational activities

such as festivals, it also poses a threat both on an environmental and human safety level. Moreover,

these events are usually promoted in the outskirts of major cities, or even in isolated places with lower

accessibility, increasing the degree of difficulty in what is a time-sensitive emergency response action.

In that sense, securing these venues against fire hazard is paramount from an organizational and

public safety standpoint, hence the timely identification of fire risk is a relevant line of study.

In this context, the portuguese project Firecamp was carried out by the Associated Laboratory for

Energy, Transports, and Aeronautics (LAETA) from 2011 to 2015. The joint investigation developed by

several research centers achieved some preliminary results concerning (1) combustibility of camping

materials, (2) land characterization from aerial image and (3) modeling of fire spread [27].

The need for further research, led to the development of the Firecamp2 project, starting in 2015,

and in which the current work is inserted in. The main objectives of this project are (1) the analysis and

understanding of fire risk, (2) modeling the burning of tents and caravans, (3) devise good practices to

reduce the risk of fire incidents in camping parks, and (4) development of a safety manual against fires

related to camping activities.

Under the scope of project Firecamp2, this work centers on understanding thermal imaging sensory

data and exploring computer vision techniques for detection of fire incidents in an earlier phase.

3

1.3 Proposed Approach

As seen so far from literature review, many of the research paths taken to address fire hazard re-

volved around three distinct objectives. First, there have been developments in long-term fire risk as-

sessment strategies from fields mainly related with geography. Second, from the applications of conven-

tional computer vision algorithms to color or thermal images, the central focus has been to identify fire.

Moreover, the recent efforts enhanced by computational intelligence are based on the hypotheses of

detecting smoke in color images. This, however, can lead to misclassifications where visually something

can appear to be smoke, but is not necessarily caused by fire.

Notwithstanding, the examples given do not capture fully what is at stake in this endeavor, since they

have the fundamental limitation of detecting fire either when it is visible to the naked-eye, or if visible

by the detection of smoke. Instead, by attempting to identify fire using both color and thermal imaging,

countermeasures to extinguish the fire can be undertaken earlier, thus minimizing fire spread.

However, when thermal imaging systems are not empowered with radiometry capabilities, that rep-

resents a significant limitation, because the image data is deprived of quantitative information. Since

the images these systems capture are only able to display relative temperatures between objects in a

scene, there is no measurement of the absolute temperature. Furthermore, classic computational vision

algorithms are ad hoc, thus requiring lengthy development timeframes for the fine-tuning for a context

specific task. Aiming for better generalization, the amounts of data that have to be covered increase,

which limits the performance of this type of approach. Additionally, by having only information of relative

temperature differences, data suffers from high inner-class variability, since heat signatures of specific

situations are dependent of the scene context.

To address this issue, as mentioned previously, it is imperative to use computer vision techniques

coupled with intelligent systems. In recent months the interest in using deep neural networks for pattern

recognition and video classification has been on the uprise. Much of this renewed interest in computer

vision applications, particularly with convolution neural networks (CNNs), came as a result of two de-

terminant factors. First, storing data has become inexpensive and is no longer a 21st century problem.

On the other hand, it is not humanly possible to perform data analysis on all data without using artificial

intelligence. Second, a process as data-intensive as image processing using CNNs became viable by

the parallel computation power provided by Graphics Processing Units (GPUs), which accelerate the

learning and inference stages.

While GPUs provide a significant step forward, with increased complexity and depth, neural networks

take extensive amounts of hours and computing power to train. This process can amount to weeks

depending on the network and the difficulty of the classification problem.

Currently, several deep learning frameworks allow the opportunity to use a pre-trained deep neural

network model leveraging its acquired feature extraction capability to learn a new classification task.

This concept, called transfer learning, shortens the training phase tremendously because the part of

the neural network responsible for the extraction of spatial features has already been optimized and

maintains its generalization.

4

In this work, in the context of a fire detection problem, two main lines of research are explored to

study imaging sensors. The first approach will focus on the characteristics of thermal cameras and its

strengths and limitations. The second approach will use color images and retrain a CNN, to evaluate

if employing this type of data-driven model, without prior feature extraction, is adequate for this type of

application.

1.4 Objectives and Contributions

This work aims to study different types of image sensors and explore computer vision techniques

and classification algorithms to detect fire incidents at an early stage. To accomplish this objective a set

of experimental tests are conducted for image acquisition purposes. Since this work is developed under

the scope of project Firecamp2, the trials have an emphasis on fire risk situations related to the camping

activity.

The main contributions of the present work are:

• Development of a data acquisition system for capturing synchronized images from the thermal and

visible range to be used in mobile aerial platforms.

• New dataset with color and thermal images (radiometric and nonradiometric) concerning fire situ-

ations associated with camping activities.

• Evaluation of the adequacy of thermal and color image sensory data for fire detection using two

different methodologies.

• Assessment of the limitations of image sensory data for fire detection using static and mobile

platforms.

1.5 Thesis Outline

So far, in this introduction the motivation was addressed, and the objectives of this work outlined.

Following this first introductory chapter, this thesis is organized in 6 chapters.

Chapter 2 presents a data acquisition system developed for aerial image capture, with the purpose

of equipping unmanned aerial vehicles (UAVs) with thermal and color imaging devices. The chapter

describes the hardware architecture proposed and the communication scheme implemented. Subse-

quently, the main components of the system are covered in detail, with a special attention to the thermal

camera employed. Finally, the experimental conditions in which the system was tested are presented,

and the types of data acquired are introduced.

Chapter 3 delves into concepts related to thermal imaging, and explores radiometric and nonradio-

metric data. In that regard, two different cameras are presented and their respective technical and cal-

ibration parameters are studied. Additionally, an in-depth study of the sensory data of different imaging

devices is undertaken, with a particular emphasis on sensor response under real-world conditions.

5

In Chapter 4, a color segmentation heuristic is presented to address the problem of fire detection.

Contrary to the previous chapter which focused on sensor measurements, this chapter centers attention

on understanding the sensor response after RGB encoding. This chapter analyzes the variability in

thermal imaging data for a set of selected fire risk situations in camping parks. At the end, the results

are compared and some critical takeaways are discussed.

Chapter 5 focuses on theoretical aspects of deep neural networks, an alternative approach to the

problem. The chapter starts with a review of the recent developments in artificial neural networks in the

context of computer vision, and frames the current landscape of deep learning frameworks. Then, the

chapter progresses with the explanation of the inner workings of convolution neural networks, followed

by a detailed description of the Inception V3 model. Afterwards, some network optimization aspects are

covered, namely the basis of the error backpropagation algorithm and gradient descent, which dictate

the choices in activation functions throughout the network, as well as the score function employed by

the classifier.

Chapter 6 centers on the implementation of a transfer learning approach for a fire detection problem

using the Inception V3 model. First, an augmented color image dataset built in this work is presented,

along with the partitions used for training and testing. This is followed by the outlining of the preprocess-

ing steps necessary to extract the video frames and feed the images to the network. Subsequently, the

approach to retrain the model using TensorFlow is described, as well as the process of hyperparameter

selection. At last, the model is tested on new data and the results are compared with the ones from

color segmentation heuristic approach.

In closing, Chapter 7 summarizes the key findings drawn from the results of the different approaches,

and offers some concluding remarks concerning the fire detection problem. Furthermore, in light of the

opportunities the data acquired presents, suggestions are made for future work.

6

Chapter 2

Data Acquisition System

This chapter presents a system developed for image acquisition, empowered by thermal and visible

range imaging devices, designed to be used on unmanned aerial vehicles. Section 2.1 starts with an

overview of the system and its components, followed by a breakdown of the hardware connections and

a high-level description of the communication scheme. This is completed with the presentation of the

imaging devices employed and their respective technical specifications. Finally, section 2.2 presents the

experimental conditions of the tests developed in this work, and provides examples of the data collected.

2.1 Hardware Architecture

With the purpose of acquiring thermal and visual range aerial images, an integrated acquisition

system was developed to be taken onboard a multirotor (see fig. 2.1). Its principal components are:

• On-board computer - Raspberry Pi 3 Model B

• Color Camera - Raspberry Pi Camera Module V2

• Thermal Camera - FLIR Vue Pro 336 9mm

Thermal Camera

Color Camera

Raspberry Pi

Figure 2.1: Image acquisition system mounted on a drone.

7

2.1.1 Raspberry Pi

The Raspberry Pi 3 Model B was selected to be the on-board computer to handle image acquisi-

tion tasks. Its 8.5 x 5.6 cm2 size facilitates the installation on the drone frame, and with 42 g it is easy

to accommodate in the drone’s payload budget. This single-board computer is a widely known and ex-

tensively documented platform, used in several applications. This section focuses on aspects related to

the hardware connections and describes the communication scheme implemented.

Although the thermal camera could be triggered by Pulse Width Modulation (PWM) using a flight

controller like Pixhawk, for the videos from both cameras to be as synced as possible, both cameras are

directly controlled by the Raspberry Pi. The thermal camera is hardware-triggered via PWM signal, and

the color camera is software-triggered using the Picamera Python library. Figure 2.2 presents a scheme

of the hardware connections for this implementation.

FLIR Vue Pro

PWM 3

Power Source

LiPo Battery

5V

Ground

Ground

GPIO18

8

10

12

14

6

4

2

Rear side
CSI Port

Ribbon

Cable
(30 cm)

Front side

Figure 2.2: Implementation scheme with partial pinout and respective connections.

The PWM signals are sent to the thermal camera through the Raspberry Pi’s General Purpose

Input/Output (GPIO) Ports, namely using the GPIO 18 (pin 12), the only pin Raspberry Pi disposes

capable of sending PWM via hardware. Observing the board pinout, there is a ground connection in

pin 14 so the cables in the FLIR Vue Pro Accessory cable were changed in order to have the ground

cable in a consecutive pin to PWM 3. The connections are visible in the upper right corner of figure 2.1.

The PWM controls have to be configured on the FLIR UAS mobile application. These were set

to start recording on HIGH, and to stop recording on LOW. The PWM signal was programmed with a

frequency of 50 Hz using RPi.GPIO Python library for a 10% and 5% duty cycle, respectively, according

to the following relation:

Duty Cycle (%) = Pulse Width (ms) × Frequency (Hz) × 100 %

To avoid interference with drone sensors, wireless connectivity is turned off and Python scripts are

run through secure shell (SSH) on the ground using an ethernet cable and stopped with the same

protocol upon landing.

8

2.1.2 RGB Camera

In order to acquire images from the visible range the Raspberry Pi Camera Module V2 was selected.

This camera module allows for perfect integration with the Raspberry Pi, and due to its reduced weight

it is a good choice for this application, since payload is a concern. Its main specifications are listed in

table 2.1.

Table 2.1: Summary of the specifications of the visible range camera.

RPi Camera Module V2

Size 25 x 23 x 9 mm

Weight 3.4 g

Sensor Resolution 3280 x 2464 pixels

Focal Length 3.04 mm

Horizontal FOV 62.2o

Vertical FOV 48.8o

Considering the difficulty that interpreting thermal imaging entails, the system will also employ the

RGB camera to provide a ground truth for fire situations where it is possible to obtain visual confirmation

from color images.

The camera is attached to the FLIR Vue Pro 1/4”-20 mounting hole through a 3D printed part de-

signed for that purpose, which is illustrated in figure 2.3.

Figure 2.3: 3D printed part to mount the camera module adjacent to the thermal camera.

The camera module connects to the RPi board through the CSI camera port, (see fig. 2.4) using a

30 cm ribbon cable acquired separately.

Figure 2.4: Installation of Raspberry Pi Camera Module V2.

As referenced before, on a software level the camera is triggered to record video using the Picamera

Python library.

9

2.1.3 Thermal Camera

All objects above absolute zero (0o Kelvin) emit thermal infrared energy. Since fire is a source of

extreme temperatures, thermal imaging sensors are a clear choice for a fire detection application.

What is referred to as thermal radiation is comprised by radiation with wavelengths in the 10-7 to

10-4 interval of the electromagnetic spectrum. Therefore, this gamma includes spectral bands in the

ultraviolet, visible, and infrared region of the spectrum, as can be observed in figure 2.5.

Figure 2.5: Electromagnetic spectrum.

While this spectrum is rather ample, usually thermal cameras only cover a portion of it, which varies

depending on the model and the application for which it is intended. Besides sensing the radiation being

emitted from objects in the field of view (FOV), another critical aspect concerning thermal cameras is

the ability to measure temperature.

Temperature measurement could easily allow the detection of fire due to the corresponding heat

spike generated. However, not all thermal cameras come equipped with radiometric sensors, which

adds to the difficulty of the identification task considering the high variability of image context. Later

in chapter 3, an extended study is made of the implications this difference between radiometric and

nonradiometric cameras has in the data acquired by both.

In general, thermal imaging systems are expensive, and too large and heavy to be used onboard

small UAVs, due to payload and autonomy limitations. Recently, several small size cameras, figure 2.6,

were brought to market to provide a solution for equipping these vehicles with thermal imaging sensors.

That is precisely the case of the model employed in this work, FLIR Vue Pro.

Figure 2.6: On-board thermal cameras.

10

FLIR Vue Pro

Table 2.2: Summary of FLIR Vue Pro specifications.

FLIR Vue Pro 336 9mm

Size 63 x 44.4 x 44.4 mm (including lens)

Weight 92.1 - 113.4 g

Sensor Resolution 336 x 256 pixels

Focal Length 9.0 mm

Horizontal FOV 35o

Vertical FOV 27o

Spectral Band 7.5 - 13.5 µm

As specified in table 2.2, the FLIR Vue Pro records in the 7.5 to 13.5 µm spectral band, meaning it

operates in the region denominated as the Far Infrared (FIR) or LWIR, as figure 2.5 indicates.

A key requirement for a fire identification application is that images are available in real-time, so

that an algorithm can be developed for online classification. For FLIR Vue Pro, image capture can be

triggered either by pairing the camera through bluetooth with a mobile app, or remotely using PWM

signals.

Although this camera has MAVLink compatibility for automated image capture and image geo-

tagging, through a port connection that enables access to two camera controls over PWM commands, it

is impossible to have access to the images in real-time, only to record them in a microSD memory card.

While this limitation is significant, as metadata that could be automatically recorded is lost, a feasible

workaround is to trigger the camera via PWM and transmit video over to a ground station. The functions

of the PWM commands have to be configured by changing the settings in the FLIR UAS mobile applica-

tion, and can be programmed to change color palettes, start and stop recording, or trigger the camera

zoom from a radio controller.

In fact, using video is a superior solution as it provides a higher degree of flexibility, because it allows

a variable timelapse. Fire is a dynamic event that evolves over time and as such the analysis of temporal

features is of concern. However, at this exploratory stage it is still uncertain which time interval would be

more adequate to yield the best classification possible. So, by recording video instead of single images,

the video frames can later be discretized with different sampling frequencies to assess which works best.

Additionally, the quantity of frames that can be extracted from video greatly outnumbers the amount

that could be recorded through image capture. The smallest sampling for timelapse available for image

capture is a 1 second interval, as can be set in-App for this camera. In contrast, for video recording the

frequency is 8.3 Hz, which means that video yields 25 frames every 3 seconds, which is more than 8

times what could be achieved through image capture.

Having described the data acquisition system implemented and presented its principal components,

what follows is the explanation of the conditions in which the experimental tests were conducted.

11

2.2 Experimental Tests

An objective of this work is to assess the behavior of thermal cameras in an array of fire situations.

To that end, trials were carried out indoors at Laboratory for Forest Fire Studies (LEIF), figure 2.7, in

collaboration with a team from the Association for the Development of Industrial Aerodynamics (ADAI).

Figure 2.7: LEIF in Lousã, Portugal.

For one of the experimental setups tested, figure 2.8, a UAV was equipped with the image acquisition

system as previously presented, and short duration flights were performed to record fire ignitions and

initial spread.

Figure 2.8: Experimental setup with a drone and static platform.

Using a controlled environment in these experiments allowed for the acquisition of video sequences

from static and moving platforms, as well as from different types of thermal cameras. In order to have a

ground truth for this preliminary study, in addition to the two cameras presented in the previous sections,

data was also recorded from an elevated platform using a radiometric thermal camera, FLIR SC660.

12

The same devices were employed for another type of test related to camping context, in which a tent

was burned to study how having obstacles in between the camera and the fire source affects computer

vision algorithms. This time around, image capture was performed from a static elevated platform as

figure 2.9 shows.

Figure 2.9: Experimental setup for the burning of a tent.

For these indoor experiments images were gathered with three different devices, which resulted in

images as the ones illustrated in figure 2.10, for the same instant in time.

(a) Radiometric (b) Nonradiometric (c) Color

Figure 2.10: Images acquired with (a) FLIR SC660, (b) FLIR Vue Pro and (c) Pi Camera V2.

Comparing the images obtained using the three video sources, it is noticeable the difference in type

of sensory data, as well as in the field of view, which is due to the fact that each camera has its particular

resolution. The image from the FLIR SC660 has a 640x480 spatial resolution, and FLIR Vue Pro with

336x256, has almost half the first resolution diagonal. Because both these cameras have a 4:3 aspect

ratio, the color camera was configured to capture video in the same aspect ratio, but with a resolution of

1640x1232. This particular resolution was chosen so that the camera recorded the full sensor area, in

order to cover as much area in the FOV of the camera as possible.

13

Table 2.3 presents a summary of the tests developed, as well as the respective conditions.

Table 2.3: Summary of the experimental tests.

Experimental Tests Data Acquired

ID Description Conditions Platform Color Thermal Radiometric T. Nonradiometric

Test 1 Straw Burning Static Elevated Platform

Test 2 Tent Burning Static Elevated Platform

Test 3 Straw Burning Moving Drone

Test 4 Boom Festival Moving Balloon – –

The use of both radiometric and nonradiometric thermal cameras in the laboratory tests enables the

development of an analysis of the sensor response, and understand how image statistics change for the

set of experimental scenarios. In the following chapters, these cases will be examined in detail. The

focus on color imaging will be addressed further down in chapter 6.

Since further description of these trials is more valuable in context with the approach for each type

of data, this is done extensively in each respective chapter. Table 2.4 breaks down the sections where

each type data is featured.

Table 2.4: Summary of the analyses applied to the experimental tests.

Chapter Information Data Acquired

Chapter Description Tests Color Thermal Radiometric T. Nonradiometric

3 Thermal Imaging 1, 4 – Section 3.3.1 Section 3.3.2

4 Color Segmentation Heuristic 1, 2, 3, 4 – Section 4.2 Section 4.2

6 Implementation 1, 2, 3 Section 6.4 – –

14

Chapter 3

Thermal Imaging

Typically, thermal cameras only produce monochromatic images, unlike color cameras, which make

use of 3 color channels, e.g., RGB. That is precisely the case of FLIR Vue Pro, which in the raw format

produces a 14-bit monochromatic image in grayscale with 16384 levels of intensity. By employing an

array of proprietary camera features, the camera firmware processes the video from the monochromatic

raw format to a video encoded in pseudo-color, according to the filter selected. First, the amounts of

radiance registered by the sensor are converted to a grayscale image with intensity levels. Only then,

the firmware attributes to these levels a scale of colors, according to a specified palette.

At this juncture, this brief introduction serves to explain on a high-level how thermal images are pro-

cessed. Throughout this chapter, as we explore thermal imaging metadata, we will see this process has

more layers of complexity.

In thermal imaging, a variety of color palettes is available to enhance the visual interpretation of the

different amounts of radiance captured by the sensors. In this work, the GrayRed filter was selected,

which helps to draw attention to the hottest objects in a scene, by applying high-contrast color values

with a divergent color scheme. The GrayRed color palette, which is composed by 120 discrete color

samples, can be visualized in figure 3.1.

Figure 3.1: GrayRed color palette.

While a priori it is unclear if employing this color palette specifically will yield any benefit in clas-

sification performance, FLIR preset filters will be used as it facilitates the development of future work,

providing a basis for comparison of results. For the same reason, the same color palette was applied to

the raw data acquired with FLIR SC660, using FLIR ResearchIR software.

15

3.1 Thermal Imaging Data

As mentioned previously, when cameras are equipped with radiometric sensors, with access to com-

mercial software it is possible to not only have an image where contrast depicts temperature differences,

but also have the temperature metadata for each pixel. This section begins by studying an example of

radiometric data, and later proceeds to nonradiometric instantiations.

The next example, illustrating a fire ignition, figure 3.2, explores spatial differences in the images first,

and later the temperature profile of the image scene is analyzed. Afterwards, the metadata obtained from

radiometric and non-radiometric images are compared for different situations.

(a) Frame 80 (b) Frame 86 (c) Frame 121 (d) Frame 167

Figure 3.2: Fire ignition detection with a radiometric thermal camera.

As can be observed in figure 3.2a, right before the ignition, the majority of the frame has green

colored pixels, whereas in figure 3.2b, as the fire starts contrast shifts, the objects with temperatures

close to the ambient temperature are represented by pixels with a whiter shade.

It is important to notice that the scale that illustrates the differences in temperature adjusts with re-

spect to the object in the scene with the maximum temperature. That can observed by comparing the

first and second frames. Whereas, in the first the person is in red, in the second the person is depicted

with a dark green. This happens because radiation being emitted by the greatest heat source is mea-

sured by the sensor with a much higher intensity than the radiation emitted by the person. While the

temperature of the person remained unaltered, the sensor scale of the camera suffered an adjustment.

This makes perfect sense, because now the body temperature is much closer to the ambient temper-

ature than to the temperature of the fire. Comparing the first and last frames highlights that as the

temperature differences increase the contrast in the image adjusts accordingly. The temperature profile

of this example can be observed in figure 3.3.

60 80 100 120 140 160 180 200
Frame number

0

100

200

300

400

500

600

T
e

m
p

e
ra

tu
re

 (
°C

)

Max Temperature

Mean Temperature

Min Temperature

Figure 3.3: Temperature profile for a fire ignition.

16

As can be seen from the temperature graph in fig. 3.3, the first two frames illustrated in fig. 3.2 do not

correspond to a fire ignition with its full extent, since the temperature decreased after the initial spike.

Yet, these are enough to highlight that a small source of very high temperatures is sufficient for the

sensor to adjust the color of the surroundings in the scene. This demonstrates that radiometric cameras

have high sensitivity, thus being adequate to provide an accurate ground truth at this stage.

Conversely, for nonradiometric thermal images the metadata is limited to the raw digital signals out-

putted from the sensor analog/digital converter. These raw values represent the levels of the sensor bit

resolution, that is a characteristic of each camera.

In this work, two different thermal cameras were used, a radiometric model, FLIR SC660, and a

nonradiometric, the FLIR Vue Pro, presented in detail in section 2.1.3. These have distinct spatial, bit

and temporal resolution, which are specified in table 3.1.

Table 3.1: Sensor resolution.

Camera FLIR SC660 FLIR Vue Pro 336 9mm

Spatial Resolution 640 x 480 336 x 256

Bit Resolution 16-bit 14-bit

Temporal Resolution 15 Hz 8.3 Hz

This chapter deals exclusively with raw data for both cases separately, so spatial and temporal reso-

lution are not a concern at this time. In the following chapters, however, the data from both cameras are

presented side by side, and the difference in temporal resolution presents a difficulty for the comparison

of results of videos from both cameras. To avoid the issue concerning temporal resolution the videos of

FLIR Vue Pro were oversampled and converted to 15 Hz using FFMPEG so that the frames from each

camera match. Regarding the spatial resolution, images were left with the original size since it highlights

aspects related to data variability when dealing with different thermal imaging sensors.

Using the FLIR ResearchIR software, the metadata encoded in the images can be visualized inter-

actively, and we have access to the scale of temperatures for the radiometric case. These temperatures

vary in each frame as the scale adjusts to the maximum temperature in the scene. As an example,

figure 3.4a depicts a fire situation where the temperature scale covers the full range of the color palette,

with pixels of red, green and gray tones. Similarly, for the non-radiometric case, figure 3.4b, the software

applies the scale according to the intensity levels captured, but there is no temperature assignment.

Notice, however, this instance is in a laboratory environment and the areas depicted in red are not fire,

but 250 W lamps1 whose temperature can exceed 300oC.

For both cases, the intensity level is given by a digital number assigned by the sensor analog to digital

converter. The difference is that for radiometric data these raw signals are converted to a temperature

value according to the camera calibration. Nonetheless, these measurements should be corrected a

posteriori, since the setup for experiments is not always the same. Consequently, the encoded radio-

metric data will not be accurate if the measurements are not properly adjusted.

Since the color scale adapts as temperatures in the scene change, the following sections will center

attention on understanding how the sensor reacts to what is actually being measured.

1Lamp reference: Osram Powerstar HQI-E 250W/N/SI E40.

17

(a) Radiometric data

(b) Non-radiometric data

Figure 3.4: Comparison of thermal imaging data.

18

3.2 Sensor Measurements

One of the main difficulties of interpreting thermal imaging data is the constant color adjustment of

the image. In order to get a better sense of what is the output of the sensor prior to RGB encoding, it

is convenient to first analyze how the raw digital signals and the respective temperature measurements

evolve over time. Figure 3.5 presents this comparison for a fire ignition captured from an elevated

platform using a radiometric camera.

1 50 100 150 200 250 300 350 400 450 500

Frame Number

150

250

350

450

550

T
e
m

p
e
ra

tu
re

 (
°C

)

8191

16383

32767

65535

D
ig

it
a
l
N

u
m

b
e
r

(1
6
-b

it
)

Max A/D Counts
Max Temperature

Figure 3.5: Temperature versus A/D Counts.

The most immediate observation from the graph is that the change in maximum temperature is highly

correlated to the increase in the maximum value of A/D counts for each frame. This gives the indication

that we should investigate deeper how the software computes the temperature data. Furthermore, from

the graph in figure 3.5, it is interesting to note that around frame 350, the sensor output of maximum

raw signals is close to the limit of the sensor resolution, 216 = 65536 levels, and this corresponds to a

maximum temperature of 550oC. Although the official datasheets of FLIR SC660 mention an option of

extended measurement range up to 2000oC, in this instance the camera is clearly configured for a lower

temperature interval.

Granted that there is a strong relationship between the sensor digital output and the temperature

values, if we were to know the parameters responsible for this conversion, it would be possible to apply

the same relation to the raw digital signals from the non-radiometric camera. Hence, it makes sense to

perform this analysis, for data from both cameras, at the same time. Making this study in parallel allows

for comparison with the ground truth data which serves as validation for this approach.

In order to clarify what is the actual working temperature range, we will resort to the metadata en-

coded in the image files for both cameras. In the case of the radiometric camera, these are SEQ files,

that include multiple sequential frames with the raw digital values. Conversely, for the nonradiometric

camera, both TIFF and JPEG files are used. The first can be of single or multiple frames, and the latter

include both the RGB encoded image as well as the raw TIFF file. The metadata from these files can be

extracted using Exiftool, an application capable of handling a variety of metadata formats.

19

By using Exiftool, it was possible to discover the temperature range of measurements for both cam-

eras, as listed in table 3.2. These camera parameters are characteristic of each particular sensor.

Table 3.2: Camera Temperature Limits.

Camera FLIR SC660 FLIR Vue Pro 336 9mm

Temperature Range Max (oC) 500 135

Temperature Range Min (oC) 0 -25

Temperature Max Clip (oC) 550 150

Temperature Min Clip (oC) -20 -60

Temperature Max Warn (oC) 500 135

Temperature Min Warn (oC) 0 -25

Temperature Max Saturated (oC) 550 150

Temperature Min Saturated (oC) -60 -60

Observing the temperature intervals of both cameras it is simple to verify that they have quite distinct

sensing capabilities. This new information listed above is not provided in the official datasheets, but is

extremely important. In what regards FLIR Vue Pro, the fact that the sensor saturates at 150oC can

potentially be a limitation for a fire identification application. Considering that fire reaches much higher

temperatures, a detection algorithm solely based on temperature would most likely be prone to false

alarms.

Calibration Parameters

Also with Exiftool it was possible to uncover the full list of camera parameters for both cameras, which

includes several constants related to atmospheric radiation transmittance. Considering that one may not

be familiar with using Exiftool and command line instructions, the camera calibration parameters are

listed in table 3.3, since they can be useful for future reference.

Table 3.3: Camera Parameters.

Camera FLIR SC660 FLIR Vue Pro 336 9mm

Emissivity 0.95 0.94

Object Distance (m) 1.0 50.0

Reflected Apparent Temperature (RAT) (oC) 20 22

Atmospheric Temperature (oC) 20 22

IR Window Temperature (IRWT) (oC) 20 22

IR Window Transmission 1.0 1.0

Relative Humidity (%) 50.0 45.0

Planck R1 17647.318 17096.453

Plank B 1484.7 1428

Planck F 1.9 1.0

Atm. Trans. Apha 1 0.006569 0.006569

Atm. Trans. Apha 2 0.012620 0.012620

Atm. Trans. Beta 1 -0.002276 -0.002276

Atm. Trans. Beta 2 -006670 -006670

Atm. Trans. X 1.9 1.9

Planck O -7840 -342

Plank R2 0.082014173 0.046642166

Peak Spectral Sensitivity (µm) 9.7 10.1

Raw Format 16-bit 14-bit

While these parameters give some insight in what are the parcels at stake for the temperature con-

version, relating the names of these constants to the variables they represent is not immediate. Whereas

20

the units of some parameters are easy to infer, like the temperature expressed in degrees Celsius, most

of them are not clear at all. Table 3.3 is purposely divided into 4 sections, as the items in each relate

to different parts of the computation. The constants are displayed in the order they are encoded in the

metadata, but this is not necessarily the sequence in which they are used.

3.3 Adaptive Color Scale

As mentioned previously, understanding how the camera adapts the color scale is one of the principal

difficulties in interpreting thermal imaging data, which is essential to devise a robust computer vision

algorithm. For FLIR Vue Pro the adaptive color assignment depends on an array of camera features

such as Digital Detail Enhancement (DDE), Active Contrast Enhancement (ACE) and Smart Scene

Optimization (SSO). These algorithms tune the color assignment and can be adjusted manually using

FLIR UAS mobile app. More details about these controls can be found on the official documentation [28],

but for this work default settings were used.

From the analysis of the metadata of the image and video files, two exif tags were identified that have

paramount influence in adapting the color scale, the ”Raw Value Median” and ”Raw Value Range”.

The median and range values are encoded separately in the metadata of the files, but do not always

correspond to the values that would be calculated from the raw frames. The reason for this is probably

some proprietary in-camera processing to deal with noise and other type of outliers. For FLIR SC660 the

calculated values do not match the encoded values in the files, whereas for FLIR Vue Pro both match

perfectly for every image.

With the median and raw values from the metadata tags, the maximum and minimum values of the

color scale are computed as follows:

Raw Value Max = Raw Value Median +
Raw Value Range

2
(3.1)

Raw Value Min = Raw Value Median−
Raw Value Range

2
(3.2)

Thermal cameras are calibrated using black-body emitters, in a slow process to generate calibration

curves, with successive small increments in temperature [29]. Instead, in this section, two examples will

be presented for the radiometric and non-radiometric cameras used in this work, in operation conditions.

The objective is to investigate further the response of the sensor, and the influence of these parameters.

The following examples focus on real situations pertaining to fire identification in camping parks.

First, the next case demonstrates the sensor response in a fire situation with extreme temperatures,

for the radiometric camera. The second case, in turn, illustrates the sensor response retrieved from

nonradiometric data acquired with a balloon at high altitude prior to the development of this work.

21

3.3.1 Controlled Fire Example

For this example, data were acquired using a radiometric camera, FLIR SC660, on an elevated

platform, as depicted earlier in figure 2.8. The purpose of this example is to analyze how a fire event is

captured on a sensory level, and understand the way the color scale adapts in such conditions. To that

end, figure 3.6 illustrates the evolution of the raw values calculated internally by the camera firmware,

which were read from the metadata embedded in the files.

T
max

 (550)

T
e
m

p
e
ra

tu
re

 (
°C

)

100 200 300 400 500 600 700

Frame Number

8191

16383

32767

65535

D
ig

it
a
l
N

u
m

b
e
r

(1
6
-b

it
)

Raw Value Max
Raw Value Median
Raw Value Min

Figure 3.6: Evolution of the range and median raw values for a controlled fire.

On the one hand, this example reveals the camera has a processing level that does not update the

scale in every frame but rather in steps of 30 frames. Taking into account this device works at 15 Hz,

corresponding to 15 frames per second, the color scale is updated once every 2 seconds.

On the other hand, this graph demonstrates the stretching of the color palette as maximum raw values

increase, which attests to the fact that the filter adjusts the scale with respect to the object in the scene

with the maximum temperature. Although the color assignment is not a simple linear assignment of

values from the color palette, the amplitude of the range for extreme differences of temperature justifies

why the green pixels disappear in these conditions. To aid this conclusion, figure 3.7 depicts selected

frames from this sequence.

(a) Frame 1 (b) Frame 100 (c) Frame 200 (d) Frame 300

Figure 3.7: Fire ignition detection with a radiometric thermal camera.

The sequence of frames selected is evidence that for a fire situation the mid-range band of the color

scale disappears rapidly, which can be verified in the difference between frames 100 and 200 in fig. 3.7.

Considering the full extent of the sensor bit resolution, despite this change occurring at a low intensity

level, the maximum temperature of the corresponding frames are already above 200oC (see fig. 3.5).

22

3.3.2 Boom Festival Example

Prior to the development of this work, under the scope of project Firecamp 2, data were acquired at

Boom Festival, in Idanha-a-Nova, Portugal. For these tests nonradiometric data were recorded outdoors

with resource to a tethered balloon at a significantly higher altitude than the previous examples.

The fact that for these tests thermal data were only collected using FLIR Vue Pro has some draw-

backs. On the one hand, the lack of ground truth for this example imposes a considerable difficulty in

the interpretation of the images. On the other hand, the characteristics of this moving aerial platform,

and the conditions in which these tests were performed are real operation conditions for this imaging de-

vice. As introduced in table 3.3, the calibration parameters of this camera take into account atmospheric

transmittance and air humidity which are not negligible at higher altitudes.

The tests performed encompass the aerial surveying of the Boom Festival venue, from which two

distinct situations were identified. The first, depicted in figure 3.8, does not register strong heat sources

in the camera FOV, thus the raw range does not expand.

T
max

(150)

T
e
m

p
e
ra

tu
re

 °
C

50 100 150 200 250 300 350 400 450 500 550

Frame Number

8191

16383

D
ig

it
a
l
N

u
m

b
e
r

(1
6
-b

it
)

Raw Value Max
Raw Value Median
Raw Value Min

Figure 3.8: Raw measured with Flir Vue Pro from high altitude with a 5 second timelapse.

Although not much can be inferred from this profile, it provides a baseline for comparison with other

situations, such as the one is illustrated in figure 3.9.

T
max

(150)

T
e

m
p

e
ra

tu
re

 (
°C

)

10 30 50 70 90 110 130 150

Frame Number

8191

16383

D
ig

it
a

l
N

u
m

b
e

r
(1

4
-b

it
)

Raw Value Max
Raw Value Median
Raw Value Min

Figure 3.9: Raw measured with FLIR Vue Pro for community kitchen area.

For this instance the sensor registered several spikes, with the raw signals assuming values much

higher than the defined baseline. By inspecting the corresponding sequence of frames, presented in

figure 3.10, what stands out is that the spikes are triggered when the same area enters the FOV of the

camera. With knowledge of the venue premisses, it is possible to identify this place as the community

kitchen area, which is equipped with rocket stoves. This is an area where fire detection is to be expected,

in addition to other heat sources such as objects at elevated temperatures.

23

(a) Frame 47 (b) Frame 48 (c) Frame 49 (d) Frame 50

(e) Frame 80 (f) Frame 81 (g) Frame 82 (h) Frame 83

Figure 3.10: Heat detection with a nonradiometric thermal camera.

Regarding the color scale, this example, once again, confirms that when the range of temperatures

in the scene expands, the percentage of green in the image reduces considerably. However, considering

this camera was programmed to take photographs with a 5 second time-lapse, it is unknown the time

the firmware takes to adjust the color scale. Additionally, taking into account the altitude at which the

images were captured, this result proves that the color scale adapts even when hot objects have low

spatial resolutions. Moreover, this example highlights the requirement of having a ground truth for a fire

detection computer vision algorithm, since when the frames become whiter, the objects in the scene are

almost impossible to discern.

3.4 Discussion

This initial analysis illustrates to some extent the principle behind how these devices work. However,

as this study continues in the following chapter, we will see that this alone is still a very superficial

understanding of the capabilities of this type of sensors. Although resorting to the raw digital signal or

an actual temperature measurement gives an absolute reference, this approach neglects the content of

the images which are rich of relevant information.

Additionally, having identified that the sensor of FLIR Vue Pro saturates at 150oC poses a red flag

in what concerns fire detection. The example given from Boom Festival, serves as an indication that a

low saturation level of the sensor would lead an algorithm to trigger a substantial amount of false alarms

following this approach. A possible solution for this problem would require prior geofencing of low-risk

areas such as the community kitchen area. However, at the other end of the stick, if a fire incident was to

start precisely in that area the algorithm would be blind to it. Notwithstanding, from a safety standpoint,

the aim should not be to find a universal solution, but rather to have redundant sensors to ensure most

risk situations are covered. In that sense, the monitoring of this particular variable could be of great

value, if included in a broader surveillance system.

Hence, to further explore the potential of thermal imaging data, the analysis will continue in the

following chapter, with a color segmentation approach.

24

Chapter 4

Color Segmentation Heuristic

From the literature review, a common computer vision approach to fire detection is through color

segmentation [13, 14, 15]. Additionally, from what was just observed in the analysis of the ground truth

images, a color segmentation heuristic presents itself as an obvious approach.

Before this work, under the scope of Project Firecamp 2, a preliminary analysis was performed using

a segmentation heuristic to attempt to detect fire presence in a real-world setting. In part, this effort

focused on red segmentation in the RGB and HSV color spaces, but had some limitations mainly due

to exploring only a single feature in image data. Since the hottest objects are depicted in red, and the

objective is to detect fire, this assumption seemed reasonable. Now, however, with access to more data

as well as radiometric information, this approach will be extended.

4.1 Color Segmentation

Segmentation is a computer vision process which consists of dividing an image into regions accord-

ing to a particular image property, e.g., gray level, color, texture, depth or motion. Taking into account

the nature of thermal images, color segmentation will partition the image into mutually exclusive regions

in function of the color of each pixel. Therefore, since the color assignment depends on the relative

temperature between all the pixels in the scene, it is in fact segmentation by temperature.

While, even for a non-expert in thermal imaging, this interpretation might appear to be simple, trans-

lating the human vision perception to a robust computer vision algorithm is not always as straightforward.

With the objective of developing a segmentation heuristic, the study of the example described in sec-

tion 3.1 will now be continued.

Considering that thermal images in pseudo-color are used to highlight differences in temperature,

a segmentation heuristic should take into account the color bands used for such purpose. Recalling

the images in figure 3.4, these colors are red, green and gray, as assigned by the GrayRed filter. The

access to the color assignment of the filter is essential to devise the segmentation heuristic, without it

we would be picking color ranges blindly.

To illustrate how the division of the color palette was made, figure 4.1 shows the extension of each

25

partition of the scale.

15% 40% 45%

Figure 4.1: Division in color segmentation classes.

The complete scale of 120 discrete color values, which depicts increasing temperature from gray to

red, was divided into three segments. First, the gray segment includes 18 color levels, which represent

15% of the full scale. The mid-range is composed of 48 colors of green tones, which correspond to

40% of the scale. The remainder is the red part, that comprises the last 45% of the color palette, and is

defined by 54 color levels. Therefore, from the colors presented in figure 3.1, the segmentation bands

are defined for the three classes as specified in table 4.1.

Table 4.1: Segmentation thresholds.

Gamma Gray Green Red

Channels R G B R G B R G B

Upper limit 253 199 185 143 169 157 255 73 71

Lower limit 149 171 160 98 90 86 103 89 85

Although the colors in table 4.1 are represented in the RGB color space, the division in these three

classes helps to convey how the color distribution varies over time. In opposition, if this analysis were to

be done in terms of absolute values of each color channel (Red, Green, and Blue), the result would be

less intuitive and of complex interpretation.

In order to extend the analysis done previously, the radiometric data is juxtaposed with the color

segmentation results as depicted in figure 4.2. There are several regions in the graphs that are of

particular interest, so this analysis will start with an overall view before getting into more specific insights.

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

200

400

600

T
e
m

p
e
ra

tu
re

 (
°C

)

T
min

T
max

T
mean

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Frame number

0

20

40

60

80

100

Im
a
g
e
 P

ix
e
ls

 (
%

)

Gray Pixels
Green Pixels
Red Pixels

Figure 4.2: Fire detection with radiometric camera for Test 1.

26

First, in the region up until the ignition, around frame 70, green represents the largest percentage

of the image pixels, with white and red representing a small amount for this case. Then, around the

mid 80’s there is a considerable shift, where white pixels become predominant instead of the green

pixels. This occurs due to the change in maximum temperature and demonstrates that the most relevant

features in the image are the percentage of green and white pixels.

Contrary to what was previously thought, this reveals that the hottest points are not the most relevant

after all, and this straightforward example of a simple fire ignition further shows that the area of red pixels

is by far the one with the least representation. Hence, by virtue of the analysis now made, it becomes

evident that monitoring the variation in red percentage was a misconception, since it is clear that the

most significant alterations occur for the green and white percentages of the image.

Conversely, focusing on the temperature profile, around frame 73, the small bursts in temperature

are justified by the ignition of the lighter, in testing prior to the beginning of the fire, and shows how

sensitive the measurements with the radiometric camera are. At the same time, in the pixel graph, for

the same frames, it is clear that the camera does not respond immediately to this change. Only when the

temperature differences become more extreme, after frame 80, a steeper alteration in the image color

distribution takes place. The reason for this might be the fact that the camera only adjusts the range of

the color scale every 30 frames, as was identified in section 3.3.1.

In turn, examining the ending section of the graph, around frame 110, it can be observed that there

is a slight increase in the percentage of gray pixels. Thus, confirming the tendency that as the maximum

temperature increases and the difference between maximum and minimum temperatures is greater, the

image takes a lighter tone.

Up until now, the frames from 80 until 110 were purposely left out of the analysis, because they re-

quire a more comprehensive understanding of what happened and that is not visible through the previous

images. In this test scenario there was first an initial ignition that did not start the fire completely, thus

requiring a second ignition. That is the reason why there is an initial peak in temperature at frame 86,

but the gradual increase in maximum temperature only occurs from frame 110 onwards.

Although at first glance this profile might not seem ideal for this analysis, it actually highlights perfectly

an essential consideration in the development of an algorithm for fire detection. This case is an example

of what could potentially represent a false alarm, and should, or not, be picked up by the algorithm

depending on how conservative the threshold for an alarm is.

Nevertheless selecting an adequate threshold requires a comprehensive set of target situations. As

such, for the success of this type of approach, it is imperative to have a clear definition of what are the

risk situations to be targeted first. As a starting point, the data relative to the experimental trials will be

analyzed.

At this preliminary stage, the intent is to explore the data collected and ascertain the limitations

associated with thermal imaging. As such, there will be no further feature transformation at this point,

since it would be detrimental to the objective of understanding the capabilities of different sensors. To

that end, the following sections will analyze in detail the array of situations tested.

27

4.2 Validation Examples

The experimental trials cover three distinct scenarios of fire risk situations in camping parks. These

situations encompass burning of forest fuels like straw, but also include highly combustible materials

characteristic to the camping context. The first scenario consists of a controlled ignition of straw, and

the second corresponds to the burning of a camping tent, both in a laboratory environment. The last is

a real-world setting in a camping park at Boom Festival, though no fire incidents have occurred.

For the laboratory tests, distinct setups were used to study different aspects related to the perfor-

mance of computer vision algorithms. This section will focus on presenting the objectives of each of the

tests and describe the conditions in which they were carried out. Additionally, some initial comparisons

are made from data acquired with both cameras. Subsequently, in section 4.3, the results from the

segmentation heuristic will be presented along with the discussion of the outcomes of this approach.

4.2.1 Straw Examples

To assess the advantages and limitations of thermal imaging it makes sense to start from simpler

cases and work up to more complex ones. Following that reasoning, for the controlled ignition of straw,

two types of tests were conducted. For the first case, videos were recorded with both radiometric and

non-radiometric cameras from a static elevated platform. Some images corresponding to this test are

presented in figures 4.3 and 4.4, respectively.

(a) Ignition point (b) 2.5 seconds later (c) 15 seconds later (d) 25 seconds later

Figure 4.3: Fire detection with Flir SC660 (radiometric).

(a) Ignition point (b) 2.5 seconds later (c) 15 seconds later (d) 25 seconds later

Figure 4.4: Fire detection with Flir Vue Pro (nonradiometric).

By comparing the images in figures 4.3 and 4.4, it is possible to observe that the distinct FOV will

affect the image statistics. Moreover, a noticeable difference is that the color adjustment after ignition

occurs at a much faster pace for the radiometric sequence in figure 4.3. The reason for this is that for

28

the radiometric images, the color assignment is done externally to the camera using Flir ResearchIR

software, whereas the non-radiometric pseudo-color images are encoded in-camera.

A second test again considers the burning of straw, with the radiometric camera positioned in an

elevated platform. The nonradiometric image acquisition was, in this case, performed from a moving

platform, using the UAV presented earlier in chapter 2. To illustrate the new vantage point, figure 4.5

juxtaposes images acquired from the radiometric camera on the platform to a nonradiometric and a color

image acquired with the aerial system mentioned.

(a) Radiometric image (b) Nonradiometric Image (c) Color Image

Figure 4.5: Perspectives with 3 different cameras.

Both cases presented so far comprise the same type of test, and data were recorded with the three

devices, with the only difference being the point of view for the second case. These instances account

for situations where the fire is visible to the naked-eye, thus could, in theory, be detected using color

images also. Notwithstanding, one of the main advantages of using thermal imaging is the ability to see

beyond the visible spectrum, thus being capable of detecting sources of thermal radiation to which there

is no direct view. The following example aims to harness this advantage in another set of conditions.

4.2.2 Tent Example

In a camping environment, fires can originate from inside tents which means it is important to study

these cases due to their elevated propagation potential. An important aspect of this type of instances is

that the fire sources are obstructed by a somewhat opaque material. To evaluate this situation, a test was

performed under static conditions on an elevated platform, again using the radiometric, nonradiometric

and color cameras. Akin to the samples given above for the straw tests, figure 4.6 depicts the different

types of data collected, now for the case of the tent test.

(a) Radiometric image (b) Nonradiometric Image (c) Color Image

Figure 4.6: Image data from the burning of camping tent.

29

The images presented in figure 4.6 illustrate a point in time where there is an actual fire inside the

tent, but is not visible to the naked-eye as can be observed in figure 4.6c.

In order to study this case, images from both thermal cameras are presented in figures 4.7 and 4.8,

respectively. These are complemented with the corresponding sequence captured with color camera, in

figure 4.9.

(a) Ignition point (b) 15 seconds later (c) 40 seconds later (d) 4 minutes later

Figure 4.7: Tent burning captured by Flir SC660 (radiometric).

(a) Ignition point (b) 15 seconds later (c) 40 seconds later (d) 4 minutes later

Figure 4.8: Tent burning captured by Flir Vue Pro (nonradiometric).

(a) Ignition point (b) 15 seconds later (c) 40 seconds later (d) 4 minutes later

Figure 4.9: Tent burning captured by RPi Camera Module.

Comparing with the previous tests, now, at an early stage, the area in red does not depict the actual

fire, but the heat built-up inside the tent. Observing the sequences in figures 4.7 and 4.8, it takes a

longer time for the camera to adjust the color scale. This extended timespan is due to the fact that a

semitransparent object is blocking part of the radiation.

From the color image sequence, in figure 4.9, it is difficult to ascertain if there is a fire occurring until

the last frame when the exterior part of the tent is already being consumed, and there is direct view of

the fire.

30

4.2.3 Boom Festival Example

This example concerns the trials from Boom Festival that were already introduced in a previous

chapter, specifically in section 3.3.2. In that section, some samples of the tests were already illustrated,

and for that reason are not repeated this time around. As discussed earlier, images were captured only

with FLIR Vue Pro, so there is no ground truth for this case.

Nevertheless, the analysis done for the previous examples will be performed for the nonradiometric

data. The interest in the study of this case is to assess how a segmentation algorithm would cope with

the movement of the acquisition system. This is of particular concern because, when capturing images

from aerial platforms, perturbations due to wind have a considerable effect on the acquired images.

Additionally, the effects of the lack of stabilization of the camera are amplified by its restricted FOV.

4.3 Results

This section explores the results obtained for the different scenarios. To that end, the results are

analyzed with two distinct approaches. The first addresses how the levels of each segmentation class

vary over time, to clarify the RGB encoding done by the cameras. In turn, the second considers the

image as a whole, to understand the change in image statistics.

In the following, the results of all the tests are presented side-by-side, since it facilitates their inter-

pretation. Yet, by comparing data of images from the two cameras, the effect of the difference in spatial

resolution should be taken into account.

Starting with figure 4.10a and 4.10b, these correspond to the first straw example (Test 1) captured

with FLIR SC660 and FLIR Vue Pro, respectively. Observing the variation in both graphs, it is evident

the ignition provokes an abrupt change in the gray and green levels. However, considering the ignition

occurs around frame 300, it is noticeable that the nonradiometric camera responds with some delay.

Moreover, examining the graphs from figures 4.10c and 4.10d corresponding to the tent example

(Test 2), the change in green and gray levels happens, once again, in an almost symmetric fashion.

But, for this instance, the adaptation of the color scale to the fire incident takes effect more slowly. The

increase in the percentage of red pixels occurs gradually but still at relatively low levels.

Looking at both of these tests, in which images were captured from a static platform, the variation

of the color levels develops in an incremental manner, so it would be difficult to establish a threshold

based on the change in consecutive frames. Additionally, the percentage of pixels in gray seems the

most promising feature to identify the occurrence of fire. Still, the image does not adjust so abruptly in all

cases, so if a low percentage of gray pixels is defined as a threshold, the classification algorithm would

be prone to false alarms.

While the results of examples covered so far were obtained from laboratory tests in a controlled

environment, under real operating conditions the movement of an aerial platform would cause far greater

inconsistency in the color levels. This can be observed by comparing figures 4.10e and 4.10f, which

depict the second straw example (Test 3) captured from a static platform and a drone, respectively.

31

500 1000 1500 2000

Frame number

0

25

50

75

100

Im
a
g
e
 P

ix
e
ls

 (
%

)

Gray Pixels

Green Pixels

Red Pixels

(a) Radiometric: Straw burning (static)

500 1000 1500 2000

Frame number

0

25

50

75

100

Im
a
g
e
 P

ix
e
ls

 (
%

)

(b) Nonradiometric: Straw burning (static)

500 1000 1500 2000

Frame number

0

25

50

75

100

Im
a
g
e
 P

ix
e
ls

 (
%

)

(c) Radiometric: Tent burning (static)

500 1000 1500 2000

Frame number

0

25

50

75

100

Im
a
g
e
 P

ix
e
ls

 (
%

)
(d) Nonradiometric: Tent burning (static)

500 1000 1500 2000

Frame number

0

25

50

75

100

Im
a
g
e
 P

ix
e
ls

 (
%

)

(e) Radiometric: Straw burning (static)

500 1000 1500 2000

Frame number

0

25

50

75

100

Im
a
g
e
 P

ix
e
ls

 (
%

)

(f) Nonradiometric: Straw burning (drone)

50 150 250 350 450 550

Frame number

0

25

50

75

100

Im
a
g
e
 P

ix
e
ls

 (
%

)

(g) Boom Festival (baseline)

10 30 50 70 90 110 130 150

Frame number

0

25

50

75

100

Im
a
g
e
 P

ix
e
ls

 (
%

)

(h) Boom Festival: community kitchen area

Figure 4.10: Color segmentation results.

Finally, examining the graphs from figures 4.10g and 4.10h, relative to the tests at the Boom Festival

with the tethered balloon, the movement of the camera, as well as the set 5 second time-lapse, have a

considerable effect on the sensor response. Now, the variation is no longer incremental, and consecutive

frames display abrupt changes in the percentage of either of the segmented colors.

Overall, the principal insight gained from this analysis is that the gray and green percentages adjust

in a complementary way, as the color scale adjusts to the hottest objects in the scene. Furthermore,

since for fire identification the ignition starts with low spatial resolutions, the red percentage is usually

the one with least influence for a fire detection heuristic.

32

A second approach allows for better intuitions regarding the image statistics. With a different type of

visualization, the emphasis is no longer on how the color levels change relative to each other, but rather

to the overall aspect of the images. Considering a color segmentation heuristic has to encompass in its

thresholds a wide range of scenarios, this enables the overview of percentage ranges for each situation,

as can be observed in figure 4.11.

500 1000 1500 2000

Frame number

0

25

50

75

100

Im
a
g
e
 P

ix
e
ls

 (
%

)

Gray Pixels

Green Pixels

Red Pixels

(a) Radiometric: Straw burning (static)

500 1000 1500 2000

Frame number

0

25

50

75

100

Im
a
g
e
 P

ix
e
ls

 (
%

)

(b) Nonradiometric: Straw burning (static)

500 1000 1500 2000

Frame number

0

25

50

75

100

Im
a
g
e
 P

ix
e
ls

 (
%

)

(c) Radiometric: Tent burning (static)

500 1000 1500 2000

Frame number

0

25

50

75

100
Im

a
g
e
 P

ix
e
ls

 (
%

)

(d) Nonradiometric: Tent burning (static)

500 1000 1500 2000

Frame number

0

25

50

75

100

Im
a
g
e
 P

ix
e
ls

 (
%

)

(e) Radiometric: Straw burning (static)

500 1000 1500 2000

Frame number

0

25

50

75

100

Im
a
g
e
 P

ix
e
ls

 (
%

)

(f) Nonradiometric: Straw burning (drone)

50 150 250 350 450 550

Frame number

0

25

50

75

100

Im
a
g
e
 P

ix
e
ls

 (
%

)

(g) Boom Festival (baseline)

10 30 50 70 90 110 130 150

Frame number

0

25

50

75

100

Im
a
g
e
 P

ix
e
ls

 (
%

)

(h) Boom Festival: community kitchen area

Figure 4.11: Color segmentation results.

Observing the results from the static tests, the threshold for gray pixels would have to be established

as low as 50%. Otherwise, the case from figure 4.11b would be misclassified. Having in mind that

the burning of the tent takes a longer period of time, the gray area should not be the only variable

33

considered. In this case, the gray area reduces due to the increase of red area, and not the green,

contrary to figure 4.11e.

Furthermore, the tests from moving platforms, namely the drone and the balloon, demonstrate that

a color segmentation heuristic, in this type of application, would have low reliability, if only based on

the analysis of thermal imaging data. Figure 4.11e, from a fire ignition in direct view of the camera,

and captured at close distance, illustrates the stochastic nature of the variation in the statistics for aerial

image capture. Moreover, the reduced values of gray percentage in this case, do not allow for the

development of a robust classification algorithm.

Regarding the tests at Boom Festival, which employed a balloon, it was possible to identify that image

sequences without fire have negligible percentages of gray pixels, figure 4.11g. But, in opposition, the

situations that evidence high levels of gray, figure 4.11h, are not exclusive to a fire incident. Considering

the low saturation level of the sensor, further tests would have to be conducted, in order to ascertain the

sensor response in such conditions.

4.4 Discussion

The experimental tests presented in this chapter provided several insights into how the thermal cam-

era behaves, in terms of RGB encoding. With the color segmentation devised, the array of situations

tested was characterized according to three distinct features, namely the percentage of the three seg-

mented classes: gray, green, and red.

As we have seen throughout this chapter, the variability inherent to dealing with thermal images,

which depict relative temperature differences, is a considerable challenge to the development of a robust

classification algorithm.

Although a set of heuristic rules could be fine-tuned to work for the situations presented, that type of

algorithm would fail, if applied to real-world scenarios. As the tests from Boom Festival illustrated, real

conditions account for much higher variability in image content.

Granted that the data from the limited amount of tests is insufficient to build a reliable algorithm at

this stage, the data available can still be explored using other techniques. Taking into account the com-

plexity of this classification task, and its feature-rich characteristics, more powerful techniques should be

employed in order to achieve better generalization.

To address this issue, the next chapter proposes an intelligent systems approach using deep neu-

ral networks. This type of architecture has recently achieved state-of-the-art results in computer vision

tasks. These models are prepared to handle high-dimensional data, and spatial features of high com-

plexity. Hence, the approach will depart from thermal imaging, and deal primarily with color images

without prior feature extraction.

34

Chapter 5

Deep Neural Networks

While for a long time artificial intelligence (AI) was a topic restricted to scientific circles, lately the

subject has received much attention from mainstream media. With the hype thriving on buzz words like

self-driving cars, smart personal assistants, and delivery drones. Despite that some overhype is brought

by the nature of the social media world we live in, the attention to this field is very much warranted.

In recent years, deep learning, a subset of AI, has been breaking records in scientific disciplines like

computer vision [30], and natural language processing [31]. On the one hand, AI is paving the way for

instrumental breakthroughs in the areas of autonomous vehicles and robotics, which will soon propel dis-

ruptive advances in the automotive industry [32, 33]. Also, new industries are emerging altogether with

service drones estimated to become a near 20-billion-dollar market by 2022. The increased complexity

of tasks requires models that can handle uncertainty and adapt to environment changes (i.e. obstacles,

disturbances). In that regard, deep neural network models, have achieved outstanding generalization

in classification tasks, and there is a growing interest in leveraging this type of learning ability to object

detection problems [34, 35, 36].

Deep neural networks (DNNs), in a modeling sense, are a class of nonlinear models capable of

learning multiple levels of abstract representations from raw data without the use of expert knowledge.

These models can have different learning schemes, but regardless all make use of a set of methods

known as deep learning, or, on a broader scope, machine learning.

Deep learning is an emergent branch in the field of AI, that has gained a lot of prominence in the last

few years. Its methods are based in representation learning and rely on stacking of simple nonlinear

modules to uncover multiple levels of representation. Starting from the raw input, features are mapped

to increased levels of abstract representation, to ultimately generate an output for classification [37].

Unlike classic neural networks, which require prior feature extraction, DNNs handle the feature ex-

traction within the model. The latter obtain the deep denomination as a result of stacking multilayers, and

are capable of dealing with raw high-dimensional data, i.e images, text, sound, or video. By comparison

with models derived from first principles, this type of model is known as a black-box.

In what concerns interpretability and transparency, black-box models are considered opaque, and

once data enters the system, there is a loss of meaning. Notwithstanding, while this could be consid-

35

ered an obstacle to the broad use of NN in many applications, it is not. As noted by Langley and Simon,

problems ranging from design, control or planning can be divided into a sequence of simpler classifica-

tion or prediction tasks, thus opening up the span of applications that can be tackled [38]. To illustrate

this reality, figure 5.1 depicts the interconnections of the broad applications of AI with its respective

domains and methods.

Figure 5.1: Artificial Intelligence: applications, domains, methods1

As becomes evident from the preceding graph, disciplines in this field are highly intertwined, and

several applications are subject to a varied array of different approaches. In particular, neural networks,

a cornerstone of artificial intelligence, has a substantial role in the machine learning stake represented

in the graph above. Front and center, also comes the relevance of Computer Vision (CV) in specific

related to image and video analytics.

Albeit the fact that black-box models do not give insight into why, in turn they excel at answering the

questions of what and when, and that output in and of itself can be valuable in many different contexts.

In the case in question, the point of using a black-box model is precisely to leverage these capabilities

in a task that requires classification of high-dimensional data, and for which it would be unfeasible to

establish efficient algorithms for large amounts of data.

After this introduction, this chapter is organized as follows. First, section 5.1 begins by presenting

the state-of-the-art of computer vision using artificial neural networks focusing on the recent architectural

advances. This is complemented with an overview of the current landscape of deep learning frameworks

followed by a more centered framing of the scientific contributions regarding the problem of video clas-

sification. Then, section 5.2 focuses on convolution neural networks with the explanation of the building

blocks of this type of architecture. Subsequently, section 5.3 introduces the Inception V3 model in detail,

and ultimately in section 5.4 the optimization and backpropagation algorithms are presented.

1 Adapted from: http://blog.luxresearchinc.com/blog/2015/10/2848/

36

5.1 Neural Networks for Visual Recognition

A neural network (NN) is a nonlinear model built to mimic the way the human brain processes infor-

mation, and is composed by a network of parallel and distributed computational elements called neurons.

These data-driven models gather their knowledge, depending on their learning scheme, either through

detection of patterns by mapping inputs to outputs (i.e. supervised learning, reinforcement learning), or

by finding relationships in the data provided (i.e. unsupervised learning).

Historically, the basis for these models originated with the model of a neuron proposed by McCulloch

and Pitts [39], that later evolved to the perceptron model introduced by Rosenblatt in 1957 [40]. Subse-

quently, emerged the multi-layer perceptron (MLP), a feedforward network that unlike the perceptron is

capable of achieving good generalization for nonlinearly separable patterns.

From early on, being visual perception such an integral part of how we sense the environment around

us, translating NN understanding of brain function urged considerable interest from the computer vision

field [41]. In 1980, Fukushima proposed an unsupervised multilayered network known as the neocog-

nitron. It demonstrated that a hierarchical organization of the layers of the network gave the ability to

learn features invariant to distortion and position shifts, and introduced the idea of sharing weights in

patches to obtain translation invariance across the image [42]. Inspired by this concept, LeCun pro-

posed LeNet-5 and established the term convolution neural network. LeNet-5 comprises convolutional

and pooling modules for feature extraction, fully-connected layers, and a softmax classifier. LeCun et

al. demonstrate this architecture can be successfully trained using the backpropagation algorithm for a

hand-written digit recognition task [43].

Although convolutional architectures showed promise in the domain of computer vision, the increased

difficulty in training networks of higher complexity, coupled with the failure to deliver practical results,

motivated a slower development in this investigation area. For an extended period, in the field of compu-

tational intelligence, the scientific community favoured approaches such as SVM, and fuzzy rule-based

systems in detriment of neural networks.

The resurgence of the interest in neural networks came about in 2006, as a result of continuing work

by a group of researchers brought together by the Canadian Institute for Advanced Research (CIFAR),

such as Hinton, Bengio and LeCun. Amongst other successes, the implementation of layer pre-training

under an unsupervised learning procedure introduced an effective way for training deep neural networks.

More recently, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) has been the

stage for many breakthroughs in the field of computer vision [44]. The annual competition started in

2010 and is a benchmark for state-of-the-art computer vision algorithms, in image classification, single-

object localization and object detection. The ImageNet dataset consists of over 15 million labeled high-

resolution images in over 22000 categories [45]. ILSVRC uses a subset of ImageNet with roughly 1000

images in each of 1000 categories, adding up to 1.2 million training images, 50000 for validation, and

150000 for testing.

Ever since AlexNet, a deep convolutional neural network, won the contest by shattering previous

records [30], models have expanded in depth. The model proposed a combination of strategies to

37

make training faster using Rectified Linear Units (ReLUs) instead of sigmoidal activation functions, and

leveraged GPU parallel computation for time efficient training. Additionally, to reduce overfitting the

model employed data augmentation techniques in order to generate more training examples, and a new

regularization method called dropout. This marked a pivotal point in this field, so much that most of

these techniques would become a standard for training deep learning models.

On the footsteps of this success, in the following years, the top ranks have been dominated by other

CNN models. Notably, in ILSVRC 2014, the evolution to deeper and wider networks yielded significant

improvements in top-k accuracy2 with a close competition between the winner GoogLeNet, submitted by

a team from Google, and the runner-up VGGNet from Visual Geometry Group of the University of Oxford.

The VGG model, proposed by Simonyan and Zisserman [46], demonstrated that discriminative power

improved with a deeper network, and that a repetition of simple building blocks like 3x3 convolutions and

2x2 pooling layers were enough to achieve a good hierarchical representation of image data.

In turn, GoogleLeNet [47] main innovations centered on solutions for better computational efficiency,

only needing 5 million parameters. This represented a twelvefold reduction with respect to its pre-

decessor AlexNet, which used 60 million parameters. In comparison, the performance gains of VG-

GNet increased computational cost, since it employed about three times more parameters than AlexNet.

GoogleLeNet, codenamed Inception, has suffered several extensions since with considerable improve-

ments in top-1 and top-5 accuracy.

The continuing trend is for deeper models, and in 2015 for the first time, a network surpassed the

performance of the human reference for this challenge with a top-k error rate of 3.6%, with ResNet

proposed by Microsoft Research Asia [48].

To illustrate the recent developments in deep convolutional architectures the comparison between

models can be observed below in figure 5.2.

Figure 5.2: Comparison of DNN models [49].

2Top-k accuracy, or top-k error, are performance measures widely used to evaluate multinomial classifiers. For instance, top-1
accuracy refers to the rate at which the model correctly predicts the class of an image, while top-5 accuracy relates to a model
attributing the correct label within its top 5 predictions.

38

5.1.1 Deep Learning Frameworks

In recent years the advances in novel neural network architectures have been concomitant to the

development of new machine learning programming libraries that have supported and boosted the mo-

mentum deep learning has gained.

Machine Learning (ML) algorithms are highly regarded for yielding state-of-the-art results in a wide

array of problems, including computer vision, as we have just seen. Nonetheless, this type of algorithms

requires a daunting volume of calculations, making them viable only if computing resources are properly

and efficiently optimized. For that reason, there was a striking need to evolve the computing methods

employed, which motivated investigation in the areas of numerical computation and machine learning.

These efforts have received the continuous support of renowned graphics card manufacturer NVIDIA

over the years. Figure 5.3, depicts some of the early prominent programming libraries.

Figure 5.3: Deep learning libraries

Torch is a framework for scientific computation that implements a vast range of machine learning

algorithms providing an efficient environment for deep learning research in general, and particularly

computer vision [50]. Originally released by the Idiap Research Institute in Switzerland back in 2002,

today it is widely used and developed at tech companies like Facebook, Google Deepmind, and Twitter.

Theano, is a Python library to target computationally intensive scientific research, and consists of a

mathematical compiler that optimizes the evaluation of symbolic expressions for CPUs and GPUs [51].

First introduced in 2007, it was created at the Montreal Institute for Learning Algorithms (MILA) in Uni-

versity of Montreal, led by Yoshua Bengio.

Caffe is a deep learning framework that originated in the Berkeley Artificial Intelligence Reseach Lab-

oratory (BAIR) in late 2013, and was developed specifically for computer vision applications by lever-

aging the use of CNNs [52]. While the lack of a more general purpose implementation presents as

a disadvantage when compared with other DL libraries, the comprehensive set of pre-trained models

makes it excellent for working on computer vision problems.

Although up to a point, most ML/DL libraries emerged from research in Academia, lately the interest

from technology companies like Google and Facebook triggered the need for frameworks better adjusted

for handling big-data requirements efficiently and capable of operating in mobile platforms just as well.

Moving forward, there are three novel frameworks that are likely to dominate the AI field, namely, Caffe2,

PyTorch, and Tensorflow, figure 5.4.

Figure 5.4: Novel deep learning frameworks.

39

Considering Caffe had initially been created to tackle computer vision applications, it had the limita-

tion of not being suited to address recursive deep learning applications with inputs like text, sound, video

or time series data. This caveat has since been overcome with the open-source release of Caffe2, by

Facebook in April 2017.

Caffe2 extends the previous library not only in respect to the domain of applications that can be

targeted (i.e. speech recognition, medical, IoT), but also in what regards training techniques at the

disposal of developers. This updated framework also delivers a toolkit with enriched features such as

large-scale distributed training prepared to perform on cloud-computing and mobile environments.

PyTorch pivots Torch implementation from Lua programming language to Python which is a huge

step since it facilitates integration with other Python libraries. Released by Facebook in January 2017,

at the time of this writing it has gained considerable uptake both in tech companies, i.e., Twitter, NVIDIA,

and in academia, in universities like Stanford, Carnegie Mellon, Oxford, among others.

On the one hand, the strategy Facebook devised to extend two of the most well established DL frame-

works has different objectives in mind. Whereas PyTorch is more tailored for research and development

purposes, with Caffe2 the aim is to focus on portability while maintaining scalability and performance,

even leaning towards deployment of mobile solutions with systems like Caffe2go.

On another hand, Google took a different approach building a unified framework altogether to bridge

the gap between research oriented development libraries and platforms ready for the massive data

analysis requirements that are the backbone of all Google services.

Tensorflow implements a dataflow graph to represent numerical computations, which makes it more

flexible to deploy the computational workload to several workers (CPUs, GPUs, servers) [53]. With that,

it naturally integrates well with cloud computing platforms, being specially built for distributed parallel

computing solutions.

Until now, the exposition gave a concise overview of the state-of-the-art in what regards the various

DL frameworks. In what concerns this work, the framework that will be used is TensorFlow, in particular

the 1.3.0 version of its Python API. This framework enables working with pretrained models, namely the

Inception V3 model trained on the ImageNet dataset. The approach developed in this work proposes an

application of Inception V3 to a fire identification problem by employing a transfer learning method.

5.1.2 Transfer Learning

Transfer Learning (TL) is a machine learning method that consists of leveraging a previously opti-

mized network, a pretrained model, and use it to learn an entirely new task, using a different dataset.

Pretrained models are extensively used for tasks very different than the ones for which the network was

originally trained. In figure 5.5, a generic scheme is given of this type of technique. For instance, for a

CNN model, the feature extraction (FE) part already differentiates which spatial features are relevant, so

it is likely to perform well on a new task. The parameters for FE optimized in the original task, are reused

in the new task, leaving only the classifier to be retrained to map the new set of inputs to their respective

labels (outputs).

40

New

Dataset

Deep Net Model Classifier

update parameters

Original
Dataset

Pretrained Model

Transfer learned

parameters

Original Labels

New Classifier

Optimization
New Labels

update parameters

Retrain Classifier

Figure 5.5: Transfer Learning scheme.

As seen so far, much of the top-tier results achieved using DL were accomplished on large datasets,

e.g., benchmark datasets such as ImageNet, CIFAR, MNIST. This point is critical to why DL models can

work so well, and why these models have become versatile. On the one hand, since neural networks

learn from examples they inherently become more accurate and robust when they have a larger set

to learn from. On the other hand, having a comprehensive input space is also of concern because

models are more likely to fail in the testing stage when they are given new inputs out of the input space.

Therefore, when working with supervised learning models, it is imperative to be aware that these models

excel at generalization but are not capable of extrapolate for data for which they have not learned to

extract representations.

Having highlighted the use of large datasets, it is important to address that the quest for artificial

intelligence is completely dependent on data. Although the potential applications of DL algorithms are

growing by the day, large datasets often take years to build, and even on a small scale, data acquisition

depends on the collaboration of stakeholders from different fields. Moreover, while data is increasingly

becoming a 21st century commodity, there are still many challenges regarding data collection, compli-

ance with privacy laws, and open-access. To mitigate such limitations, several DL techniques can be

employed including transfer learning and data augmentation.

As deep neural networks grow wider and deeper, the amount of parameters to be optimized sky-

rockets and training becomes an extremely cumbersome process, computationally and time-wise. As

a matter of fact, in many cases, retraining a network to its full extent not only could be a waste of time

and computational resources, but it also can lead to inferior results. In that sense, starting with a model

that has achieved state-of-the-art results for several different datasets guarantees good generalization,

therefore making it capable of extracting good representations when applied to new data.

Besides enabling working on problems with far less data, transfer learning also ensures the result-

ing model is more robust. In this work this technique will be applied by employing one of the models

mentioned previously in figure 5.2, namely the Inception V3 model. Later on, in section 5.3 the model

architecture will be described in detail, as well as further characteristics that make it adequate for this

problem.

41

5.2 Convolution Neural Networks

This section focuses on architectural aspects of convolution neural networks, starting by relating con-

cepts from the domain of computational vision to neural network implementations. Then, the building

blocks of these networks are presented, with the introduction of five different types of layers: fully-

connected, convolutional, two pooling layers (max and average), and the dropout layer.

Despite being conventionally called CNNs, this denomination comes strictly from a semantic sense,

which derives from what is typically referred to as a convolution in the computer vision domain. In this

field, the term convolution encompasses the notion from the Latin word convolvere (con – “together” +

volvere – “roll”), and refers to the process where a filter is combined with a window of the input image,

hence resulting in a filtered image.

In a convolutional layer of a neural network, the neurons are the weights of the filter matrix, and

the filtered output maps the layer activations. These are denominated as activation maps, but are also

commonly referred to as feature maps, since they perform feature extraction. In deep neural networks,

convolutional layers do not employ a single filter but rather a stack of them, giving the layer its depth.

Figure 5.6 illustrates this concept by presenting a CNN composed by two convolutional layers with stacks

of filters. The last two vertical blocks represent a fully-connected layer and a classifier, respectively.

Figure 5.6: Example of a simple convolutional neural network.

Although neural networks are black-box models, in CNNs the weights being optimized correspond

to the parameters of the linear filters being applied to the input images. Meaning the values of these

weights, which are responsible for the filtering process are not without significance. Thus, since the

filtering is a cornerstone of the feature extraction process, it is important to understand its underlying

mathematical operations, even if only for a matter of preciseness.

While in CNNs the terms filtering and convolving are used interchangeably it is important to note that

the mathematical operation performed is not quite a convolution. In practice, when applying linear filters

to the input images the operation performed is not computed as a mathematical convolution but rather

a cross-correlation. The next section delves deeper into this issue to establish some theoretical aspects

regarding convolution so that this distinction becomes clear.

42

5.2.1 Convolution

From signal processing theory, for a continuous-time Linear Time Invariant (LTI) system, the output

signal, y(t), is defined as the convolution of the input signal, x(t) , and the impulse response h(t). Then

the convolution integral is given by:

y(t) =

∫

∞

−∞

h(λ)x(t− λ)dλ (5.1)

in compact form,

y(t) = h(t) ∗ x(t)

where ∗ symbolizes the convolution operator.

Discrete Convolution

Because image data has a discrete structure, in this explanation it makes sense to extend convolution

to the discrete-time domain, which can be written as follows:

y[n] = x[n] ∗ h[n] =
∞
∑

k=−∞

x[k]h[n− k] (5.2)

where the output signal is represented by y, the input by x and the impulse response by h.

2D Convolution

In computer vision, to perform a convolution the previous operation has to be extended to the two-

dimensional domain. First, the filter matrix is flipped by performing a rotation of 180o, and afterwards

the weighted sum of the product of the kernel entries with the input window from the image is computed.

Considering an input image, I, and a filter kernel, K, both to be 2D matrices, the convolution is given

by:

I ∗K = S(I ∗K)(i, j) =
∑

m

∑

n

I(i−m, j − n)K(m,n) (5.3)

where the indices m and n correspond to the pixels of the image, which is of size (m x n).

However, training a CNN poses a nonconvex optimization problem whose objective is to find weight

matrices that map the input to the correct output. While these weights are not meaningless, the compu-

tation relative to the reversing of the filtering can be spared, saving millions of calculations throughout

the network by eliminating this step. Taking this change into account, then the filtered output will be

calculated with a mathematical operation very similar to convolution known as cross-correlation.

43

2D Cross-correlation

In the 2D space, cross-correlation can simply be achieved by the sum of the point-wise matrix multi-

plication between the input image window, I and the filter kernel, K.

I⋆K = S(I⋆K)(i, j) =
∑

m

∑

n

I(i+m, j + n)K(m,n) (5.4)

where ⋆ denotes the cross-correlation operator.

Taking a step back to the one dimensional space, we know that convolution and cross-correlation

operations are equivalent in the particular case of even functions, where there is symmetry with respect

to the y-axis. Conversely, in the 2D space, by projecting an even function in both directions, x and y, the

result will be a matrix, with the same dimensions that represents the 2D kernel.

Example

To illustrate, we will use an even function, in this example a Gaussian function, g(x), defined as:

g(x) =
1

σg

√
2π

exp

[

−
1

2

(

x− µg

σg

)2
]

(5.5)

where, σg is the standard deviation and µg the mean value of the function.

By means of matrix multiplication, the function g(x) is projected in the x and y planes, resulting in the

function g(x, y) given by:

g(x, y) =
1

2πσ2
g

exp

(

−
x2 + y2

2σ2
g

)

(5.6)

If we for instance assume a mean value of 0 and standard deviation of 1, equation (5.5) yields the

curve depicted in 5.7a. For the projection of the function in 2D, now using (5.6) the results are the ones

illustrated in figure 5.7b and 5.7c, continuos and discrete, respectively.

-4 -2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Continuos

Discrete

(a) 1D Gaussian (b) 2D Continuous (c) 2D Discrete

Figure 5.7: Gaussian Function.

Using the 5 x 5 filter built before, the discrete values would be as displayed in figure 5.8a but multiplied

by a factor of 1/273 (the decimal value of the kernel inputs are factorized to ease visualization).

44

Furthermore, observing the matrix entries reveals that a kernel built with even functions results in a

centrosymmetric matrix, figure 5.8b.

1 4 7 4 1

4 16 26 16 4

7 26 41 26 7

4 16 26 16 4

1 4 7 4 1

(a) Gaussian kernel (b) Centrosymmetry

K(0,0) K(0,1) K(0,2) K(0,3) K(0,4)

K(1,0) K(1,1) K(1,2) K(1,3) K(1,4)

K(2,0) K(2,1) K(2,2) K(2,3) K(2,4)

K(3,0) K(3,1) K(3,2) K(3,3) K(3,4)

K(4,0) K(4,1) K(4,2) K(4,3) K(4,4)

(c) Weight matrix

Figure 5.8: Filter Matrix.

In this example, where the same function was used for the projection in both dimensions, besides

being centrosymmetric the kernel is also bisymmetric, but that is not relevant to the point in question. The

Gaussian filter was chosen for this example, despite being bisymmetric and not only centrosymmetric

because the spatial filters commonly used in CV have an isotropic structure, e.g. Laplacian filters.

Toobtain a filter that is only centrosymmetric, it would suffice to use one even function for the projection

in x, and a different even function for the projection in y. An example of this would be the Gabor filter,

that uses a Gaussian function, and a cosine function.

Moreover, in figure 5.8c, in order to better visualize symmetry with respect to the center of the

matrix, weights, K(i,j), with the same values are signaled by being assigned the same color, so that

K(0,0) = K(4,4), K(0,1) = K(4,3), and so forth.

In these conditions, the convolution would result in:

I(0,0)K(4,4) + I(0,1)K(4,3) + ...+ I(4,4)K(0,0) = I(0,0)K(0,0) + I(0,1)K(0,1) + ...+ I(4,4)K(4,4)

∴ I ∗K = I ⋆ K

This simple example demonstrates that only when the kernels have a centrosymmetric structure, the

convolution and cross-correlation are equivalent.

Nevertheless, as alluded before, in CNNs since the filter parameters will be computed iteratively over

the optimization process, the kernels will not have a centrosymmetric structure. Therefore, in a purely

mathematical sense, when applying a linear filter the operation is in fact cross-correlation, because

neither the conditions for equivalency between convolution and cross-correlation are verified, nor the

filters are being flipped before point-wise matrix multiplication.

This can seem like a detail, but having discussed the large amount of parameters necessary to

implement deep neural models, computation wise this aspect plays a crucial role.

45

5.2.2 Fully-Connected Layer

The structure of the fully-connected layer, is based on the architecture of classic neural network

models like the multi-layer perceptron. In fully-connected layers, the neurons in adjacent layers have

pairwise connections, but despite their name, neurons within a single layer do not share connections

between them. To establish the mathematical formulation used throughout this work, the next example

illustrates the connections between neurons for this type of connection scheme.

Consider a network or layer with d inputs, n hidden neurons, and 2 outputs, as illustrated in figure 5.9.

Figure 5.9: General neural network model with an input layer, a single hidden-layer, and an output layer.

In figure 5.9, the grey arrows represent the weight of each connection, and the blue the biases.

Between the input and the hidden layer the weights are represented by wi,j while for the connections

between the hidden layer and the output layer, these are denoted as Wi,j . This difference in notation is

used since it facilitates distinguishing the two when we discuss error-backpropagation in section 5.4.3.

For each neuron, the input, z, is computed in matrix form as the dot product between the weights of

the connections, w, and the inputs, x, plus a bias term, b:

zj(x) = w
⊺ · x+ b =

∑

i

wijxi + bj (5.7)

The output of a neuron, h, is calculated using the input zj and an activation function denoted as f :

h(x) = f(z(x)) (5.8)

Then, the input to the output layer will be expressed as:

zk(x) = W
⊺ · h(x) + b (5.9)

Finally, using σ to denote a sigmoid activation function for the output layer, the predicted output is

given by:

y(x) = σ(zk) = σ(W ⊺ · h(x) + b) (5.10)

Having established a generic notation for the computations in neural networks, it is important to note

that due to their amount of connections FC layers are very computationally expensive. Therefore, these

are used sparingly in CNNs, and usually at the penultimate layer before the classifier.

46

5.2.3 Convolution Layer

Convolutional layers are the main building block of CNNs and are responsible for extracting repre-

sentations from the data as it flows through the network. They are characterized according to three

distinct parameters: filter size, filter stride and the depth. Additionally, for mathematical coherence in

matrix multiplication sometimes it is necessary to apply padding. This consists in adding zeros around

the borders of the input image.

This type of layer computes the dot product between patches of the input volume and the weights

of the filters, as was described in section 5.2.1. Figure 5.10 depicts an input volume with a depth of 3

channels being filtered by a convolutional layer of depth 6 and kernel size of 2x2. The diagram is merely

illustrative and padding and stride are not considered. The dimension of the input and output volumes

reflects the usual application of this type of layer that reduces data in spatial size and increases its depth.

input volume convolutional layer output volume

filter

Figure 5.10: Example of a convolutional layer of depth 6.

In figure 5.10 the entire depth of the convolutional layer is considered for a single patch of the input,

mapping the input to the output volume of this region. Along the depth, each of the neurons has a

independent weight matrix with 12 weights as given by the 2x2 filter and 3 channel depth. The weight

matrix that defines the filter of each of the 6 neurons is different, and is used to extract distinct features.

However, neurons for other patches of the image share the same weights for each depth slice, this

is known as parameter sharing. To illustrate this, figure 5.11 presents the parameter sharing scheme.

depth of convolutional layer

Figure 5.11: Parameter sharing for the slices of neurons in the convolutional layer.

This characteristic of convolutional layer spares millions of parameters and gives the network trans-

lation invariance. Since each depth slice in the convolutional layer applies the same filter to every patch

of the image, the output of that slice will map a certain type of features. This way, the output volume, in

figure 5.10, stacks the activation maps of the different slices of neurons, which extract distinct features.

47

5.2.4 Pooling Layer

Pooling layers are introduced in the network to perform dimensionality reduction on the activation

maps. The previous can scale fast as the stacking of filters increases throughout the network, adding

up to a great amount of computations and parameters to optimize during training. The objective of the

pooling layer is then to reduce the inputs to smaller activation maps where only the most relevant features

are extracted. Typically two types of pooling can be employed, max pooling, and average pooling.

Max Pooling

The output of a pooling layer, u, is defined for the max operation by:

uijk = max
(p,q)∈Hi,j

zpqk (5.11)

where z is the input of the pooling layer, and Hi,j area covered by the K×K kernel. The index k is the

depth index of the input volume. Figure 5.12 illustrates the max pooling operation for a single depth layer

(k = 1) of a 2× 2 filter, and stride of 2, which means the filter skips a pixel when sliding over the image.

Figure 5.12: Example featuring a max pooling operation with a 2x2 filter and a pooling stride of 2.

Since this approach only retains the strongest activation of each patch of the image, that may present

a problem for images with features close together. For instance, if the concern is to identify elements that

concentrate spatially in a particular region of the image, that would of course be problematic. Conversely,

this type of pooling is also susceptible to respond to outliers, which can be introduced by noise in the

image. To avoid a premature loss of information, average pooling is extensively used in alternative.

Average Pooling

Average pooling uses the same variables as max pooling but by averaging each patch of the input, a

more general representation is extracted. Now, the output is given by:

uijk =
1

Hi,j

∑

zpqk (5.12)

This definition shares the same advantages of max pooling, but is more robust in the presence of

outliers.

Pooling puts an emphasis on the relative location of features rather than their exact location, thus

reducing the spatial size of the representations which consequently decreases the computational cost.

48

5.2.5 Dropout Layer

Deep neural networks, due to their complexity, are prone to overfitting when the amount of data avail-

able for training is limited. To prevent this from happening, ideally, one would average the performance

and test many models to find the optimal parameters for a given task. Though, with limited data and

computationally expensive models this is not a feasible option. To address this issue, a recent tech-

nique called dropout has proved to be a very effective regularization technique, yielding improvements

in model generalization in DNNs.

In essence, dropout consists in dropping a percentage of the hidden units at each training iteration,

by zeroing its activations and discarding the influence of the respective connections to the output, as

illustrated in figure 5.13.

(a) Standard Neural Network (b) Network after dropout

Figure 5.13: Dropout example originally from [54].

This process samples a subpart of the network according to a hyperparameter that defines the

probability of keeping the units active. The subnetwork is used to evaluate the training set and update

the weights accordingly. After this, for evaluating the validation set, the dropped units are restored before

the next iteration. This way a hidden unit cannot rely on the presence of the other hidden units, thus

avoiding the co-adaptation to the features of training data. As a result, the model learns redundant ways

to map the inputs to outputs, which has the regularization effect of preventing overfitting.

In practice, while tuning the network parameters, part of the learned weights will be discarded at ran-

dom. At first, it can seem counterproductive since we are sabotaging the learning process on purpose.

The original motivations for this idea have its roots on the sexual reproduction process and conspiracy

theories [54]. However, it may be easier to understand this concept by making an analogy to white-

box models. By using an example, the causality relationship between this method and its effects also

becomes clearer.

For instance, taking the parametric model of a quadrotor derived from first principles, if we do not

design controllers capable of handling perturbations such as the wind, in real conditions the system will

become unstable, by failing to adapt to changes in the working environment. Following that reasoning,

the introduction of a dropout layer in the network is akin to adding a random disturbance to the model.

By training the model with this handicap, it inherently becomes more robust. Thus, when the model

is presented with new unseen data, it performs better on testing data, due to its better generalization

ability.

49

5.3 Inception v3 Model

In the selection of a deep learning model, its architecture plays an instrumental role. In that sense,

having presented the main building blocks of CNNs, this chapter presents the Inception V3 model.

5.3.1 Network Architecture

The Inception v3 model is a deep neural network that like its preceding architectures is built mod-

ularly, by means of a stacking of parallel convolution structures known as Inception modules. These

employ several different convolution factorization schema depending on their relative depth location in

the network and provide different hierarchical levels of feature extraction. These aspects will be explored

in detail in the following sections, but for now the focus is on the overall architecture of the network. The

full structure of the network is illustrated in figure 5.14, and is composed by several building blocks

color-coded as depicted in the legend.

Figure 5.14: Inception V3 network architecture3

The diagram with the compressed view of the network divides it in two parts, where the first is

responsible for extracting spatial features and the second is a classifier. Most of the extent of the network

is dedicated to feature extraction with sequences of different Inception modules to infer features of

increasing complexity. In the repeated modules of type D and F there are slight variations in depth,

to increase the number of activation/feature maps at higher levels of representation.

The principal advantage of this model is its ability to keep the number of parameters under control

due to factorized convolutions and aggressive regularization. When compared to AlexNet, and VGGNet,

which employ 65M and 155M respectively, Inception v3 employs only about 35M parameters. This lower

computation cost enables the use of this network, in big-data scenarios, as well as in mobile vision

scenarios where memory and computational capacity is a constraint.

3 The diagram presented in the figure is a compressed view of the full architecture. This diagram makes a correction from
the representation available in [55]. The error concerns block B, which [56] specifies as a traditional Inception module (without
convolution factorization). The referencing of figures in table of [56] does not match up correctly with the information in the text,
which is probably the reason for the misrepresentation in the official library documentation [55]. In the latter the code of the model
also confirms the traditional configuration, that is correctly depicted above.

50

5.3.2 Feature Extraction

This section centers on the feature extraction part of the network and the main characteristics of the

Inception modules. Inception modules were first proposed in the GoogleLeNet architecture submitted

to the ImageNet contest in 2014 [47]. These structures employ convolution factorization to reduce the

computational cost of the feature extraction process. In the Inception V3 model, the first three Inception

modules (Block B) are a slight variation of the original configuration [47, 56], and can be observed in

detail in figure 5.15. The scheme reads from bottom to the top.

Figure 5.15: Example of the first Inception module of Block B.

Considering the first module has an input of 35x35 and a depth of 192, the data will flow according to

the arrows depicted in figure 5.15. In a parallel scheme, the data is convolved by filters of distinct kernel

size to extract features as different scales. Since large kernels require a large number of parameters, 1x1

convolutions are used to perform dimensionality reduction of the input. For instance, for the Inception

module illustrated in figure 5.15, before applying 5x5 and 3x3 convolutions, the depth of the input to

reduced 48 and 64, respectively.

Along the network the dimension of the convolutional layers increases in depth as well as in filter size.

Whereas at the initial depth stages these modules extract low level features, towards the end of the

network the kernel size of the convolution increases to 5x5 and 7x7, to extract features of higher level.

This enables capturing combinations of figures in a single convolution. However, since large kernel sizes

would be very computationally expensive the kernels are factorized in 1×n followed by n×1 convolutions,

as described in [56]. Taking into account a single depth slice of a 5x5 convolution has 25 neurons, the

convolution factorization reduces the number of neurons to 10. Hence, having large stacks of filters in

each layer, this solution has an enormous effect in the overall computational cost of the network.

This section presented in detail the first Inception module, though since the rest of the modules vary

in convolution size as well as in depth, the complete information can be consulted in [56, 55].

While this state-of-the-art network main strength lies in the feature extraction capability, the large

amount of neurons necessary for that purpose can make this type of models prone to overfitting.

51

5.3.3 Hidden Units Activation

Supervised networks use a learning algorithm called error backpropagation, which updates the

weights in the direction of the gradient descent of the cumulative error. For that reason, it was be-

lieved the nonlinear activation functions had to be differentiable. These functions are inspired in the

biological behavior of a neuron when it receives a stimulus.

For an extended period, the use of logistic functions for the activation of hidden units was the most

consensual practice. These s-shaped functions, like the sigmoid or the hyperbolic tangent, squash inputs

to values between [0, 1] and [-1, 1], respectively. By being continuous and differentiable in their entire

domain, these guarantee a bounded output and help prevent exploding gradients during the learning

process. However, this also brings some drawbacks from the optimization point of view. For instance,

the sigmoid function represented in figure 5.16 reaches saturation at 10 and -10, point from which the

weights can no longer be updated.

-10 -5 0 5 10

0

0.25

0.5

0.75

1

(a) Sigmoid function

-10 -5 0 5 10

0

0.25

0.5

0.75

1

(b) Derivative of the sigmoid function

Figure 5.16: Sigmoid activation function.

Additionally, as can be observed in figure 5.16b, the maximum derivative of the sigmoid is 0.25, which

means the output error propagated backward would decrease by a factor of 75% on each of the preced-

ing layers. In practice when using bounded logistic functions for activation, shifts in the gradient become

increasingly smaller and learning stagnates as a result, this is known as the vanishing gradient problem.

To overcome this issue, rectified linear units are currently the standard activations in hidden layers of

recent deep neural models. Besides taming the vanishing gradient problem, this type of activation also

allows for much faster training in supervised networks.

Rectified Linear Units (ReLU)

The rectified linear units (ReLU) are elements of the network that provide the nonlinear activation

function in the form of a ramp function, as expressed by:

f(x) = max(x, 0) =

x , x ≥ 0

0 , x < 0

(5.13)

-10 -5 0 5 10

0

5

10

(a) ReLU function

-10 -5 0 5 10

0

0.5

1

(b) Derivative of the ReLU function

Figure 5.17: ReLU activation function.

52

While this function speeds up the training process, if a neuron receives a negative input it is maxed

out at zero, which means that the neuron dies. Consequently, DNNs usually lose a considerable per-

centage of their initial neurons during training, but the tradeoff is preferable.

5.3.4 Classifier

The classifier part of the network, identified in figure 5.14, has the function of generating the model

predictions. While this part is much simpler than what we have seen thus far, its operations are consid-

erably different. It is composed of four building blocks, in the following order: Average Pooling, Dropout,

Fully-Connected and Softmax. The first three were already explained previously in section 5.2 since

they are transversal to any CNN model, whereas the softmax is the classifier block that can change

depending on the formulation of the classification problem.

In short, after the final pooling layer performs a dimensionality reduction, the dropout layer employs

a regularization technique that prevents overfitting. By randomly dropping a percentage of the activa-

tions at this stage the network is forced to learn redundant representations. Due to this, the model

becomes more robust and is able to improve generalization. This layer is placed immediately before the

fully-connected block that generates the outputs before classification. These outputs are often referred

to as logits, because they represent the unnormalized logistic probabilities that will be used by the last

activation function of the model. The latter is known as the score function and maps the logits to the

predicted class label. To that end, Inception V3 uses the softmax function.

Softmax

The softmax is the score function responsible for generating the predictions of the model. It evaluates

the degree of certainty in classification according to a posterior probability based on the logits values.

As to differentiate from other activation functions referenced previously by f(z), this function is denoted

symbolically with σ(z) and is given by:

ŷk = σ(z)k =
exp(zk)

∑K

i exp(zi)
, k = 1, ...,K (5.14)

with k representing the index of the class label, for every input, zk, of the output layer, the softmax will

generate K class prediction scores, ŷ. The numerator acts the same way as a sigmoid function, by

squashing the inputs to values between 0 and 1, while the denominator normalizes the output by limiting

the sum of all the class probabilities to be bounded between 0 and 1 as well.

For simple fire identification it could be argued that a multinomial classifier is excessive, because the

problem can be formulated as simple binary classification. However, recalling the long-term objective

of this task is to identify risk situations in camping parks, having them clustered in accordance to their

specificity may bring some advantages. It is possibly easier for a model to distinguish 5 types risk

situations if they are classified separately, rather than put everything in the same bag and expect the

model to be able to learn a more difficult group of representations.

As will be seen in the following section, the selection of score function is closely tied to the choice in

objective function of the optimization algorithm responsible for the learning process.

53

5.4 Optimization

Deep learning algorithms tune the network parameters iteratively using a variety of gradient-based

optimization methods. This type of methods are intended to maximize or minimize an objective function,

and for the latter, they are usually called cost function or loss function. However, to implement these

techniques in the context of a neural network, some important considerations differ from a straightforward

optimization problem.

Pure optimization algorithms usually stop when the solution has converged to a local minimum,

meaning the gradient has decreased to a stage where the algorithm can no longer improve the solution.

Contrary to those, and even to a range of other machine learning methods like regression and SVM,

neural networks are nonlinear models, which means the problem departs from convex optimization.

Instead, in a DL context, since there is no guarantee of global convergence for a non-convex problem,

the optimization process halts when an early stopping condition is satisfied.

This approach, however, is highly dependent on the complexity of the task and is affected by a set

of factors that includes hyperparameter selection, weights initialization, and regularization. In addition,

what might be advisable from the optimization standpoint may not yield a model with generalization, and

for deep networks, this is an area where understanding is still minute [57].

The next section starts by presenting the basis of the optimization process employed in training the

network, and the hyperparameters that have to be tuned. Following that, section 5.4.2 covers the loss

function selected, and a brief explanation of the backpropagation algorithm is given in section 5.4.3.

5.4.1 Gradient Descent

The problem of optimizing the weights in neural networks employs the error backpropagation algo-

rithm, which is based on gradient descent, and minimizes the error and updates the weights according

to a specified learning rate. However, in a problem with high-dimensional data in large quantities such

as image classification, it is unfeasible to compute the error for the whole dataset at each iteration. To

overcome this challenge, the network is trained in small batches of the original dataset and the error is

computed and updated on each training iteration. This enables faster learning in neural networks, and

has been proved to be very effective in networks with parameter sharing such as CNNs. This introduces

two important hyperparameters that have great influence in the optimization process:

• Learning rate: defines the size of the steps in the update of the weights. For high values the steps

are bigger but the learning process often stagnates in a bad solution. On the contrary, for small

values the improvement between training iterations is smaller, requiring more iterations to reach

a good solution. Hence, there is a trade-off between learning rate and the number of iterations

necessary to successfully train the model.

• Training batch size: sets the amount of images that are used in each training iteration. The value

of this parameter depends on memory constraints, but usually is defined as 100 or 250.

54

The formulation of the optimization problem for adjusting the parameters of a deep neural network

consists in finding the weights and biases, that define the mapping between the inputs and the correct

outputs. To that end, the objective function will minimize the error between the prediction of the model

and the ground truth labels. In this context, this function is denominated as the loss function.

5.4.2 Loss Function

The loss function quantifies the distance between the predicted outputs, ŷ, and the ground truth

labels, y. Typically, the selection of loss function is made in agreement with the score function chosen

to generate the model predictions. As seen in the previous section, for the Inception V3 model the

activation function of the output layer is the softmax function. For this model the loss is computed using

the cross-entropy function. Having defined previously in equation (5.14) the predicted output of the

model as:

ŷk =
exp(zk)

∑K

i exp(zi)

The cross-entropy loss is calculated as the sum of the ground truth labels, represented by y, times

the natural logarithm of the prediction scores, ŷ:

L(y, ŷ) = −
∑

k

yk ln(ŷk) (5.15)

The main reason for choosing the cross-entropy function as a measure of the prediction error is the

fact that when using the softmax classifier, the gradient will be bounded between -1 and 1, which is useful

for the learning algorithm. Then, the derivative of the loss with respect to the logits, zk, is expressed as:

∂L

∂zk
=

∂L

∂ŷ

∂ŷ

∂zk
= ŷ − y (5.16)

The full deduction can be found in [58].

In addition to the cross-entropy loss, the total loss of the Inception V3 also accounts for a parcel

of regularization loss. This model employs a technique denominated as label-smoothing regularization

(LSR), to prevent the highest prediction from becoming much larger that the others. If a model attributes

large predictions for one class and very small for the others, it becomes too confident of its predictions,

and loses the ability to adapt. In that sense, LSR improves learning because it prevents the model from

converging for a bad solution at an early point in the training stage. Further details of this method are

left out of the scope of this text, and can be read in [56].

Overall, during training, the loss function gives some feedback regarding how training is evolving, and

is also a good indicator concerning the adequacy of the hyperparameter selection. Ultimately, before

the evaluation and testing stage, the loss for the training set and the validation set will guide the decision

if the model was successfully trained or needs further tuning. However, success in training is never a

guarantee that the model is sound in terms of generalization, that has to be evaluated using new data.

In the next section, describing the error backpropagation algorithm, the role the loss function plays

in the learning scheme is demonstrated, with the description of the equations that update the weights.

55

5.4.3 Error Backpropagation

The previous sections established that the objective of the optimization problem is to minimize the

error in classification, and described the loss function for that purpose. To that end, the weights and

biases of the network will have to be updated, in the direction of the gradient descent of the cumulative

error. However, knowing the error in classification, to generate a better solution on the next iteration,

the influence that each weight has in the output has to be evaluated. This is the principal problem the

backpropagation algorithm solves.

The backpropagation algorithm comprises two parts: the forward pass, and the backward pass.

In a nutshell, the forward pass encompasses the steps to calculate the output of the network described

in section 5.2.2, whereas the backward pass computes the gradients to propagate the error signal and

updates the weights of each neuron.

For ease of notation, in this section the bias vector is assumed to be last column of the weight matrix.

This can be achieved without loss of mathematical coherence by adding an additional 1 entry to the

input vector, x.

Forward Pass

The forward pass of the algorithm computes the activations of each neuron in the network, yielding

the values of the inputs of each neuron, zj , and the outputs, hj . The procedure has been fully explained

previously in section 5.2.2, and illustrated in figure 5.9. This results in the final output of the network, ŷ,

that will be compared with the ground truth labels, y, to compute the error.

Backward Pass

Starting in the output layer, the error in classification is propagated backward through every layer of

the network to update the weights. The error signal propagated to each neuron accounts for the influence

the weight has in the output error, and is calculated by the successive application of the chain rule.

Figure 5.18 depicts this procedure schematically for a single layer. This diagram reads from right to left,

starting from the output towards the input layer, and is explained subsequently.

Figure 5.18: General backpropagation procedure for a single hidden-layer network.

56

The local gradient at the output layer, δok, represents the error term that is propagated backward

throughout the network, and is expressed as:

δok = e(zk)× σ′(zk) (5.17)

with σ denoting the activation function of the output layer, its derivative with respect to the input of the

output layer, zn, results in σ(n)(1−σ(n)) for a sigmoid or softmax function. To keep the formula generic,

e(zn) represents the error derived from the loss function, which was introduced in (5.16).

Then, to calculate the update of the weights between the output and the hidden layer, Wjk, the loss

is derived with respect this variable. Recalling that the input of a neuron in the output layer is given by

zk =
∑

Wjk · hj , by applying the chain rule:

∂L

∂Wjk

=
∂L

∂ŷ

∂ŷ

∂zk

∂zk

∂Wjk

= δokhj (5.18)

The amount the weights are updated takes into account the error and is multiplied by the parameter, η,

the learning rate, as:

∆Wjk = ∆Wjk + ηδokhj (5.19)

To propagate the error signal to the hidden layer, and update the respective weights, wij , the local

gradient is computed taking into account the contribution the weights have to the output of the layer, hj .

In the first step, this depends on zj , the input to the hidden layer. Once again, applying the chain rule:

∂L

∂wij

=
∂L

∂ŷ

∂ŷ

∂zk

∂zk

∂wij

=
∂L

∂ŷ

∂ŷ

∂zk

∂zk

∂hj

∂hj

∂zj

∂zj

∂wij

= δokWjkf
′(zj)xi (5.20)

With the error propagated for the neuron in the hidden layer is given by:

δhj =
∑

k

Wjkδ
o
kf

′(zj) (5.21)

The weights between the hidden and the input layer, will be calculated as:

∆wij = ∆wij + ηδhj xi (5.22)

Finally, to end the backward pass, the weights of all the layers are updated as:

Wjk = Wjk +∆Wjk (5.23)

wij = wij +∆wij (5.24)

Having explained the theoretical basis of the learning process, some implementation aspects need

to be addressed. This example explains the mathematical operations of a full pass of the backpropa-

gation algorithm. However, the network being considered only has a single hidden layer. For a deep

neural network like Inception V3 with a great amount of convolutional layers, the volume of operations

57

would be significantly larger. Considering just the forward pass of the Inception v3 model accounts for

approximately 12 x 106 operations (fig. 5.2), the computational load is obviously immense. Therefore,

applying the chain rule to perform the backward pass would represent a very cumbersome task. The

partial derivatives of the backward pass could be calculated explicitly, but that would be a very inefficient

process. Instead, TensorFlow uses subexpression elimination to take exact derivatives, and performs

automatic differentiation, taking the most advantage of the computations performed whenever possible.

At the beginning of this chapter a great deal of attention was given to the current landscape of deep

learning frameworks, in section 5.1.1. Now, having a better sense of the immense amount of computa-

tion deep neural networks require, it is clear how essential the contribution these several open-source

libraries provide. The optimization of the computations that is performed in the back-end of these plat-

forms is what makes deep learning models viable, both in common personal computers, and in mobile

platforms.

With this concludes the presentation of the theoretical aspects of deep neural networks. The following

chapter will focus on the implementation of this type of models to a the fire detection problem.

58

Chapter 6

Implementation

This chapter describes a novel application of the Inception V3 model for a fire identification problem,

using TensorFlow. First, in section 6.1, the dataset built for that purpose is described along with the

respective partitions that will be employed. Second, in section 6.2, follows the explanation of the prepro-

cessing steps undertaken to capture the frames from the video sources, prepare them to be fed to the

DNN. Subsequently, section 6.3 covers the model retraining procedure, hyperparameter selection, and

presents the training results. Next, in section 6.4 a selected model is evaluated by testing on a new set of

data. At last the results are compared with the results of the heuristic approach presented in chapter 4.

6.1 Firecamp2 Dataset

Having in mind that the acquisition system presented in chapter 2 was designed to capture thermal

and color images simultaneously, now the study will center on the latter. Since those experiments

account for three video sources only, additional color videos were added to the database to enable

training the deep neural network. Then, in addition to the thermal image dataset, an augmented color

dataset was created, and some samples can be observed in figure 6.1.

Figure 6.1: Samples from Firecamp2 Dataset.

In the first row of figure 6.1, the images illustrate fire situations, whereas in the second row the images

correspond to situations where a fire can not be identified at naked-eye or does not exist at all.

59

Dataset Partions

The complete dataset is composed of 58266 from 8 distinct video sources, which is a small dataset

for a deep learning application. Nevertheless, it is a starting point for evaluating the adequacy of this

kind of approach. To identify fire the problem is formulated as a binary classification where one class is

fire and the second is not fire. In table 6.1 the division of the dataset is listed for these two classes.

Table 6.1: Dataset division.

Camera Fire Not Fire Total

Database 30682 27584 58266

Training Data 16000 16000 32000

Testing Data 5143 6407 11550

Straw burning 1699 301 2000

Tent burning 1624 5926 7550

Straw burning (drone) 1820 180 2000

For the training set 32000 frames were selected, from which 20% will be used for validation of the

training process. At every 10 iterations the network will evaluate this separate set. For testing, in order

to compare the results from this approach with the ones from the segmentation heuristic, now the color

images corresponding to the trials studied in chapter 4 will be kept separate on a holdout set. To recap,

the first two examples are of straw fire ignition and tent burning when captured from a static elevated

platform. In turn, the third example refers to the same test as the first but is repeated to compare the

performance for mobile platforms. As done previously, the objective of the testing examples is to detect

the point of fire ignition. From these cases a total to 11550 frames were selected for the testing data

used to evaluate the classification performance of the network.

6.2 Data Preprocessing

When dealing with high-dimensional data some preprocessing steps are advisable for logistic and

computational reasons. Besides workload concerns, the preprocessing steps are key to ensure the

good training performance of deep neural networks.

Resizing

As mentioned in the dataset description the videos were captured in 1640x1232 resolution, which is

excessively high for this type of approach. Therefore, the images will be resized to a smaller dimension

before being fed to the neural network. Knowing the first layer of the Inception V3 takes as input 299x299

images, that will be the target resolution.

Considering that in the future it is intended that the image acquisition system presented in chapter 2

will be capturing images and transmitting to a ground station, the video frames would have to be captured

in an online scheme. To avoid further loss in image quality there was the need to find a solution for the

video processing stage. FFMPEG was tested but did not yield satisfactory results, while VLC provided

a much better solution in that regard. Being open-source software and cross-platform, VLC presents as

a good solution for implementation on a ground-station for a online classification pipeline.

60

Since in this work the focus is on evaluating performance of models in offline classification, the

frames were extracted from video sources that had been previously recorded. In VLC, using the scene

filter the images were reduced to 299x299 with the original temporal resolution of the videos, which

varies depending of the video source.

Input Normalization

The normalization of the input is a crucial step in deep neural networks to prevent exploding gradi-

ents. The Inception V3 model normalizes the input images to a [-2; 0] interval. This is done by dividing

the input by 255, the maximum of a RGB channel , which normalizes the inputs to a 0 to 1 range.

Subsequently, the inputs are subtracted by 1 and multiplied by two to yield the [-2; 0] range. The ref-

erence of the Inception V3 model [56] gives no indication of the reason behind choosing this particular

normalization, but avoiding a zero mean associated with a [-1; 1] normalization, or the small values of a

[0; 1] normalization are probably the underlying reasons. Since the feature part of the network is already

optimized for this range, and that part will not be retrained, the same normalization is used.

Feature Extraction

To apply a transfer learning approach, the images of training dataset are run through the network to

extract the feature representation of the penultimate layer. This is a pooling layer with a tensor output of

2048 dimension, which is usually referred to as the bottleneck layer. This procedure is performed once

for every image, and the feature representations of the bottleneck layer are saved to an independent text

file for each image. This process can take several hours depending on the size of the database, but the

saved text files are read on future training sessions, which saves a lot of computational time in the long

run. This approach also provides much flexibility, because if new images are added to the database later

on, only their respective representations have to be extracted.

6.3 Training

6.3.1 Model Retraining

Having already extracted the features of the training dataset, the Inception V3 model was then re-

trained for the fire identification problem. To do so, additional operations were added to the TensorFlow

graph of the model to perform the necessary computations. First, an input layer was created that sets

the placeholders for the the bottleneck and ground truth tensor inputs. Second, a final training layer was

added with the operations of the fully-connected layer. The outputs of the latter, will be the inputs to the

cross-entropy scope and the train scope, which encompass the operations of the softmax classifier, the

loss function and the gradient descent optimizer.

The Tensorboard representation of the operations described can be seen in further detail in fig-

ure 6.2. Note that the scopes represent the code implementation of the mathematical operations with

TensorFlow, and the edges represent the data flow through the computational graph.

61

F
ig

u
re

6
.2

:
T
e

n
s
o

rb
o

a
rd

re
p

re
s
e

n
ta

ti
o

n
o

f
th

e
o

p
e

ra
ti
o

n
s

a
d

d
e

d
to

re
tr

a
in

In
c
e

p
ti
o

n
V

3
.

62

6.3.2 Hyperparameter Selection

To assess the best parameters for the model, several configurations were tested by changing the

learning rate (LR), the training batch size (Batchtrain) and the number of iterations (niter). High values

of batch size were avoided since the memory cost would slow down the training process. If necessary,

this would be compensated by increasing the number of iterations.

Since hyperparameter selection is an iterative process, a series of five distinct values of learning rate

were tested: 0.005, 0.01, 0.05, 0.1, and 0.2. For these, training batch size was changed between 100

and 250, but it did not yield benefits in classification performance.

However, as figure 6.3 illustrates, the models achieve high performance on the first two runs through

the data, which is due to the fact the dataset is composed by consecutive frames from few video sources.

In this scenario, there is concern that these models will have limitations in generalization due to overfit-

ting, but regardless this matter will be evaluated on the testing set.

0 100 200 300 400 500
Iterations

0.2

0.4

0.6

0.8

1

M
e
a
n
 A

c
c
u
ra

c
y

LR 0.1

LR 0.01

LR 0.2

LR 0.05

LR 0.005

(a) Training accuracy

0 100 200 300 400 500
Iterations

0

0.2

0.4

0.6

0.8
C

ro
s
s
-E

n
tr

o
p
y
 L

o
s
s

(b) Training cross-entropy

0 100 200 300 400 500
Iterations

0.8

0.85

0.9

0.95

1

M
e
a
n
 A

c
c
u
ra

c
y

(c) Validation accuracy

0 100 200 300 400 500
Iterations

0

0.2

0.4

0.6

C
ro

s
s
-E

n
tr

o
p
y
 L

o
s
s

(d) Validation cross-entropy

Figure 6.3: Comparison of models with different learning rate and batch size of 100.

As can be observed in the training and validation curves in figure 6.3 for accuracy and cross-entropy,

the variation of the performance of the models with the change in learning rate is not significant. Fur-

thermore, the convergence of the cross-entropy loss to small values in the training and validation sets

demonstrates the training procedure was successful.

Due to the similarity in training performance of the models developed with a series of different hy-

perparameter configurations, the testing results are presented for a single model with the following

hyperparameters: LR 0.01, Batchtrain 100, and niter 500.

63

6.4 Testing Results

In this section, to test the performance of the model, the situations analyzed are the same considered

for the evaluation of the color segmentation heuristic, presented in chapter 4. Whereas that approach

used thermal imaging, now the color images captured in those experimental trials are used to assess if

an approach using this type of data would be effective.

As mentioned in section 6.1, this testing set is composed by three distinct cases, which will be

studied individually in the following sections, with particular emphasis on the time elapsed between the

fire ignition and detection. The overall performance for these test examples in terms of validity measures

is discussed later in section 6.5.

6.4.1 Straw Example

For this example, images of straw burning were captured from an elevated platform in static condi-

tions as was described in the experimental setup in section 2.2. A few selected frames from the video

sequences obtained can be observed in figure 6.4.

Figure 6.4: Color images from the straw burning trial.

The frames illustrate several points throughout the trial, as is visible by the gradual flame growth.

However, it is important to notice, by zooming in on the third frame of figure 6.4, that when the fire is

still at the beginning stage it is difficult to discern from the straw due to its small scale. While this frame

should be classified as fire, it is reasonable to expect the network to face difficulties for these instances.

To analyze the performance of the network, the predicted scores of each frame are plotted in fig-

ure 6.5, along with the established ground truth values depicted in black.

200 400 600 800 1000 1200 1400 1600 1800 2000

Frame number

0

0.25

0.5

0.75

1

P
re

d
ic

ti
o

n
 S

c
o

re

Fire Score

Not Fire Score

Figure 6.5: Straw burning (static): predicted scores and the ground truth over time.

Observing the output values, the detection is rapid and there are few misclassification prior to the fire.

Considering the output of the network classifies a frame as fire when the predicted score of this class

exceeds 0.5 and vice-versa, from frame 350 the network consistently detects fire with a high probability.

Knowing the temporal resolution of this video source is 15 Hz, and the fire ground truth indicates fire in

frame 300, the delay in detection is of approximately 3.3 seconds.

64

6.4.2 Tent Example

The second example concerns the burning of a camping tent, where the fire source is inside it. While

in early stages of this trial there are small light flashes caused by the fire, the flame is only visible in color

images when it starts burning the exterior of the tent. Therefore, the ground truth for this example was

established significantly later than the actual start of the fire. Notice, by observing figure 6.6, that this

situation is considerably different than the burning tent examples used for training, depicted in figure 6.1.

Hence, this example provides a good test for the generalization of the model.

Figure 6.6: Color images from the tent burning trial.

The output of the retrained model is depicted in figure 6.7, as well as the ground truth for each frame

represented by the black line. Once again, the latter takes the value of 1 when the fire is identified and

0 when it is not. For the tent case, the ground truth was defined conservatively, and is only when the fire

is visible at naked-eye that it assumes the value of one.

1000 2000 3000 4000 5000 6000 7000

Frame number

0

0.25

0.5

0.75

1

P
re

d
ic

ti
o

n
 S

c
o

re

Fire Score

Not Fire Score

Figure 6.7: Tent burning: predicted scores and the ground truth over time.

Comparing with the point where fire should be detected for the first time, at frame 5927, the network

identifies the fire with a delay of 360 frames, which means the first alarm would be given in 24 seconds.

While the network was not trained to detect fire in a situations where is not directly visible, it is

noticeable that the prediction score of the fire class starts increasing well before fire is detected. Taking

into account, that in reality the fire inside the tent starts around frame 250, the output for this case

demonstrates the delay in detection would be much longer resorting to color images, as a result of the

limitations in sensing capability associated with this type of camera.

Moreover, the reduction of the prediction score after frame 6700 is due to the fact that fire is at a very

small scale in those respective frames. This can be verified by zooming in on the last frame of figure 6.6.

This finding highlights an important issue that has to be taken into consideration for an application

relying on an aerial platform. The limitations of this type of models will have to be further investigated

in this regard, to evaluate the tradeoff between area coverage and the pixel resolution necessary for fire

identification.

65

6.4.3 Drone Example

The straw burning example captured from a moving platform was the test where the color segmen-

tation heuristic showed most limitations, so there is increased interest in investigating if this approach

works better for this case. Furthermore, having a moving platform provides flexibility in area coverage

over a fixed platform, so it is important to evaluate if this is a feasible option.

For this example the image sequence has considerable more variance than the example given in

section 6.4.1. Now, as figure 6.8 depicts, the point of view changes in every frame due to the movement

of the drone.

Figure 6.8: Color images from the straw burning trial captured from a drone.

Since the camera is forced to refocus constantly, the brightness and contrast in the frames vary

as well. Additionally, now the frames have more noise and blurring which adds more difficulty to the

classification task.

Akin to the previous examples, to evaluate the performance for this test case, the output of the model

is juxtaposed with the ground truth values in figure 6.9.

200 400 600 800 1000 1200 1400 1600 1800 2000

Frame number

0

0.25

0.5

0.75

1

P
re

d
ic

ti
o

n
 S

c
o

re

Fire Score

Not Fire Score

Figure 6.9: Straw burning (drone): predicted scores and the ground truth over time.

Observing the output of the network in figure 6.9, there is increased stochastic behavior which would

be to expect in this type of case. Despite the presence of noise, and some delay in detecting the fire,

from around frame 400 the vast majority of the frames are correctly classified.

The ground truth value indicates that the fire starts at frame 180, and the first fire alarm would

occur 75 frames later. Hence, for this case, the delay is of 5 seconds, which is a very promising result.

Considering that for this trial there were no stabilization systems for the camera, the performance is

likely to improve if those type of systems are employed.

Since convolutional neural networks provide translation invariance, the movement of the image ac-

quisition platform does not affect this approach as much as the color segmentation heuristic. The main

problem with the latter in this case was that the movement of the drone caused the image statistics to

vary in a highly stochastic manner. Additionally, unlike the previous approach which relied on the sensor

response over time, the output of the neural network does not have any temporal dependencies and

classifies each image independently of the previous.

66

6.5 Discussion

The previous sections presented the image classification results for the retrained network for three

distinct test cases. So far, the analysis focused on the evolution of the prediction scores over time.

However, the results of the model have yet to be evaluated using a validity measures approach, which

will be analyzed in section 6.5.1. Subsequently, having analyzed the response of the DNN model for

each of the tests following the point of ignition methodology, now it is important to frame these results

in context with the ones from chapter 4. This allows for a clear understanding of the strengths and

limitations of the different sensors of the image acquisition system presented in chapter 2.

6.5.1 Performance Analysis

In what concerns the validity measures approach, it is important to keep in perspective this work is not

a benchmarking task. Hence, from a variety of models developed, due to their similarity in performance,

this work only presents the results for one model, which is evaluated for the testing cases studied.

In that sense, figure 6.10 summarizes the performance measures for each test example in the form

of a confusion matrix for the selected model.

Fire Not Fire

Ground Truth Class

F
ir
e

N
o

t
F

ir
e

P
r
e

d
ic

te
d

 C
la

s
s

1651

82.5%

48

2.4%

97.2%

2.8%

6

0.3%

295

14.8%

98.0%

2.0%

99.6%

0.4%

86.0%

14.0%

97.3%

2.7%

(a) Straw burning (static) - Test 1

Fire Not Fire

Ground Truth Class

F
ir
e

N
o

t
F

ir
e

P
r
e

d
ic

te
d

 C
la

s
s

245

3.2%

1379

18.3%

15.1%

84.9%

0

0.0%

5926

78.5%

100%

0.0%

100%

0.0%

81.1%

18.9%

81.7%

18.3%

(b) Tent burning (static) - Test 2

Fire Not Fire

Ground Truth Class

F
ir
e

N
o

t
F

ir
e

P
r
e

d
ic

te
d

 C
la

s
s

1423

71.2%

397

19.9%

78.2%

21.8%

0

0.0%

180

9.0%

100%

0.0%

100%

0.0%

31.2%

68.8%

80.2%

19.9%

(c) Straw burning (drone) - Test 3

Figure 6.10: Performance evaluation of the testing set.

The results demonstrate the model achieves a high accuracy value for the easier of the test cases

(fig. 6.10a), but there is still room for improvement in the tent and drone cases, (fig. 6.10b and fig. 6.10c).

Focusing on the case of figure 6.10b, there is a 18.3% of misclassifications due to false negatives. This

is too high considering the true positives represent only 3.2% of the batch for this test, and makes the

sensitivity of the model of only 15%. The reason for this is the small scale of the fire in many of the

frames. This rate would be worrisome if a significant percentage of frames with large flames was being

misclassified, which is not the case. For the test depicted in figure 6.10c there is a 19.9% of false

negatives. While this is undesirable, taking into account the increased noise of image acquisition from

a moving platform, the drop in accuracy is understandable. This result reveals this approach has great

potential for application in moving platforms, not only limited to fire detection, but other computer vision

applications. The reduction of the noise in the frames would mitigate the incidence of false negatives.

However, it should be noted that these sets are composed of consecutive video frames, which means

67

that the content of the images has a high degree of similarity. This fact should be taken into consideration

when assessing the performance of the model. Furthermore, since the training dataset is composed of

a small number of situations, the generalization of the model will be limited. Nevertheless, considering

the situations that make up the testing dataset were developed in a similar scenario, these serve to

demonstrate the feasibility of employing deep learning approach to this problem.

6.5.2 Comparison of Results

In figure 6.11, the results from the color segmentation heuristic, presented in chapter 4, are juxta-

posed with the ones from the image classification, presented in this chapter. From these, the central

focus is on the analysis of the images captured with the system proposed in chapter 2, thus the ra-

diometric thermal images are excluded. However, it is important to bring attention to a few distinctions

between the two approaches.

500 1000 1500 2000

Frame number

0

25

50

75

100

Im
a

g
e

 P
ix

e
ls

 (
%

)

(a) Nonradiometric: Straw burning (static)

500 1000 1500 2000

Frame number

0

0.25

0.5

0.75

1
P

re
d

ic
ti
o

n
 S

c
o

re

Fire Score

Not Fire Score

(b) Inception: Straw burning (static)

500 1000 1500 2000

Frame number

0

25

50

75

100

Im
a

g
e

 P
ix

e
ls

 (
%

)

(c) Nonradiometric: Tent burning (static)

1000 2000 3000 4000 5000 6000 7000

Frame number

0

0.25

0.5

0.75

1

P
re

d
ic

ti
o
n
 S

c
o
re

(d) Inception: Tent burning (static)

500 1000 1500 2000

Frame number

0

25

50

75

100

Im
a

g
e

 P
ix

e
ls

 (
%

)

(e) Nonradiometric: Straw burning (drone)

500 1000 1500 2000

Frame number

0

0.25

0.5

0.75

1

P
re

d
ic

ti
o
n
 S

c
o
re

(f) Inception: Straw burning (drone)

Figure 6.11: Comparison of the segmentation heuristic for thermal images (left) versus the Inception

classification for color images (right).

Recalling that part of the first approach was applied to thermal images captured with a nonradiometric

camera, the proposed heuristic allowed for the segmentation of three classes of colors: gray, green,

and red. One of the discoveries from chapter 4, was that the trigger for an alarm should be set by

68

monitoring the percentage of gray and green pixels rather than the red, as was previously thought.

Moreover, observing the test cases on the left side of figure 6.11, the threshold of an alarm based on

the percentage of gray pixels would have to be considerably low to minimize the time between ignition

and detection.

In turn, as we have seen throughout this chapter, the second approach concerns the image clas-

sification of color images without prior feature extraction. The results from this approach are compiled

again to facilitate the comparison, and are featured in the right side of figure 6.11.

First, comparing the results for the straw burning example, the approach using thermal data, illus-

trated in fig. 6.11a, exhibits more limitations than expected in a situation where fire is directly visible. On

the contrary, the graph in fig. 6.11b demonstrates that the classification using the Inception V3 model is

faster to detect the fire using color images, and exhibits high consistency it its predictions over time.

While this happens for the first test case, for the second, depicted in figures 6.9c and 6.9d, the

opposite occurs. These results concern the burning tent, and the point of ignition is detected earlier

using the thermal sensor. Note the difference between the established ground truth values for each

case differs in 5767 frames, approximately 6 minutes and 40 seconds. In color images, the fire can only

be detected when it is visible at naked-eye, thus using this type of data the detection happens later.

Despite a slight delay in the response of the thermal sensor, this example demonstrates the value a

thermal camera adds for an earlier fire detection application. For this case an alarm would be triggered

using thermal data approximately 6.5 minutes earlier than if resorting to the color images.

Regarding the last row of figure 6.11, which compares the results for the straw burning captured

from a drone, several conclusions can be drawn. First, the stochastic response in both approaches

increases the difficulty in classification considerably. On the one hand, observing figure 6.11e relative

to the segmentation of the thermal images, the threshold for an alarm would have to be set very low to

capture the fire occurrences consistently. However, considering the low saturation level of this sensor

identified in chapter 3, relying solely on this sensor would lead to many false alarms. On the other

hand, despite some misclassification due to noise the image classification using color images (fig. 6.11f)

yielded very promising results. These results attest to the feasibility of using aerial platforms for fire

detection applications.

To conclude this overview of the results it matters to quantify for both methodologies the time elapsed

from the ignition to the first instance of fire detection. Setting a threshold value of 0.5 (50%), the results

for each test are summarized in table 6.2.

Table 6.2: Time intervals for the first fire alarm for the experimental tests.

Data Type Test 1 Test 2 Test 3

Thermal Nonradiometric 28 s 22.6 s 2.8 s

Color 3.4 s 6m48s 5 s

Overall, despite the strengths and limitations of each approach, from the point of ignition to the first

fire alarm, the detection is achieved in short timeframes for both approaches. Therefore, a framework for

early fire detection would benefit from integrating these two types of sensory data into a single algorithm,

in order develop a more general solution.

69

70

Chapter 7

Conclusions

Lately, due to climate change, conditions of high ignition propensity are more frequent, which results

in an increase in fire incidents. These are escalating in severity, which prompts the necessity of mitigating

its devastating consequences. Currently, there are several projects implemented with the objective of

reducing fire propagation by early detection, yet their success is still limited.

The present work was developed under the scope of project Firecamp 2, which centers on studying

fire risk in areas dedicated to camping and caravanning activities. The investigation scope of this project

is not limited to camping parks, and is extensible to fire risk situations in the wildland-urban interface.

In this context, this work centered on analyzing different imaging sensory data and exploring computer

vision techniques for detection of fire incidents in an initial stage.

To address a problem of this complexity, for which the available data was very limited, the first step

required the development of experimental tests for image acquisition purposes. In order to perform

realistic tests, a data acquisition system was designed to be integrated on a mobile aerial platform e.g.

a drone, a balloon. While there was the intention of performing tests in an outdoor setting, due to the

early arrival of fire season in 2017, for safety reasons, these tests to be conducted in June, were only

carried out in indoor laboratory conditions, at the Laboratory of Forestry Fire Studies in Lousã.

One of the principal objectives of this work was to evaluate the adequacy of different imaging sensors

for this task. To that end, an image acquisition system was designed with two different cameras to

capture aerial images in the thermal and visible range. Since the image acquisition was performed

synchronously, the tests resulted in a new dataset for fire detection composed by thermal nonradiometric

and color images.

In addition to those images, the experimental trials were also recorded with a thermal radiometric

camera. The access to radiometric and nonradiometric data for the same situations allowed for the

development of a deep study of the characteristics of these sensors and their differences. One of the

key findings of this analysis was the discovery of the thermal sensing ranges of both cameras. It was

uncovered that for the nonradiometric camera, FLIR Vue Pro, the sensor upper saturation limit is of

150oC. While such a low saturation level is not ideal for a fire detection problem, this information allows

for a better interpretation of the image data provided by this camera. Moreover, it was identified that

71

using this filter the camera adjusts the color scale according to the highest temperature in the scene.

Having now different types of data to explore, various avenues of research were taken to evaluate

its merits and limitations. A first approach centered on thermal images and the development of a color

segmentation heuristic for fire detection. Since the images from the thermal cameras are encoded in

pseudo-color, the central advancement revolved on uncovering the color palette applied by the camera

firmware of FLIR Vue Pro. The GrayRed color filter was identified and subsequently applied to the

radiometric data captured by FLIR SC660, in order to compare the response of these two sensors.

By devising a color segmentation heuristic the color palette was partitioned into three different

classes: gray, green, and red. The analysis of the variation of these classes provided insight into the

response of the sensor in terms of RGB encoding. While there was a prior misconception that fire could

be identified by monitoring the percentage of red pixels, the results demonstrated that for this application

it is preferable to monitor the percentage of gray and green pixels. This is the case because when there

are large temperature differences in the field of view of the camera, the variation of gray and green pixels

is almost inversely proportional.

While this study enriched the understanding of the inner workings of the thermal cameras, the analy-

sis of the data from various experimental tests showcased the limitations of this type of approach. Due to

excessive variability of the color levels, establishing an algorithm based on these three variables would

have strong limitations in generalization for new scenarios. However, if a solution is required for fire

detection for very specific contexts, a color segmentation heuristic could be fine-tuned to target a limited

array of cases, by establishing a rule-based algorithm.

The second approach to address the fire detection problem explored the color imaging data, without

prior feature extraction. This was achieved by resorting to a state-of-the-art deep neural network, i.e. the

Inception V3 model, and applying a transfer learning scheme. Since this type of approach requires large

amounts of data, the previous color image dataset was augmented with RGB images from additional

tests. Although only offline classification was performed, the preprocessing procedure to extract frames

from the video sequences was established having an online classification pipeline in mind.

In what concerns the retraining of Inception V3, only the classifier part of the model was retrained

using TensorFlow. This deep learning library provided a fast training framework, and offers an efficient

platform for the future implementation of online classification in real-time.

Regarding the classification results, this approach demonstrated high accuracy for the cases where

the fire is directly visible. From the results of this approach the test performed with images acquired from

a drone, has special importance. Deep learning approaches are mostly applied in offline tasks with large

datasets and to image data acquired from static conditions. It is only very recently that these models

achieved the computational efficiency to be applied to more flexible platforms used in mobile robotics,

with solutions such as MobileNets [59]. Therefore, the results from the test with the drone demonstrates

these techniques can be successfully applied to the fire detection problem and possibly other computer

vision tasks.

Although the two approaches proposed to this problem are very distinct in nature, the results provided

a clear understanding of the limitations of each and the benefits using both can bring. Despite the fact

72

that the tests presented in this work contemplate a limited set of situations, they demonstrated the value

of designing a system that can capture different types of data. While the thermal imaging approach

extends the sensing ability enabling faster detection, the deep learning approach with color images

has the potential to provide more general and robust algorithms. Overall, the comparative analysis

between the two approaches taken demonstrated that for a fire detection application the development of

algorithms should encompass thermal and color image data.

Granted that deep learning models have achieved state-of-the-art results in a variety of close-set

problems, the application of these techniques to open-set problems is still in early stages. The limited

amount of data for this problem was one of the main difficulties faced during the development of this

work, and is a common hurdle in applying deep learning approaches to real problems. In that sense,

given the current relevance of this topic, the open release of the acquired dataset provides a basis for the

continuation of this work, and opens up new opportunities for the development of different approaches

to this problem.

Future Work

Given the current pace of innovation in the field of deep learning there is great potential for further

research using this approach. To target this problem, the following topics are suggested for the continu-

ation of this work:

• Extend image classification to video classification using recurrent neural networks i.e. Long-Short-

Term-Memory networks in conjunction with CNNs, in order to study spatiotemporal features.

• Development of hybrid learning networks using thermal and color image data in tandem.

• Application of deep learning models for real-time fire identification.

73

74

Bibliography

[1] J. San-Miguel-Ayanz, T. Durrant, R. Boca, G. Libertà, F. Boccacci, M. Di Leo, J. López Pérez, and

E. Schulte. Forest Fires in Europe, Middle East and North Africa 2015. Technical report, Joint

Research Centre - European Commission, 2016.

[2] E. Chuvieco. Earth Observation of Wildland Fires in Mediterranean Ecosystems. Springer-Verlag

Berlin Heidelberg, 2009. ISBN 3642017533,9783642017537.

[3] J. Keeley, W. Bond, R. Bradstock, J. G. Pausas, and P. Rundel. Fire in Mediterranean Ecosystems.

Ecology, evolution and management. Cambridge University Press, 2012. ISBN 9780521824910.

[4] M. V. Moreno and E. Chuvieco. Characterising fire regimes in spain from fire statistics. International

Journal of Wildland Fire, 22(3):296–305, 2013. doi: 10.1071/WF12061.

[5] M. Salis, A. A. Ager, M. A. Finney, B. Arca, and D. Spano. Analyzing spatiotemporal changes

in wildfire regime and exposure across a mediterranean fire-prone area. Natural Hazards, 71(3):

1389–1418, Nov. 2013.

[6] A. A. Ager, N. M. Vaillant, and M. A. Finney. Integrating fire behavior models and geospatial analysis

for wildland fire risk assessment and fuel management planning. Journal of Combustion, 2011(1):

1–19, 2011.

[7] E. Chuvieco, I. Aguado, S. Jurdao, M. L. Pettinari, M. Yebra, J. Salas, S. Hantson, J. de la Riva,

P. Ibarra, M. Rodrigues, M. Echeverrı́a, D. Azqueta, M. V. Román, A. Bastarrika, S. Martı́nez,

C. Recondo, E. Zapico, and F. J. Martı́nez-Vega. Integrating geospatial information into fire risk

assessment. International Journal of Wildland Fire, 23(5):606, 2014. doi: 10.1071/WF12052.

[8] S. Marques, J. G. Borges, J. Garcia-Gonzalo, F. Moreira, J. M. B. Carreiras, M. M. Oliveira, A. Can-

tarinha, B. Botequim, and J. M. C. Pereira. Characterization of wildfires in Portugal. European

Journal of Forest Research, 130(5):775–784, Jan. 2011.

[9] S. L. J. Oliveira, J. M. C. Pereira, and J. M. B. Carreiras. Fire frequency analysis in Portugal (1975 -

2005), using Landsat-based burnt area maps. International Journal of Wildland Fire, 21(1):48–13,

2012.

[10] L. A. Arroyo, C. Pascual, and J. A. Manzanera. Fire models and methods to map fuel types: The

role of remote sensing. Forest Ecology and Management, 256(6):1239–1252, Sept. 2008.

75

[11] D. E. Calkin, M. P. Thompson, M. A. Finney, and K. D. Hyde. A real-time risk assessment tool

supporting wildland fire decisionmaking. Journal of Forestry, 109(5):274–280, 2011.

[12] T.-H. Chen, P.-H. Wu, and Y.-C. Chiou. An early fire-detection method based on image processing.

In 2004 International Conference on Image Processing. IEEE, 2004.

[13] T. Çelik and H. Demirel. Fire detection in video sequences using a generic color model. Fire Safety

Journal, 44(2):147–158, Feb. 2009.

[14] W.-B. Horng, J.-W. Peng, and C.-Y. Chen. A new image-based real-time flame detection method

using color analysis. In Proceedings. 2005 IEEE Networking, Sensing and Control. IEEE, 2005.

[15] G. Marbach, M. Loepfe, and T. Brupbacher. An image processing technique for fire detection in

video images. Fire Safety Journal, 41(4):285–289, June 2006.

[16] B. U. Töreyin, Y. Dedeoğlu, U. Güdükbay, and A. E. Çetin. Computer vision based method for

real-time fire and flame detection. Pattern Recognition Letters, 27(1):49–58, Jan. 2006.

[17] B. U. Töreyin. Fire detection in infrared video using wavelet analysis. Optical Engineering, 46(6):

067204, June 2007.

[18] I. Bosch, S. Gomez, R. Molina, and R. Miralles. Object discrimination by infrared image processing.

In Lecture Notes in Computer Science.

[19] S. Verstockt, A. Vanoosthuyse, S. V. Hoecke, P. Lambert, and R. V. de Walle. Multi-sensor fire

detection by fusing visual and non-visual flame features. In Lecture Notes in Computer Science,

pages 333–341. Springer Berlin Heidelberg, 2010.

[20] C. R. Steffens, R. N. Rodrigues, and S. S. da Costa Botelho. Non-stationary VFD Evaluation

Kit: Dataset and Metrics to Fuel Video-Based Fire Detection Development. Springer International

Publishing, 2016.

[21] A. E. Çetin, K. Dimitropoulos, B. Gouverneur, N. Grammalidis, O. Günay, Y. H. Habiboǧlu, B. U.

Töreyin, and S. Verstockt. Video fire detection – review. Digital Signal Processing, 23(6):1827–

1843, Dec. 2013.

[22] T. ho Chen, Y. hui Yin, S. feng Huang, and Y. ting Ye. The smoke detection for early fire-alarming

system base on video processing. In 2006 International Conference on Intelligent Information

Hiding and Multimedia. IEEE, dec 2006.

[23] B. C. Ko, K.-H. Cheong, and J.-Y. Nam. Fire detection based on vision sensor and support vector

machines. Fire Safety Journal, 44(3):322–329, Apr. 2009.

[24] T. X. Tung and J.-M. Kim. An effective four-stage smoke-detection algorithm using video images for

early fire-alarm systems. Fire Safety Journal, 46(5):276–282, July 2011.

[25] S. P. Hohberg. Wildfire smoke detection using convolutional neural networks. Master’s thesis,

Simon Philipp Hohberg, 2015.

76

[26] Z. Wu, T. Yao, Y. Fu, and Y. Jiang. Deep learning for video classification and captioning. CoRR,

abs/1609.06782, 2016.

[27] M. Almeida, J. R. Azinheira, J. Barata, K. Bousson, R. Ervilha, M. Martins, A. Moutinho, J. C.

Pereira, J. C. Pinto, L. M. Ribeiro, J. Silva, and D. X. Viegas. Analysis of fire hazard in campsite

areas. Fire Technology, 53(2):553–575, Apr. 2016.

[28] FLIR Vue Pro and Vue Pro R User Guide. FLIR, July 2016. Version 110.

[29] W. Minkina and S. Dudzik. Infrared Thermography: Errors and Uncertainties. J. Wiley, 2009. ISBN

9780470747186.

[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional

neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances

in Neural Information Processing Systems 25, pages 1097–1105. Curran Associates, Inc., 2012.

[31] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen,

T. N. Sainath, and B. Kingsbury. Deep neural networks for acoustic modeling in speech recognition:

The shared views of four research groups. IEEE Signal Processing Magazine, 29(6):82–97, Nov

2012. ISSN 1053-5888.

[32] D. Shapiro. NVIDIA Takes AI From Research to Production in New Work with

Volvo, VW, ZF, Autoliv, HELLA. URL https://blogs.nvidia.com/blog/2017/06/27/

nvidia-european-automotive-ai/. Accessed: 2017-09-25.

[33] NVIDIA. Partner innovation: Accelerating automotive breakthroughs. URL http://www.nvidia.

com/object/automotive-partner-innovation.html. Accessed: 2017-09-25.

[34] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object de-

tection and semantic segmentation. In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2014.

[35] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler. Efficient object localization using

Convolutional Networks. In 2015 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). IEEE, jun 2015. doi: 10.1109/cvpr.2015.7298664. URL https://doi.org/10.1109/cvpr.

2015.7298664.

[36] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards Real-Time Object Detection with

Region Proposal Networks. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,

editors, Advances in Neural Information Processing Systems 28, pages 91–99. Curran Associates,

Inc., 2015.

[37] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, may 2015.

[38] P. Langley and H. A. Simon. Applications of machine learning and rule induction. Communications

of the ACM, 38:55–64, 1995.

77

https://blogs.nvidia.com/blog/2017/06/27/nvidia-european-automotive-ai/
https://blogs.nvidia.com/blog/2017/06/27/nvidia-european-automotive-ai/
http://www.nvidia.com/object/automotive-partner-innovation.html
http://www.nvidia.com/object/automotive-partner-innovation.html
https://doi.org/10.1109/cvpr.2015.7298664
https://doi.org/10.1109/cvpr.2015.7298664

[39] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. The

bulletin of mathematical biophysics, 5(4):115–133, Dec 1943.

[40] F. Rosenblatt. The perceptron, a perceiving and recognizing automaton (project para). Technical

Report 85-460-1, Cornell Aeronautical Laboratory, 1957.

[41] D. Cox and T. Dean. Neural networks and neuroscience-inspired computer vision. Current Biology,

24(18):R921 – R929, 2014.

[42] K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern

recognition unaffected by shift in position. Biological Cybernetics, 36(4):193–202, Apr 1980.

[43] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[44] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,

M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.

International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

[45] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical

Image Database. In CVPR09, 2009.

[46] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recogni-

tion. CoRR, abs/1409.1556, 2014.

[47] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and

A. Rabinovich. Going deeper with convolutions. CoRR, abs/1409.4842, 2014.

[48] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, June 2016. doi:

10.1109/CVPR.2016.90.

[49] A. Canziani, A. Paszke, and E. Culurciello. An analysis of deep neural network models for practical

applications. CoRR, abs/1605.07678, 2016. URL http://arxiv.org/abs/1605.07678.

[50] R. Collobert, S. Bengio, and J. Marithoz. Torch: A modular machine learning software library, 2002.

[51] Theano Development Team. Theano: A Python framework for fast computation of mathematical

expressions. arXiv e-prints, abs/1605.02688, May 2016.

[52] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell.

Caffe: Convolutional Architecture for Fast Feature Embedding. arXiv preprint arXiv:1408.5093,

2014.

[53] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,

M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,

M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,

78

http://arxiv.org/abs/1605.07678

B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,

P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine

learning on heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software avail-

able from tensorflow.org.

[54] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a simple

way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1):

1929–1958, 2014. URL http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf.

[55] TensorFlow Development Team. Inception in TensorFlow, Github Repository. URL https:

//github.com/tensorflow/models/tree/master/research/inception. Accessed: 2017-09-25.

[56] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the Inception Architecture

for Computer Vision. CoRR, abs/1512.00567, 2015.

[57] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http://www.

deeplearningbook.org.

[58] P. Sadowski. Notes on backpropagation. URL https://www.ics.uci.edu/~pjsadows/notes.pdf.

Accessed: 2017-09-25.

[59] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and

H. Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications. CoRR,

abs/1704.04861, 2017. URL http://arxiv.org/abs/1704.04861.

79

https://www.tensorflow.org/
http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf
https://github.com/tensorflow/models/tree/master/research/inception
https://github.com/tensorflow/models/tree/master/research/inception
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://www.ics.uci.edu/~pjsadows/notes.pdf
http://arxiv.org/abs/1704.04861

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	Nomenclature
	1 Introduction
	1.1 Fire Hazard Identification and Risk Assessment
	1.2 Project Firecamp2
	1.3 Proposed Approach
	1.4 Objectives and Contributions
	1.5 Thesis Outline

	2 Data Acquisition System
	2.1 Hardware Architecture
	2.1.1 Raspberry Pi
	2.1.2 RGB Camera
	2.1.3 Thermal Camera

	2.2 Experimental Tests

	3 Thermal Imaging
	3.1 Thermal Imaging Data
	3.2 Sensor Measurements
	3.3 Adaptive Color Scale
	3.3.1 Controlled Fire Example
	3.3.2 Boom Festival Example

	3.4 Discussion

	4 Color Segmentation Heuristic
	4.1 Color Segmentation
	4.2 Validation Examples
	4.2.1 Straw Examples
	4.2.2 Tent Example
	4.2.3 Boom Festival Example

	4.3 Results
	4.4 Discussion

	5 Deep Neural Networks
	5.1 Neural Networks for Visual Recognition
	5.1.1 Deep Learning Frameworks
	5.1.2 Transfer Learning

	5.2 Convolution Neural Networks
	5.2.1 Convolution
	5.2.2 Fully-Connected Layer
	5.2.3 Convolution Layer
	5.2.4 Pooling Layer
	5.2.5 Dropout Layer

	5.3 Inception v3 Model
	5.3.1 Network Architecture
	5.3.2 Feature Extraction
	5.3.3 Hidden Units Activation
	5.3.4 Classifier

	5.4 Optimization
	5.4.1 Gradient Descent
	5.4.2 Loss Function
	5.4.3 Error Backpropagation

	6 Implementation
	6.1 Firecamp2 Dataset
	6.2 Data Preprocessing
	6.3 Training
	6.3.1 Model Retraining
	6.3.2 Hyperparameter Selection

	6.4 Testing Results
	6.4.1 Straw Example
	6.4.2 Tent Example
	6.4.3 Drone Example

	6.5 Discussion
	6.5.1 Performance Analysis
	6.5.2 Comparison of Results

	7 Conclusions
	Bibliography

