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Abstract

Due to climate change, fire risk conditions are more frequent which precipitates the greater
occurrence of these phenomena. With the escalation in the severity of these events, there is an
increased urgency of diminishing the response time from emergency teams, so the rapid detection of
fire outbreaks becomes imperative. This work aims to study different types of sensors and explore
computer vision techniques to detect these incidents at an early stage. Two main lines of research
are examined, to understand the merits and limitations of thermal and visible range cameras. For
the first approach, a color segmentation heuristic was devised to understand the sensor response and
the RGB encoding of the camera. Second, an intelligent systems approach centered on the study of
visible range images using a deep neural network. Since this work is inserted in Project Firecamp2, to
evaluate the performance of both methodologies, the test results are analyzed for a set of experimental
scenarios with a focus on fire risk in a camping context. While the thermal imaging approach extends
the sensing ability enabling faster detection, the deep learning approach with color images has the
potential to provide more robust algorithms with greater generalization. Overall, the comparative
analysis between the two approaches taken demonstrated that for a fire detection application the
development of algorithms should encompass both thermal and visible range images.
Keywords: fire detection, thermal imaging, RGB imaging, deep learning, color segmentation, aerial
images.

1. Introduction
Fire is a concerning natural hazard on a global

scale, that has a brutal impact on the environment
by disturbing the climate and natural ecosystems.
This phenomenon has drastic effects on communi-
ties on a social and economic level, since it can lead
to the loss of lives and material damages. Every
year the Mediterranean basin is invariably under
high fire risk, with recurrent wildfires that amount
to a large number of hectares of area burned [3].

Over the years, there has been continued research
focused on fire incidence in this region, to address
fire risk assessment and identification [2]. However,
despite placing certain areas under high alert based
on quantification of risk due to past events, many
studies overlook the urgency of diminishing the de-
lay in response time from when a fire starts until
first responders attend to it. Following this line of
reasoning, there has been considerable interest in
applying computer vision techniques to identify fire
using color imaging as well as from the thermal in-
frared range.

Due to climate change, conditions of high igni-
tion propensity are more frequent, which results in

an increase in fire incidents. These are escalating in
severity, which prompts the necessity of mitigating
its devastating effects. By nature, fire occurrence
is a process with a high degree of uncertainty, both
on a spatial and temporal level, making it difficult
to pinpoint the threat. Therefore, the immediate
identification and prompt action from emergency
response teams are key for minimizing its conse-
quences. Currently, there are several projects im-
plemented with the objective of reducing fire prop-
agation by early detection, yet their success is still
limited.

In this context, camping parks present an ele-
vated risk because, on top of material damages,
fire related incidents can have fatal consequences.
The present work, is developed under the scope of
project Firecamp 2, which centers on studying fire
risk in areas dedicated to camping and caravanning
activities. The investigation scope of this project
is not limited to camping parks, and is extensible
to fire risk situations in the wildland-urban inter-
face. In this context, this work centered on ana-
lyzing different imaging sensory data and exploring
computer vision techniques for detection of fire in-
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cidents in an initial stage. The principal objective
centers on evaluating the advantages of both color
and thermal imaging sensors, and assess how image
variability affects the performance of classification
algorithms for fire detection. To accomplish this
goal a set of experimental tests was conducted for
image acquisition purposes.

2. Data Acquisition System

2.1. Hardware Overview
With the purpose of acquiring thermal and vi-

sual range aerial images, an integrated acquisition
system was developed to be taken onboard a mul-
tirotor. Its principal components are:

• On-board computer - Raspberry Pi 3 Model B

• Color Camera - Raspberry Pi Camera Module
V2

• Thermal Camera - FLIR Vue Pro 336 9mm

Thermal Camera

Color Camera

Raspberry Pi

Figure 1: Image acquisition system mounted on a
drone.

The Raspberry Pi 3 Model B was selected to
be the on-board computer to handle image acqui-
sition tasks. Its 8.5 x 5.6 cm2 size facilitates the
installation on the drone frame, and with 42 g it
is easy to accommodate in the drone payload bud-
get. For the videos from both cameras to be as
synced as possible, both cameras are directly con-
trolled by the Raspberry Pi. The thermal cam-
era is hardware-triggered via PWM signal, and the
color camera is software-triggered using the Picam-
era Python library. To avoid interference with
drone sensors, wireless connectivity is turned off
and Python scripts are run through secure shell
(SSH) on the ground using an ethernet cable and
stopped with the same protocol upon landing.

2.2. Thermal and RGB Cameras
All objects above absolute zero (0o Kelvin) emit

thermal infrared energy. Since fire is a source of
extreme temperatures, thermal imaging sensors are
a clear choice for a fire detection application. For
this reason, the system designed employs a thermal
camera, i.e., FLIR Vue Pro. In order to acquire im-
ages from the visible range the Raspberry Pi Cam-
era Module V2 was selected. This camera module
allows for perfect integration with the Raspberry
Pi, and due to its reduced weight it is a good choice
for this application, since payload is a concern. The
main specifications of these two cameras are sum-
marized in table 1.

Table 1: Summary of the specifications of the ther-
mal visible range camera.

RPi Camera Module V2 FLIR Vue Pro

Size (mm) 25 x 23 x 9 63 x 44.4 x 44.4
Weight (g) 3.4 92.1 - 113.4
Sensor Resolution (px) 3280 x 2464 336 x 256
Focal Length (mm) 3.04 9.0
Horizontal FOV (o) 62.2 35
Vertical FOV (o) 48.8 27
Spectral Band (µm) 0.35 - 0.74 7.5 - 13.5

2.3. Experimental Tests
Since this work is developed under the scope of

project Firecamp 2, the trials have an emphasis on
fire risk situations related to the camping activity.
While there was the intention of performing tests
in an outdoor setting, due to the early arrival of
fire season in 2017, for safety reasons, these tests
to be conducted in June, were only carried out in
indoor laboratory conditions, at the Laboratory of
Forestry Fire Studies in Lousã.

Using a controlled environment in these experi-
ments allowed for the acquisition of video sequences
from static and moving platforms, as well as from
different types of thermal cameras. In order to have
a ground truth for this preliminary study, in addi-
tion to the two cameras presented in the previous
sections, data were also recorded from an elevated
platform using a radiometric thermal camera, FLIR
SC660.

For the situations depicted in figure 4, an array of
tests was performed under different conditions. Ta-
ble 2 presents the summary of the tests performed.

The use of both radiometric and nonradiometric
thermal cameras in the laboratory tests enables the
development of an analysis of the sensor response,
and understand how image statistics change for the
set of experimental scenarios.

3. Thermal Imaging
Typically, thermal cameras only produce

monochromatic images, unlike color cameras,
which make use of 3 color channels, e.g., RGB.
That is precisely the case of FLIR Vue Pro, which
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(a) Setup 1 (b) Setup 2

Figure 2: Experimental setups used in the indoor trials.

Table 2: Summary of the experimental tests.

Experimental Tests Data Acquired
ID Description Conditions Platform Color Thermal Radiometric T. Nonradiometric

Test 1 Straw Burning Static Elevated Platform X X X
Test 2 Tent Burning Static Elevated Platform X X X
Test 3 Straw Burning Moving Drone X X X
Test 4 Boom Festival Moving Balloon X

in the raw format produces a 14-bit monochromatic
image in grayscale with 16384 levels of intensity. By
employing an array of proprietary camera features,
the camera firmware processes the video from the
monochromatic raw format to a video encoded in
pseudocolor, according to the filter selected. First,
the amounts of radiance registered by the sensor
are converted to a grayscale image with intensity
levels. Then, the firmware attributes to these levels
a scale of colors, according to a specified palette.

In this work, the GrayRed filter was selected,
which helps to draw attention to the hottest objects
in a scene, by applying high-contrast color values
with a divergent color scheme. While a priori it is
unclear if employing this color palette specifically
will yield any benefit in classification performance,
FLIR preset filters will be used as it facilitates the
development of future work, providing a basis for
comparison of results. For the same reason, this
color palette was applied to the raw data acquired
with FLIR SC660, using FLIR ResearchIR software.

For both cases, the intensity level is given by a
digital number assigned by the sensor analog to dig-
ital converter, the A/D counts. The difference is
that for radiometric data this raw signal are con-
verted to a temperature value according to the cam-
era calibration. Nonetheless, these measurements
should be corrected a posteriori, since the setup for
experiments is not always the same. Consequently,
the encoded radiometric data will not be accurate
if the measurements are not properly adjusted.

3.1. Sensor Measurements
Using the FLIR ResearchIR software, the meta-

data encoded in the images can be visualized inter-
actively, and we have access to the scale of tempera-
tures for the radiometric case. These temperatures

vary in each frame as the scale adjusts to the max-
imum temperature in the scene.

One of the main difficulties of interpreting ther-
mal imaging data is the constant color adjustment
of the image. In order to get a better sense of what
is the output of the sensor prior to RGB encod-
ing, it is convenient to first analyze how the raw
digital signals and the respective temperature mea-
surements evolve over time. Figure 3 presents this
comparison for a fire ignition captured from an ele-
vated platform using a radiometric camera.
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Figure 3: Temperature versus A/D Counts.

The most immediate observation from the graph
is that the change in maximum temperature is
highly correlated to the increase in the maximum
value of A/D counts for each frame. Furthermore,
from the graph in figure 3, it is interesting to note
that around frame 350, the sensor output of maxi-
mum raw signals is close to the limit of the sensor
resolution, 216 = 65536 levels, and this corresponds
to a maximum temperature of 550oC.

In order to clarify what is the actual working tem-
perature range, we will resort to the metadata en-
coded in the image files for both cameras. In the
case of the radiometric camera, these are SEQ files,
that include multiple sequential frames with the raw

3



digital values. Conversely, for the nonradiometric
camera, both TIFF and JPEG files are used. The
first can be of single or multiple frames, and the
latter include both the RGB encoded image as well
as the raw TIFF file. The metadata from these files
can be extracted using Exiftool, an application ca-
pable of handling a variety of metadata formats.

By using Exiftool, it was possible to discover the
temperature range of measurements for both cam-
eras, as listed in table 3. These camera parameters
are characteristic of each particular sensor.

Table 3: Camera Temperature Limits

Camera FLIR SC660 FLIR Vue Pro 336 9mm

Temperature Range Max (oC) 500 135
Temperature Range Min (oC) 0 -25
Temperature Max Saturated (oC) 550 150
Temperature Min Saturated (oC) -60 -60

Observing the temperature intervals of both cam-
eras it is simple to verify that they have quite
distinct sensing capabilities. This new informa-
tion listed above is not provided in the official
datasheets, but is extremely important. In what
regards FLIR Vue Pro, the fact that the sensor sat-
urates at 150oC can potentially be a limitation for
a fire identification application. Considering that
fire reaches much higher temperatures, a detection
algorithm solely based on temperature would most
likely be prone to false alarms.

3.2. Adaptive Color Scale
As mentioned previously, understanding how the

camera adapts the color scale is one of the princi-
pal difficulties in interpreting thermal imaging data,
which is essential to devise a robust computer vi-
sion algorithm. For FLIR Vue Pro the adaptive
color assignment depends on an array of camera fea-
tures such as Digital Detail Enhancement (DDE),
Active Contrast Enhancement (ACE) and Smart
Scene Optimization (SSO). These algorithms tune
the color assignment and can be adjusted manually
using FLIR UAS mobile app. From the analysis of
the metadata of the image and video files, two exif
tags were identified that have paramount influence
in adapting the color scale, the Raw Value Median
and Raw Value Range. With the median and raw
values from the metadata tags, the maximum and
minimum values of the color scale are computed as
follows:

Raw Max = Raw Median +
Raw Range

2
(1)

Raw Min = Raw Median − Raw Range

2
(2)

To investigate further the response of the sensor,
and the influence of these parameters, two examples
are given for the radiometric and nonradiometric
camera in real operation conditions. The first case

(fig. 4a) demonstrates the sensor response in a fire
situation with extreme temperatures, for the radio-
metric camera. The second case (fig. 4b) illustrates
the sensor response retrieved from nonradiometric
data acquired with a balloon at high altitude at
Boom Festival.
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(a) Raw measured with FLIR SC600 for a controlled fire
situation.
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(b) Raw measured with FLIR Vue Pro for community
kitchen area.

Figure 4: Sensor response in raw values for two dis-
tinct situations.

Figure 4a reveals the radiometric camera has a
processing level that does not update the scale in
every frame but rather in steps of 30 frames. Taking
into account this device works at 15 Hz, the color
scale is updated once every 2 seconds. Regarding
figure 4b, considering this camera was programmed
to take photographs with a 5 second time-lapse, it
is unknown the time the firmware takes to adjust
the color scale. Nevertheless, these results give in-
sight into how the color scale expands when objects
with high temperatures enter the field of view of the
camera.

This initial analysis illustrates to some extent the
principle behind how these devices work in and gave
a better understanding of how the color scale ad-
justs. To further explore this aspect, the analysis
will continue with a color segmentation approach.

4. Color Segmentation Heuristic

From the literature review, a common computer
vision approach to fire detection is through color
segmentation [1]. Before this work, under the scope
of Project Firecamp 2, a preliminary analysis was
performed using a segmentation heuristic to at-
tempt to detect fire presence in a real-world setting.
Now, with access to more data as well as radiomet-
ric information, this approach will be extended.
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4.1. Color Segmentation
Considering that thermal images in pseudocolor

are used to highlight differences in temperature, a
segmentation heuristic should take into account the
color bands used for such purpose. Recalling the
images in figure 3.4, these colors are red, green and
gray, as assigned by the GrayRed filter. The access
to the color assignment of the filter is essential to
devise the segmentation heuristic.

15% 40% 45%

Figure 5: Division in color segmentation classes

The complete scale of 120 discrete color values,
which depicts increasing temperature from gray to
red, was divided into three segments. First, the gray
segment includes 18 color levels, which represent
15% of the full scale. The mid-range is composed of
48 colors of green tones, which correspond to 40%
of the scale. The remainder is the red part, that
comprises the last 45% of the color palette, and is
defined by 54 color levels.

Table 4: Segmentation thresholds

Gamma Gray Green Red
Channels R G B R G B R G B

Upper limit 253 199 185 143 169 157 255 73 71
Lower limit 149 171 160 98 90 86 103 89 85

To assess the advantages and limitations of ther-
mal imaging the segmentation heuristic will be eval-
uated for the situations of the experiments tests.
These cover three distinct scenarios of fire risk sit-
uations in camping parks. These situations encom-
pass burning of forest fuels like straw, but also in-
clude highly combustible materials characteristic to
the camping context.

4.2. Straw Example
For the controlled ignition of straw, two types of

tests were conducted. For the first case, videos were
recorded with both radiometric and nonradiometric
cameras from a static elevated platform. Fig. 6 de-
picts the data captured with these devices.

(a) Radiometric (b) Nonradiom. (c) Color

Figure 6: Images acquired with (a) FLIR SC660,
(b) FLIR Vue Pro and (c) Pi Camera V2.

A second test again considers the burning of
straw, with the radiometric camera positioned in

an elevated platform. The nonradiometric image
acquisition was, in this case, performed from a mov-
ing platform, using the UAV as presented earlier in
figure 2a. Fig. 7 illustrates the data from the dif-
ferent points of view.

(a) Radiometric (b) Nonradiom. (c) Color

Figure 7: Perspectives with 3 different cameras.

Both cases presented so far comprise the same
type of test, and data were recorded with the three
devices, with the only difference being the point of
view for the second case. These instances account
for situations where the fire is visible to the naked-
eye, thus could, in theory, be detected using color
images also. Notwithstanding, one of the main ad-
vantages of using thermal imaging is the ability to
see beyond the visible spectrum, thus being capable
of detecting sources of thermal radiation to which
there is no direct view. The following example aims
to harness this advantage in another set of condi-
tions.

4.3. Tent Example

In a camping environment, fires can originate
from inside tents which means it is important to
study these cases due to their elevated propagation
potential. An important aspect of this type of in-
stances is that the fire sources are obstructed by a
somewhat opaque material. To evaluate this situa-
tion, a test was performed under static conditions
on an elevated platform, again using the radiomet-
ric, nonradiometric and color cameras, as illustrated
previously in fig. 2b. Fig. 8 illustrates the differ-
ences of data recorded with these devices.

(a) Radiometric (b) Nonradiom. (c) Color

Figure 8: Image data from the burning of camping
tent.

Comparing with the previous tests, now, at an
early stage, the area in red does not depict the
actual fire, but the heat built-up inside the tent.
Whereas this is visible in fig. 8a and 8b, for the color
image (fig. 8c) the fire will only be visible when it
starts consuming the exterior of the tent.
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4.4. Boom Festival Example
In addition to the previous tests, the segmenta-

tion heuristic was also tested on a dataset acquired
at Boom Festival. Since these sequences are of ther-
mal nonradiometric images at high altitude and of
difficult interpretation, only a few selected samples
are shown in fig. 9.

(a) Frame 48 (b) Frame 49 (c) Frame 80 (d) Frame 81

Figure 9: Heat detection with a nonradiometric
thermal camera.

By inspecting the corresponding sequence of
frames, presented in figure 9, what stands out is
that the color scale adjusts when the same area en-
ters the FOV of the camera. With knowledge of
the venue premisses, it is possible to identify this
place as the community kitchen area with rocket
stoves. This is an area where fire detection is to be
expected, in addition to other heat sources such as
objects at elevated temperatures.

4.5. Results
The results from this section pertain the study

of the thermal cameras in terms of RGB encoding
for the segmented classes. These results of all the
tests are presented side-by-side in fig. 10, since it
facilitates their interpretation. Yet, by comparing
data of images from the two cameras, the effect of
the difference in spatial resolution should be taken
into account.

Starting with figure 10a and 10b, these corre-
spond to the first straw example (Test 1) captured
with FLIR SC660 and FLIR Vue Pro, respectively.
Observing the variation in both graphs, it is evident
the ignition provokes an abrupt change in the gray
and green levels. However, considering the ignition
occurs around frame 300, it is noticeable that the
nonradiometric camera responds with some delay.

Moreover, examining the graphs from figures 10c
and 10d (tent example, Test 3) the change in green
and gray levels happens, once again, in an almost
symmetric fashion. But, for this instance, the adap-
tation of the color scale to the fire incident takes
effect more slowly. The increase in the percentage
of red pixels occurs gradually but still at relatively
low levels.

Looking at both of these tests, in which images
were captured from a static platform, the variation
of the color levels develops in an incremental man-
ner, so it would be difficult to establish a threshold
based on the change in consecutive frames. Addi-
tionally, the percentage of pixels in gray seems the
most promising feature to identify the occurrence

of fire. Still, the image does not adjust so abruptly
in all cases, so if a low percentage of gray pixels is
defined as a threshold, the classification algorithm
would be prone to false alarms.

While the results of examples covered so far were
obtained from laboratory tests in a controlled envi-
ronment, under real operating conditions the move-
ment of an aerial platform would cause far greater
inconsistency in the color levels. This can be ob-
served by comparing figures 10e and 10f, which de-
pict the second straw example (Test 2) captured
from a static platform and a drone, respectively.
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Figure 10: Color segmentation results.

Finally, examining the graphs from figures 10g
and 10h, relative to the tests at the Boom Festi-
val with the tethered balloon, the movement of the
camera, as well as the set 5 second timelapse, have a
considerable effect on the sensor response. Now, the
variation is no longer incremental, and consecutive
frames display abrupt changes in the percentage of
either of the segmented colors.

Overall, the principal insight gained from this
analysis is that the gray and green percentages ad-
just in a complementary way, as the color scale ad-
justs to the hottest objects in the scene. Further-
more, since for fire identification the ignition starts
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with low spatial resolutions, the red percentage is
usually the one with least influence for a fire detec-
tion heuristic.

These results demonstrate that the variability in-
herent to dealing with thermal images, which de-
pict relative temperature differences, is a consid-
erable challenge to the development of a robust
classification algorithm. Although a set of heuris-
tic rules could be fine-tuned to work for the sit-
uations presented, that type of algorithm would
fail, if applied to real-world scenarios. As the
tests from Boom Festival illustrated, real condi-
tions account for much higher variability in image
content. Granted that the data from the limited
amount of tests is insufficient to build a reliable al-
gorithm at this stage, the data available can still
be explored using other techniques. Taking into
account the complexity of this classification task,
and its feature-rich characteristics, more powerful
techniques should be employed in order to achieve
better generalization.

To address this issue, the next section proposes
an intelligent systems approach using deep neural
networks. This type of architecture has recently
achieved state-of-the-art results in computer vision
tasks. These models are prepared to handle high-
dimensional data, and spatial features of high com-
plexity. Hence, the approach will depart from ther-
mal imaging, and deal primarily with color images
without prior feature extraction.

5. Deep Neural Networks
The second approach to address the fire detection

problem explored the color imaging data, without
prior feature extraction. This was achieved by re-
sorting to a state-of-the-art deep neural network,
i.e. the Inception V3 [5], and applying a transfer
learning scheme. Transfer Learning is a machine
learning method that consists of leveraging a previ-
ously optimized network, a pretrained model, and
use it to learn an entirely new task, using a different
dataset. Inception V3 has 5 types of layers for fea-
ture extraction purposes, i.e., fully-connected, con-
volutional, two pooling layers (max and average),
the dropout layer, and a softmax classifier.

5.1. Fully-Connected Layer
The structure of the fully-connected (FC) layer is

based on the architecture of classic neural network
models like the multi-layer perceptron. In fully-
connected layers, the neurons in adjacent layers
have pairwise connections, but despite their name,
neurons within a single layer do not share connec-
tions between them. Due to their amount of connec-
tions FC layers are very computationally expensive.
Therefore, these are used sparingly in convolutional
neural networks (CNNs), and usually at the penul-
timate layer before the classifier.

5.2. Convolutional Layer
Convolutional layers are the main building block

of CNNs and are responsible for extracting repre-
sentations from the data as it flows through the
network. As illustrated in fig. 11, this type of layer
computes the dot product between patches of the
input volume and the weights of the filters. The
dimension of the input and output volumes reflects
the usual application of this type of layer that re-
duces data in spatial size and increases its depth.

input volume convolutional layer output volume

filter

Figure 11: Example of a convolutional layer.

Due to their parameter sharing scheme (fig. 12),
where neurons in each depth slice share the same
weights, the network translation invariance. The
output volume of this layer, in fig. 11, stacks the
activation maps of the different slices of neurons,
which extract distinct features.

depth of convolutional layer

Figure 12: Parameter sharing scheme.

5.3. Pooling Layer
Pooling layers are introduced in the network to

perform dimensionality reduction on the activation
maps, by extracting only the most relevant features.
Typically two types of pooling can be employed,
max pooling and average pooling.

Pooling puts an emphasis on the relative location
of features rather than their exact location, thus re-
ducing the spatial size of the representations which
consequently decreases the computational cost.

5.4. Dropout Layer
Deep neural networks, due to their complexity,

are prone to overfitting when the amount of data
available for training is limited. To address this
issue, a regularization technique called dropout is
used. By dropping a percentage of the hidden units
at each training iteration, by zeroing its activations
and discarding the influence of the respective con-
nections to the output, the network learns redun-
dant ways of mapping the inputs to the outputs,
yielding improvements in generalization [4].
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Figure 13: Inception V3 network architecture1.

5.5. Softmax Classifier
The softmax is the score function responsible for

generating the predictions of the model. This func-
tion is given by:

ŷk = σ(z)k =
exp(zk)∑K
i exp(zi)

, k = 1, ...,K (3)

with k representing the index of the class label. For
every input, zk, of the output layer, the softmax
will generate K class prediction scores, ŷ.

5.6. Inception V3
The Inception v3 model (fig. 13) is a deep neu-

ral network that is built modularly, by means of
a stacking of parallel convolution structures known
as Inception modules. These employ several dif-
ferent convolution factorization schema depending
on their relative depth location in the network and
provide different hierarchical levels of feature ex-
traction. The diagram with the compressed view of
the network divides it in two parts, where the first
is responsible for extracting spatial features (A-F)
and the second is a classifier. To apply transfer
learning the classifier part of the network will be
retrained.

The formulation of the optimization problem for
readjusting the parameters of last layers consists in
finding the weights and biases, that define the map-
ping between the inputs and the correct outputs. To
that end, the objective function will minimize the
error between the prediction of the model and the
ground truth labels.

The loss function quantifies the distance between
the predicted outputs, ŷ, and the ground truth la-
bels, y. For this model the loss is computed us-
ing the cross-entropy function, which is calculated

1The diagram presented in the figure is a compressed view
of the full architecture. This diagram makes a correction
from the representation available in [6].

as the sum of the ground truth labels, represented
by y, times the natural logarithm of the prediction
scores, ŷ:

L(y, ŷ) = −
∑
k

yk ln(ŷk) (4)

6. Implementation
Since those experiments account for three video

sources only, additional color videos were added to
the database to enable training the deep neural
network. Then, in addition to the thermal image
dataset, an augmented color dataset was created,
and some samples can be observed in fig. 14.

Figure 14: Samples from Firecamp2 Dataset.

6.1. Firecamp2 Dataset
To identify fire the problem is formulated as a

binary classification where one class is fire and the
second is not fire. In table 5 the division of the
dataset is listed for these two classes.

Table 5: Dataset division

Camera Fire Not Fire Total

Database 30682 27584 58266
Training Data 16000 16000 32000
Testing Data 5143 6407 11550
Straw burning 1699 301 2000
Tent burning 1624 5926 7550
Straw burning (drone) 1820 180 2000

6.2. Data Preprocessing
Since in this work the focus is on evaluating

performance of models in offline classification, the
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frames were extracted from video sources previously
recorded. In VLC, using the scene filter the images
were reduced to 299x299 with the original temporal
resolution of the videos which varies depending of
the video source. The Inception V3 model normal-
izes the input images to a [-2; 0] interval. This is
done by dividing the input by 255, the maximum of
a RGB channel , which normalizes the inputs to a 0
to 1 range. To apply a transfer learning approach,
the images of training dataset are run through the
network to extract the feature representation of the
penultimate layer. This is a pooling layer with a
tensor output of 2047 dimension, which is usually
referred to as the bottleneck layer.

6.3. Model Retraining
Since hyperparameter selection is an iterative

process, a series of five distinct values of learning
rate were tested: 0.005, 0.01, 0.05, 0.1, and 0.2.
For these, training batch size was changed between
100 and 250, but it did not yield benefits in classi-
fication performance.
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Figure 15: Comparison of models with different
learning rate and batch size of 100.

As can be observed in the training and validation
curves in figure 15 for accuracy and cross-entropy,
the variation of the performance of the models with
the change in learning rate is not significant. Fur-
thermore, the convergence of the cross-entropy loss
to small values in the training and validation sets
demonstrates the training procedure is successful.

6.4. Comparison of Results
To test the performance of the model the sit-

uations analyzed are the same considered for the
evaluation of the color segmentation heuristic, pre-
sented in section, with the exception of the Boom
Festival example for which there were no color im-
ages. Whereas that approach used thermal imag-
ing, now the color images captured in those experi-
mental trials are used to assess if an approach using
this type of data would be effective. Note that now,

the levels of gray, green, and red are stacked to for
ease of comparison.
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Figure 16: Comparison of the segmentation heuris-
tic for thermal images (left) versus the inception
classification for color images (right).

Overall, setting a threshold value of 0.5 (50%),
the response of the Inception model is more robust
and consistent in its predictions over time, whereas
the color segmentation heuristic, since is depen-
dent on the sensor response, would misclassify a
greater percentage of the frames. To conclude this
overview of the results it matters to quantify for
both methodologies the time elapsed from the ig-
nition to the first instance of fire detection. The
results for each test are summarized in table 6.

Table 6: Time intervals for the first fire alarm for
the experimental tests.

Data Type Test 1 Test 2 Test 3
Thermal Nonradiometric 28 s 22.6 s 2.8 s

Color 3.4 s 6m48s 5 s

Despite the strengths and limitations of each ap-
proach, from the point of ignition to the first fire
alarm, the detection is achieved in short timeframes
for both approaches. Therefore, a framework for
early fire detection would benefit from integrating
these two types of sensory data into a single algo-
rithm, in order to develop a more general solution.

7. Conclusions
The present work was developed under the scope

of project Firecamp 2, which centers on studying
fire risk in areas dedicated to camping and cara-
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vanning activities. The investigation scope of this
project is not limited to camping parks, and is ex-
tensible to fire risk situations in the wildland-urban
interface. In this context, this work centered on an-
alyzing different imaging sensory data and explor-
ing computer vision techniques for detection of fire
incidents in an initial stage.

To address a problem of this complexity, for
which the available data were very limited, the first
step required the development of experimental tests
for image acquisition purposes. In order to perform
realistic tests, a data acquisition system was de-
signed to be integrated on a mobile aerial platform
e.g. a drone, a balloon. While there was the inten-
tion of performing tests in an outdoor setting, due
to the early arrival of fire season in 2017, for safety
measures, these tests to be conducted in June, were
only carried out in indoor laboratory conditions, at
the Laboratory of Forestry Fire Studies in Lousã.
The designed system included two different cameras
to capture aerial images in the thermal and visible
range. Since the image acquisition was performed
synchronously, the tests resulted in a new dataset
for fire detection composed by thermal nonradio-
metric and color images.

Having now different types of data to explore,
various avenues of research were taken to evaluate
its merits and limitations. Since the images from
the thermal cameras are encoded in pseudocolor,
a color segmentation heuristic was devised to par-
tition the color palette into three different classes:
gray, green, and red. The analysis of the variation
of these classes provided insight into the response
of the sensor in terms of RGB encoding. While
this study enriched the understanding of the inner-
workings of the thermal cameras, the analysis of
the data from various experimental tests showcased
the limitations of this type of approach. Due to ex-
cessive variability of the color levels, establishing an
algorithm based on these three variables would have
strong limitations in generalization for new scenar-
ios. However, if a solution is required for fire detec-
tion for very specific contexts, a color segmentation
heuristic could be fine-tuned to target a limited ar-
ray of cases, by establishing a rule-based algorithm.

The second approach to address the fire detection
problem explored the color imaging data, without
prior feature extraction. This was achieved by re-
sorting to a state-of-the-art deep neural network,
i.e. the Inception V3 model, and applying a trans-
fer learning scheme. Since this type of approach
requires large amounts of data, the previous color
image dataset was augmented with RGB images
from additional tests. Although only offline clas-
sification was performed, the preprocessing proce-
dure to extract frames from the video sequences was
established having an online classification pipeline

in mind. In what concerns the retraining of Incep-
tion V3, only the classifier part of the model was
retrained using TensorFlow. Regarding the classifi-
cation results, this approach demonstrated high ac-
curacy for the cases where the fire is directly visible.
From the results of this approach the test performed
with images acquired from a drone, has special im-
portance.

Although the two approaches proposed to this
problem are very distinct in nature, the results pro-
vided a clear understanding of the limitations of
each and the benefits using both can bring. De-
spite the fact that the tests presented in this work
contemplate a limited set of situations, they demon-
strated the value of designing a system that can
capture different types of data. While the thermal
imaging approach extends the sensing ability en-
abling faster detection, the deep learning approach
with color images has the potential to provide more
general and robust algorithms. Overall, the com-
parative analysis between the two approaches taken
demonstrated that for a fire detection application
the development of algorithms should encompass
thermal and color image data.
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