
Authentication via User Profiling
Extended Abstract

André Faustino
Instituto Superior Técnico

andre.faustino@tecnico.ulisboa.pt

ABSTRACT
Online authentication using only a username and a textual
password has been proven flawed over years. Some solutions
have been adopting different types of passwords or adding
more authentication factors.
Due to sometimes requiring expensive hardware or de-

manding several actions from the user, some of these solu-
tions are unusable in mobile devices.
The solution described in this work is an additional au-

thentication factor that uses the smartphone characteristics
and its user configuration in order to create user profiles that
will be used to authenticate the user, requiring no actions
from the user.
This way, the proposed solution provides a fast authenti-

cation that does not requires the user to perform any actions.
The proposed solution is also as secure as existing solutions.

Since mobile devices are subject to changes such as the
installed applications, memorized networks and accounts,
operating system upgrades among others, profile verification
must be made allowing small changes.
Therefore, the Authentication Server evaluates whether

the freshly received profile is similar enough to the stored
profile using defined thresholds. If static attributes are changed,
or if a large number of attributes have been changed, then the
verification fails immediately, activating the fallback mecha-
nism defined by the third-party application.

KEYWORDS
Online authentication, Two-Factor Authentication, mobile
devices, user profile, installed applications

1 INTRODUCTION
Online authentication has been done over the years using a
username and a textual password. This system is relatively
simple and the user doesn’t need to carry extra devices, only
needing to remember his username and password.
However, over the years this model has become vulnera-

ble and easy to exploit. Short passwords are easy to crack
using brute force attacks or even discover through phishing
attacks, as Coombs [8] pointed out, Kaspersky estimated that
a phishing gang stole one billion dollars from several banks
in 2014.

Social Engineering attacks are also a threat when the pass-
word is something personal related to the user. In those cases
an attacker may discover the password by knowing pieces of
information related to the user or finding that information
in social networks.
Long randomly generated passwords are harder to guess

and crack but they are also harder to remember, especially if
the user uses different passwords for different services [8].
In the particular case of online authentication in mobile

devices, there are several approaches but not a definite so-
lution. The most common approaches consist of requiring
additional authentication factors, such as biometrics or the
presence of some object.
However, these solutions have some problems. Once bio-

metrics are falsified the user may never use them again, since
it’s very hard or even impossible to replace them. Solutions
that require objects being carried by the user are not ideal
either, since the object can be lost, stolen or forgotten.
The most commonly used system consists on sending a

one-time password (via SMS or a specific application) that
the user must input to verify his identity. However, this
solution requires the user to perform an undesirable set of
actions, including checking the received code, copying or
memorizing it and inputting it when asked.

Proposed Solution
The proposed solution solves the problem of online authenti-
cation in mobile devices using an authentication factor that
is secure and requires minimum user interaction. The used
authentication factor is an adaptive unique profile that is
composed of unique features of the smartphone and its user
configuration like memorized networks, installed applica-
tions, memorized accounts, among others.
The solution consists of an authentication server and a

smartphone application that will collect the relevant infor-
mation. Whenever a user logs in the desired third-party
application, the information collector application is called,
retrieving the needed information and creating the profile.

For each retrieved attribute a hash is calculated, with each
profile being a set of the calculated hashes. An HMAC of
the profile is calculated using a symmetric AES key shared
between device and sever that is stored safely in the smart-
phone’s TEE. Both the profile and its HMAC are sent through



a secure channel to the authentication server alongside with
a digital signature of the created profile, to prevent the mes-
sage from being tampered.
The authentication server will then verify if the digital

signature is valid and the integrity of the received informa-
tion by checking if the received HMAC matches the received
profile. If the received information is valid, the server checks
if it matches the stored information contained in the user
profile.
Due to smartphones being customizable, the proposed

solution must deal with changes in the profile. If the profile
is too strict, whenever a user downloads a new application,
for example, a new profile would be required.
Part of the profile is composed of static attributes, infor-

mation that is impossible to change, and the other part is
composed of dynamic attributes which may suffer changes
in a regular use of the smartphone. If a static attribute or
a significant part of the dynamic attributes is changed, the
user must acquire a new profile, activating the fallback mech-
anism of the third-party application.
Whenever the server accepts the profile of a user, it will

update the stored profile with the new information, making
sure that the stored profile always contains the updated
information of the smartphone.

Objectives
The objectives of this work are to introduce a new Two-
Factor Authentication scheme that is simultaneously as se-
cure as existing solutions, fast and that requires few actions
from the user when compared to existing solutions.
Considering that resources, namely CPU, memory, net-

work and battery, are limited in smartphones, the solution
should avoid using more resources than necessary.

Contributions
The major contributions for the online authentication prob-
lem of the solution described in the section above are the
following:

• First solution known so far to use a profile composed
of device characteristics and user configuration to au-
thenticate the user.

• Two-Factor Authentication solution that requires no
explicit interaction from the user in the best cases and
requires the same actions as any other solution in the
worst case.

2 RELATEDWORK
This section contains an overview of the related work pre-
sented in the Thesis document, namely the sections of Two-
Factor Authentication, User and System Profiling and At-
tacker Models.

Two-Factor Authentication
Christian Holz and Frank Bentley in [12] proposed a sys-
tem that uses fingerprints introduced in the smartphone as
a second authentication factor for desktop environments,
pointing out that the increased complexity introduced by a
temporary code is what keeps most users from using Two-
Factor Authentication systems.

Aloul et al [4] proposed a system that use smartphones as
security tokens. The system consists on generating a One-
Time Password using factors like the smartphone’s IMEI and
IMSI number, a username, a pin and a timestamp.
Acharya et al [2] proposed a similar system that uses

different factors. The factors used by Acharya et al consist
on the IMSI number, a pin, a timestamp, a username provided
by the server owner and the date of birth of the user.
Harini et al [11] developed a system which they called

2CAuth that uses QR codes in an OTP authentication pro-
tocol instead of SMS messages, claiming that distributing
One-Time Passwords using SMS is not practical due to the
SMS transmission delay.

Dmitrienko et al [10] conducted a study on the security of
Two-Factor Authentication implementations of worldwide
internet service providers like Facebook, Google, Twitter and
Dropbox. Dmitrienko et al found that the major problems
consisted on low-entropy One-Time Passwords or its distri-
bution, suggesting that the use of the smartphone’s Trusted
Execution Environment could overcome these problems.
Schrittwieser et al [14] studied the security of Android

messaging applications. Considering theAuthenticationMech-
anism and Account Hijacking attack vector, Schrittwieser et
al concluded that most of the evaluated applications have
flaws that allow attackers to easily hijack accounts, such as
generating the code in the client side, which allows Man-in-
the-Middle attacks.
Rob Coombs [8] described how ARM Trustzone can be

used with FIDO to replace textual passwords. Coombs started
to note that smartphones are vulnerable tomalware, allowing
information to be read or written outside of its application
sandbox. ARM Trustzone aims at mitigating these attacks
by storing information and executing code inside its Trusted
Execution Environment.

User and System Profiling
Ali et al [3] proposed a system to perform user profiling
through browser fingerprinting, by looking at the charac-
teristics or attributes of a browser like plug-ins, time zone,
fonts and many other features, making it possible to track
users even if they erase their cookies.
Boda et al [5] studied a cross-browser fingerprinting by

identifying common attributes of all browsers.

2



Stöber et al [15] proposed a system capable of performing
smartphone fingerprint based on application behavior and
the traffic generated by applications, using data mining algo-
rithms and the traffic generated by applications to identify
one user.

Dai et al [9] proposed a system to automatically fingerprint
Android applications constructing a user profile with that
information.
Conti et al [6] proposed a system that aims to identify

users based on their actions on Android applications by us-
ing machine learning algorithms over the encrypted traffic
generated by these applications.

Attacker Models
Cooijmans et al [7] developed a comparison study between
the Android Keystore implementation for Android API Level
18 and a third-party cryptography library for Java called
Bouncy Castle, defining the three following attacker models,
ordered by increasing order of power:

• Malicious app attacker - attacker that tries to attack the
Keystore using an application installed on the device.

• Root attacker - attacker that has root credentials and
is able to run apps under root permissions and inspect
the file system.

• Intercepting root attacker - attacker with the same abil-
ities as the Root attacker but also capable of capturing
user-input in real time.

R. Loftus andM. Bauman [13] analyzed if known attacks to
Android Operating System were still possible in the version
7. Particularly, Loftus and Bauman note that Brute Force
Attacks and Cold Boot Attacks are not possible in Android
7 but Evil Maid Attacks and Fingerprint Bypass Attacks are
still possible if the attacker has root capabilities.

3 SOLUTION OVERVIEW
System Architecture
The objective of the proposed solution consists on creating
a unique user profile based on unique features of Android
smartphones and features regarding user behavior like: in-
stalled applications, memorized networks or memorized ac-
counts. The unique user profile will be used as a second
authentication factor in an authentication system. This way,
the proposed system does not require the user to perform
additional tasks to prove his identity since the profile will
provide by itself everything the system needs to authenticate
the user.
The unique user profiles will be stored in a server that

is also responsible for verifying the similarity between two
profiles, deciding whether a received profile should be ac-
cepted or rejected. If a profile is rejected the third-party’s
fallback mechanism is activated.

These situations need to be analyzed with caution because
they correspond to users logging in different smartphones
or users that changed a huge part of their smartphone in-
formation. This way, this system is an improvement to the
state of the art authentication processes since this system
requires fewer user actions in most of the cases and behaves
exactly like the state of the art systems in the worst cases,
introducing no overhead.

The architecture of the system described by the proposed
solution is the following:

• Profiling Server - the server that contains all the infor-
mation regarding the created user profiles. This server
is responsible for receiving the profiles, storing them
and verifying whether the received profiles are similar
enough to the stored ones.

• Third-party Server - third party server that contains
all the information and functionalities provided by the
third-party. This server is also responsible for defin-
ing the fallback mechanism used when the received
profiles are not accepted.

• Information Collector Application - the application is
responsible for collecting the information, creating the
profile and communicating with both servers.

When implementing the system, an SMS code verification
was defined as the fallback mechanism of the third-party
part of the application. This mechanism was chosen due
to being the most commonly used mechanism by banking
applications nowadays, facilitating the comparison between
the proposed solution and the most used existing solution.

The system has three main phases: the Registration phase,
the Bootstrap phase and the Login phase. The Registration
and Bootstrap phases occur only once and have the objective
of registering the user in both the Third-Party Server and in
the Profiling server, initializing all the required information.

The Login phase is the phase that occurs every other time
and has the objective of verifying if the information sent by
the Information Collector Application is stated as valid by
the Profiling Server, confirming this way that the login is
performed by the rightful user.

Figure 1: Registration phase of the system

Registration phase can be seen in detail in Figure 1. The
Registration phase consists on the user registering himself in
the Profiling Server. The Information Collector Application
starts by generating an asymmetric RSA key pair and a sym-
metric AES key to be used to create the profile and sends this

3



information to the Profiling Server alongside the username,
the freshly acquired profile and the calculated HMAC of the
profile.
The server sends an SMS code (since it is the defined

fallback mechanism) to the smartphone to make sure that
the rightful user is registering in the system. If the user
replies with the correct code, the server will then store all
the received information, registering the user.

Figure 2: Bootstrap phase of the system

The Bootstrap phase can be seen in detail in Figure 2. This
phase occurs when the user joins a new service, provided
by the Third-Party. The user starts by registering himself
in the Third-Party Server, receiving a confirmation of his
registration. Then the user notifies the Profiling Server that
he is now using the stored profile in the new service.

Similarly as in the Registration phase, the Profiling server
will then send an SMS code to the smartphone to confirm
the registration of the new service. If the user replies with
the correct code, the server will then store the new service
and notify the Third-Party Server that the service was suc-
cessfully registered.

Figure 3: Login phase of the system

The Login phase can be seen in detail in Figure 3. The
Information Collector Application starts to communicate
with the Third-Party Authentication Server, sending the user
credentials. If the credentials have a match in the storage of
the Third-Party Authentication Server, the Third-Party will
communicate the username to the Profiling Server.
The Profiling Server will send to the user the nonce that

should be used to ensure the freshness of the login. The user

will be asked if the login request is valid. If the user vali-
dates it, the Information Collector Application will acquire
the most recent profile and sends it to the Profiling Server
alongside the username, the HMAC of a known variation of
the most recent received nonce and the HMAC of the profile.
The Profiling server will verify if the received profile is

similar enough to the stored one and verify if the received
nonce is the most recent one or if the message was a replay
of a previous one. If all these parameters check, the server
has now authenticated the user.
The Profiling Server notifies the Third-Party Authentica-

tion Server that the user is valid. The Third-Party Authen-
tication Server will then successfully authenticate the user,
allowing the user to use the Third-Party application.

All the communications are done using HTTPS to ensure
confidentiality and integrity of the messages. Each message
is also sent along with its digital signature to ensure mutual
authentication and non-repudiation.

Profile Verification
In this work, a profile is a set of attributes, where each at-
tribute corresponds to a different feature of the smartphone.
Since Android is a customizable Operating System and cer-
tain information may change over time, three types of at-
tributes were identified with, with each type requiring a
different type of verification. The three types of attributes
are the following:

• Static Attributes - information that mostly concerns
the smartphone itself and therefore cannot be changed.

• Dynamic Attributes - information that concerns the
OS of the smartphone and the SDK version or the SIM
card of the user, while some of this information is
very unlikely to change over time, change is still a
possibility.

• Dynamic List Attributes - attributes that do not consist
of a single instance of information but relate to a set of
different values. An example is the attribute Installed
Applications that consists on a set of package names
of each installed application in the smartphone.

Due to privacy questions as well as facilitating the profile
verification, each attribute consists of the hash of the real
value of the attribute. Since lists are exceptional cases, each
list attribute consists of a list of hashes. This way, only the
smartphone of the user deals with the real information, mak-
ing it impossible to know the real values of each attribute.
To improve the security of the system, an HMAC of the

whole profile is calculated and send alongside the profile,
preventing an attacker from generating a similar profile or
brute forcing the hashes to know the real information. The
symmetric key used to generate the calculated HMACs is se-
curely stored in Android’s Keystore, which stores the keys in

4



Attribute Median number (per user)
Google Accounts 1
Input Methods 2.42
Installed Applications 53
Memorized Accounts 4.5
Memorized Networks 27.26

Table 1: Mean number for each attribute after First
Test Phase

the smartphone’s TEE, whenever the smartphone is capable
of storing information in the TEE.
Regarding profile verification, the main idea is quite sim-

ple: static attributes cannot change. The system should accept
changes in dynamic attributes and store the most updated
information whenever a profile is accepted. When a big part
of the dynamic attributes is changed it is more likely that
we are in the presence of a different device than in the pres-
ence of the registered device. This way, it is necessary to
define a certain threshold to determine whether the number
of changed attributes could be accepted or not.
List attributes are once again a special case. It is very

frequent that a user changes only a small part of the list
instead of the full list, therefore it is necessary to define
thresholds that will help to determine whether two lists are
similar enough for the profile to be accepted or not.

With all these ideas in mind, the verification algorithm is
the following:

• If two profiles are exactly equal verification succeeds.
• If static attributes are changed the verification fails.
• The threshold for dynamic attributes is defined as 75%.
This means that considering the 16 dynamic attributes
(including lists) the server will only accept up to 4
changed attributes.

• If the verification has not failed in some other points,
lists will be verified against thresholds to determine
whether the verification could be accepted. If a list
fails this verification, the whole verification of the pro-
file is failed. List verification is done considering the
common elements and the new elements. The percent-
age of common elements must be above the threshold
and the percentage of new elements must be below 1
- threshold. The threshold for Installed Applications,
Input Methods and Memorized Networks is 75% and
the threshold for Google Accounts and Memorized
Accounts is 66%.

The threshold for the lists was defined after a preliminary
test phase with around 16 users. In this test phase, themedian
number of each list was calculated, the results can be seen
in Table 1.

Given these numbers, considering an example of a user
with 50 installed applications, 25 memorized networks and 5
memorized accounts, the same user must have at the next
login 37 installed applications out of a potential 62 installed
applications, 19 networks out of a potential 31 networks and
3 accounts out of a potential 6 accounts.

Finally, whenever a profile is accepted by the verification
the server will update the stored information replacing the
old attributes by the changed ones. This way, the stored pro-
file always corresponds to the information sent in the most
recent successful login, making sure that a changed value is
only processed once and that whenever the changes are not
significant enough the system will be able to authenticate
the user by itself, not requiring the user to perform further
actions, accomplishing that way the objectives of this work.
Note that even though an attacker may try to slowly

change the attributes that compose the profile, whenever
the rightful user logs in his information will always prevail,
which means that attributes changed by an attacker would
change to the real value every time the rightful user logs in.

Implementation of the Solution
The two servers described in the System Architecture sec-
tion were implemented as two HTTPS Java servers that use
MySQL databases to store all the relevant information in
a persistent way. The decision to implement the servers in
Java was done based on both servers being relatively simple,
based on how easy it is to implement and test an HTTPS
server in Java 8 and since Android runs in Java and some
libraries could be used either in the application side and in
the server side.

Unit tests were designed using JUnit. The objective of these
tests was to test the storage and the server’s connection to
the storage and test whether the server handlers would give
the proper responses to the requests made by the Android
application.
The Information Collector application was created using

Android 4.4 as the minimum version of the Operating Sys-
tem but an Android 6 application was also done with few
adaptations from the original work. The reasoning behind
choosing Android 4.4 as the minimum version is that a huge
percentage of Android users still use Android 4.4, Android 5
or Android 5.1.
The collection of information is implemented by an An-

droid service that is started by the application whenever the
user logs in or registers and the service is stopped whenever
the application is dismissed or closed.

Both the asymmetric key pair and the symmetric key used
are stored using the Android Keystore, which securely stores
the mentioned keys in the device’s TEE whenever possible.
In this case, all the operations performed using these keys are
performed inside the device’s TEE and all the key material

5



generated during these operations are stored in the device’s
TEE as well.

This means that the operations and the key material used
are not stored in normal worldmemory at the anytime, which
means that an attacker is not able to obtain information even
if he is capable of reading the device’s memory.

Problems found during the Implementation phase
After doing a preliminary test phase with real users it was
possible to find three major problems that stood out. The
first one was detected while calculating the median number
of memorized accounts, it was immediately noticed that only
few users had memorized accounts stored in the database.
After noticing that some of the users without stored accounts
corresponded to users using Android 6, it was found that
the application lacked asking for user consent to use the
permission GET_ACCOUNTS, which is required in Android
from version 6 onwards to access stored accounts in the
smartphone, among other information.
The second major problem was a misimplementation of

the fallback mechanism on the server. Whenever the re-
trieved profile did not match the stored one the server and
the user asked the application to retrieve a new profile, the
server would try to find a stored profile with the same IMEI
as the new profile acquired that should be stored. Since some
minor bugs were being fixed whenever they were found
and the users were installing the application multiples times
during the preliminary test phase, the keys stored in the
TEE would be overwritten with every new installation mak-
ing it impossible for the server to match the fresh profile’s
IMEI with an existing profile, preventing that way users
from updating their profile. This situation was particularly
problematic since it would also prevent users from having
more than one profile stored and in the eventually that the
keys are erased from the TEE (which may happen if the user
clears the application data, for example) the user would also
be prevented of creating a new profile.
The third major problem was the reason of most logins

failing. While looking at the logs to understand what made
some logins fail it was possible to notice that some users
would send a list of memorized networks in one login and
send an empty list in the following login. After talking to
some of these users trying to understand if they were re-
moving some memorized networks and adding then a list of
different ones, users claimed to rarely delete some networks
and when asked they also claimed that some logins were
done using wireless networks and another logins were done
using mobile data. After looking in the documentation of
Android, it began clear to understand that whenever users
logged in using mobile data with their smartphone’s wireless
function turned off the application was unable to retrieve the
list of memorized networks. Since it is possible in all Android

versions so far to change the WiFi state using the WiFi Man-
ager, all it took to fix the problem was adding the permission
CHANGE_WIFI_STATE to the Manifest file and then using
the WiFi Manager to turn on the WiFi functionality (if it
was turned off) right before retrieving the profile, turning
it back off again if the user was not using it whenever the
users closes the application.
The application also suffered a substantial change in the

workflow regarding rejected profiles. This change was a de-
sign decision to improve the workflow of the application,
requiring fewer actions from the user and helping the users
relate more the application with the existing alternatives.
Previously, whenever a profile was rejected, the user would
be presented with a button that would allow the application
to collect a new profile, send it to the server and requiring
the user to confirm the creation of the new profile by cor-
rectly introducing a code that would be received via SMS. In
order to make the application work more closely to existing
alternatives, the button phase was eliminated. Whenever
a profile is rejected the user receives a code via SMS that
the user should input. The application will then acquire the
new profile and send it to the server alongside the inputted
code. If the code matches the expected one, the server will
then store the new user profile. In the existing alternatives
the user receives an SMS code in each login without being
required to press buttons for it to be sent.

Attacker Models
Taken into account the works of Cooijmans et al [7] and
Loftus and Bauman [13], the proposed solution is not vulner-
able to common attacks since it does not require any input
from the user or flawed biometric authentication such as
fingerprints.
As described by Android [1] and further confirmed by

Cooijmans et al [7], the keys stored in the TEE are also
secured against being extracted from the device, even though
they can be extracted from the corresponding application
sandbox.
Taken into account the attacker models introduced by

Cooijmans et al [7] the only relevant attack vector is an
attacker who extracts the keys into his own malicious appli-
cation. It was only considered in the solution the Android
Keystore to securely store the keys and extracting keys di-
rectly from the device is impossible, therefore not considered.
Therefore, the model of the attacker considered in the

security evaluation of the system is the attacker described
by Cooijmans et al [7] as the "Root Attacker". This is a type
of attacker who has root capabilities and is able to run ap-
plications with root permissions. This attacker is also able
of inspecting the Android file system. It is assumed that the
device was previously rooted or the attacker has gained root

6



capabilities through malware capable of Privilege Escalation
attacks.

4 EVALUATION
In order to test the application with real-world users, it was
selected a group of users that showed availability in down-
loading the application and using it on a regular basis.

The first test phase occurred from June 2017 to July 2017.
The second test phase occurred from the end of July 2017 un-
til mid-September 2017. The comparison between the results
of both phases can be seen in Figure 4 5.

Figure 4: Comparison results of Login Validation in both
phases

Figure 5: Comparison results of Login Information in both
phases

First Test Phase
In the First Test Phase, 19 users participated performing a
total of 78 logins. The results are the following: out of the
78 recorded logins, only 44 were considered correct by the
system, whereas 34 logins failed in profile verification.

Regarding the types of changed attributes, it is important
to note that half of the correct logins corresponded to profiles
exactly equal to the expected profile. Both the logins that
failed due to a static attribute being changed corresponded
to a change in the Software Version, which can be considered

as the attribute being wrongly classified, since it is somehow
frequent to change.
Another important remark is the fact that there wasn’t

recorded a single change on accounts, which is explained by
the application not asking the required user consent to use
the permissions needed to retrieve the stored accounts.
As explained in Section 3, after fixing the problems the

value of the defined thresholds was also revisited taking
into account the estimated medians calculated after the First
Test Phase. The threshold of memorized accounts and input
methods was changed from 75% to 66% to accept a bigger
number of changes in both lists.

Second Test Phase
In the Second Test Phase, only 12 users chose to participate,
which is rather unfortunate since the testing period was
bigger than the period of the first phase and the application
was not displaying any bugs or problems.

Similarly to the first phase, it was recorded 78 logins, but,
in this test phase, only 5 were considered incorrect by the
system, one of them with a failed static attribute, which
means that the calculated probability of the fallback mech-
anism being activated is only 6.41%. This translates into a
huge advantage when compared to existing Two-Factor Au-
thentication schemes that require lots of actions from the
user.
The 5 failed logins had the following problems: one of

the failed logins corresponded to a change with the MAC
address attribute. It is hard to understand how and why did
the user changed his MAC address.

The remaining four failed logins consisted on a user that
lost the key used to create the registration profile which can
happen if the user clears the application data, two users that
changed a large number of memorized networks and a user
that changed his stored Gmail account.

Out of the 73 correct logins, only 23 were exactly the same
as the expected profile, which is a lower percentage than in
the first phase.

STRIDE Analysis
A STRIDE analysis was conducted to identify the major se-
curity flaws of the developed system. The results are the
following:

Spoofing Identity. Since the profile is created using a sym-
metric key stored in the smartphone, an attacker wishing to
spoof the identity of a rightful user must be able of creating
fake profiles for a given user or, in alternative, replay old
messages send from the respective user to the server.

Since the server generates a different nonce for every user
action and checks if the received messages contain the right
nonce, replay attacks are not possible in the system.

7



Regarding the creation of fake user profiles, an attacker
needs access to the symmetric key stored in the user’s smart-
phone and also needs to use user information to make the
forged profile match the stored profile.
The attacker may obtain the required information about

the user through malware installed in the rightful user’s
smartphone or through brute force attacks if the symmetric
key is known by the attacker.
Even though the symmetric key is stored in the Android

Keystore, some attacks may still be possible, especially if
the smartphone is rooted. These attacks will be explained in
detail later, taking into account realistic attacker models.

Tampering Data. Tampering Data attacks are not possi-
ble in the system, since the communication between user
and Profiling server is done through HTTPS, which protects
against message tampering. The messages exchanged in all
communications are also signed to guarantee the authen-
ticity of the message, which also makes it easy to detect
tampered messages.

Repudiation. Repudiation is not possible in the system
since, as said above, all messages exchanged in every com-
munication between user and Profiling server are signed by
the sender.

Information Disclosure. Information disclosure attacks is
mitigated in the system, since the profile is a set of hashes and
all communications are done through HTTPS. An attacker
would need to break the HTTPS encryption to obtain the
profile and then break the hash function.
In the case where the attacker obtains access to a profile,

he would need the symmetric key to either brute force the
profile or break the HMAC function.
The Profiling server stores all the necessary in an en-

crypted MySQL database which also mitigates information
disclosure attacks against the server storage. Further attacks
against the server are also not considered, with the server
being assumed secure.

Denial of Service. It is possible to flood the Profiling server
with fake requests or replays of old HTTPS requests which
delays or even denies the server from responding to rightful
requests made by the users.

Elevation of Privilege. Elevation of Privilege attacks are
possible in the Android Operating System and those attacks
are particularly threatening to the system since they may
allow an attacker of obtaining access to the symmetric key
used to create profiles.

Security Evaluation of the System
Considering the Attacker Models defined in Section 3 and
the Threat Analysis done in this chapter, the major security

threat to the proposed solution consists on an attacker with
root capabilities who is able to extract the keys from the An-
droid Keystore and use it on his own malicious application.
In that case, given that the attacker would have the key

and the capability of reading the smartphone’s information,
the attacker would become able to create false profiles.

The most impactful attack that can be performed with this
information is an attacker which is somehow able to emulate
the victim’s static smartphone attributes and uses the key
earned through the attack to impersonate the real user.
However this attack is extremely powerful it is unclear

how easy it is for an attacker to create malware capable of
retrieving keys stored in the Android Keystore and emulate
another device.
Due to Android Keystore being restructured in Android

version 6.0 and the lack of recent studies regarding the men-
tioned vulnerabilities it is unclear whether these vulnerabil-
ities have been fixed. Even though it is recommended that
root should be disabled unless the user really needs root
capabilities, since it can be exploited by attackers to perform
a wide range of attacks against the device.

Evaluation Summary
Considering the objectives defined in Section 1, it is possible
to conclude that:

• Fast Authentication that requires few actions - Consid-
ering the best case, the system is able to successfully
authenticate the user in few seconds without requir-
ing any action from the user. Using the results of the
Second Test Phase, the best case happens 93.6% of the
times, which means that 9 out of 10 times the pro-
posed solution is better than the existing solution in
the number of required actions.

• Security - The only possible attack is a targeted mal-
ware that uses root permissions to retrieve the keys
used to create the profiles. Despite this attack being
extremely impactful, existing solutions are also vul-
nerable to several types of malware especially if root
permissions are available to the malware. Therefore,
the proposed solution is at least as secure as the exist-
ing alternatives.

• CPU and Memory usage - The system doesn’t store
anything in memory since the keys are stored in the
TEE and the cryptographic operations done there as
well. CPU usage is also very low since the applica-
tion only calls defined Android APIs to retrieve all the
necessary information.

• Network usage - The system only exchanges a couple
of HTTPS messages with the server, which reduces
the introduced overhead in the network.

8



• Battery usage - Since the application only runs the
collector service when needed and stops it when the
user exits the application, the overhead in the battery
is minimal. Location is not calculated using GPS which
also helps in not reducing the battery life.

5 FUTUREWORK
Considering the scope of the work and the work that was
done, there are three major directions to follow in the future:

• Ask for parts of the profile instead of the whole profile -
it consists in defining some fixed attributes that should
be send all the time and a set of attributes that may
be or not asked by the system. This idea is based on
the premise that a subset of the 20 retrieved factors
would be able to uniquely authenticate the user in a
secure way and would further increase the security of
the entire system since an attacker that is able to break
one message once does not get an idea of the whole
profile but only a small part of it.

• Machine Learning algorithms to support the decision
of verifying a profile - it provides a different type of
verification that does not rely only on counting the
common elements from profile to profile but a different
type of verification that would take into account the
profile of the user. A possible use case would be the
system considering not only the name of each installed
application but also its type, based on the premise that
a user that has different applications of a type is more
likely to install or uninstall applications from the same
type than from a different one.

• Extend the solution to accept profiles frommultiple de-
vices - an interesting and challenging approach would
be to store only one profile and use multiple devices
to authenticate the user. The main idea would be to ex-
tract key user configuration features in order to check
whether these features are present in a different smart-
phone or not. This idea is based on the premise that a
user is highly likely to install the same set of applica-
tions in the smartphones he regularly uses, similarly
memorizing a set of accounts and networks as well
that is present in all the smartphones as well.

6 CONCLUSION
Online authentication has been done through the years using
a username and a textual password. While this system is
relatively simple, it has been proven insecure due to problems
regarding textual passwords.

Short passwords are easy to crack using brute force attacks
and in some cases easy to guess through social engineering
attacks. Long passwords are harder to guess and crack but
they are also harder to remember.

In mobile devices, some solutions to this problem include
the generation of a One-Time Password that is send to the
user through SMS or through an application. Users in general
avoid using this type of authentication due to being required
to perform additional undesired actions.
The solution described in this work consists in a new

Two-Factor Authentication scheme that uses smartphone
characteristics and its user configuration to create unique
user profiles that will be used to authenticate the user.
In the solution a profile is a set of hashes calculated for

each individual attribute. The profile is then used to calculate
an HMAC using a symmetric key stored in the device’s TEE.
That way, the privacy of the profile is guaranteed since the
client is the only one who can really know what the value
of the attribute, since there is no way of inverting a hash
function.
There are two types of attributes: static attributes and

dynamic attributes. Static attributes are attributes related
to the device’s hardware or with the device itself and are
not supposed to change. Dynamic attributes are attributes
related to the device configuration made by the user and can
change.
Profile verification fails whenever static attributes are

changed since it means that the device is not the same of
the device used to register the profile. Regarding dynamic
attributes, there is a defined threshold of 75% which means
that in every login, 11 out of the 16 dynamic (12 dynamic
attributes plus 4 lists) attributes should remain constant.
Since lists like are special dynamic attributes as they are

more likely to suffer changes, its verification must be adapted
as well. Instead of just checking if the lists are equal, the so-
lution checks if 75% of the list remains constant and whether
the percentage of new information is not greater than 25%
of the size of the new list.

If the profile verification is passed, the new profile is stored
in the server, making sure that the server is always updated
with the most up-to-date information. If the verification
fails, the fallback mechanism of the third-party application
is activated and the user will need to provide information to
ensure his identity. The selection of the fallback mechanism
is defined by the third party, being out of the scope of this
work.

After two testing phases with smartphone users the cor-
rectness of the solution was evaluated. The first phase was
extremely helpful to detect several problems which made
the verification fail more than it should, accounts were not
being retrieved in Android 6 onwards and the list of mem-
orized networks was being send empty whenever the user
was using mobile data with the WiFi capability turned off.

The results after the second test phase were really positive,
out of 78 logins made by 12 users over a month, only 5
of those logins failed the verification. This introduces an

9



improvement in terms of requiring actions performed by the
user, since in only about 1 login out of 10 the user is required
of using the fallback mechanism.
Regarding the security of the system, after analyzing all

the threats, the only identified attack is targeted malware
that abuses root capabilities to steal the key used to create the
profile. Since there is no definite solution against malware
and the security of the solution is dependent on howAndroid
secures the keys in the TEE, the solution described in this
work is at least as secure as the existing alternatives.

The solution also accomplishes the objectives of using
the resources of the smartphone wisely, the solution does
not make an abusive use of the CPU or the Memory since
information is stored in the TEE and some secure operations
are done there as well and the overhead introduced in the
network is minimal since the application only exchanges a
couple of messages with the server.

REFERENCES
[1] [n. d.]. ([n. d.]). https://source.android.com/security/trusty/
[2] Sagar Acharya, Apoorva Polawar, and P Pawar. 2013. Two factor

authentication using smartphone generated one time password. IOSR
Journal of Computer Engineering (IOSR-JCE) 11, 2 (2013), 85–90.

[3] Murad Ali, Zubair Shaikh, Muhammad Khan, and Taha Tariq. 2015.
User Profiling Through Browser Finger Printing. In International Con-
ference on Recent Advances in Computer Systems. Atlantis Press.

[4] Fadi A. Aloul, Syed Zahidi, and Wassim El-Hajj. 2009. Two factor
authentication using mobile phones. In The 7th IEEE/ACS International
Conference on Computer Systems and Applications, AICCSA 2009, Rabat,
Morocco, May 10-13, 2009, El Mostapha Aboulhamid and José Luis
Sevillano (Eds.). IEEE Computer Society, 641–644. https://doi.org/10.
1109/AICCSA.2009.5069395

[5] Károly Boda, Ádám Máté Földes, Gábor György Gulyás, and Sán-
dor Imre. 2011. User Tracking on the Web via Cross-Browser Fin-
gerprinting. In Information Security Technology for Applications -
16th Nordic Conference on Secure IT Systems, NordSec 2011, Tallinn,
Estonia, October 26-28, 2011, Revised Selected Papers (Lecture Notes
in Computer Science), Peeter Laud (Ed.), Vol. 7161. Springer, 31–46.
https://doi.org/10.1007/978-3-642-29615-4_4

[6] Mauro Conti, Luigi V. Mancini, Riccardo Spolaor, and Nino Vincenzo
Verde. 2015. Can’t You Hear Me Knocking: Identification of User
Actions on Android Apps via Traffic Analysis. In Proceedings of the
5th ACM Conference on Data and Application Security and Privacy,
CODASPY 2015, San Antonio, TX, USA, March 2-4, 2015, Jaehong Park
and Anna Cinzia Squicciarini (Eds.). ACM, 297–304. https://doi.org/
10.1145/2699026.2699119

[7] Tim Cooijmans, Joeri de Ruiter, and Erik Poll. 2014. Analysis of secure
key storage solutions on Android. In Proceedings of the 4th ACMWork-
shop on Security and Privacy in Smartphones & Mobile Devices. ACM,
11–20.

[8] Rob Coombs. 2015. Securing the future of authentication with ARM
TrustZone-based trusted execution environment and Fast Identity
Online (FIDO). ARM White Paper (2015).

[9] Shuaifu Dai, Alok Tongaonkar, Xiaoyin Wang, Antonio Nucci, and
Dawn Song. 2013. NetworkProfiler: Towards automatic fingerprinting
of Android apps. In Proceedings of the IEEE INFOCOM 2013, Turin, Italy,
April 14-19, 2013. IEEE, 809–817. https://doi.org/10.1109/INFCOM.2013.
6566868

[10] Alexandra Dmitrienko, Christopher Liebchen, Christian Rossow, and
Ahmad-Reza Sadeghi. 2014. SECURITY ANALYSIS OF MOBILE TWO-
FACTOR AUTHENTICATION SCHEMES. Intel Technology Journal 18,
4 (2014).

[11] N Harini, TR Padmanabhan, et al. 2013. 2CAuth: A new two fac-
tor authentication scheme using QR-code. International Journal of
Engineering and Technology 5, 2 (2013), 1087–1094.

[12] Christian Holz and Frank R. Bentley. 2016. On-Demand Biomet-
rics: Fast Cross-Device Authentication. In Proceedings of the 2016
CHI Conference on Human Factors in Computing Systems, San Jose,
CA, USA, May 7-12, 2016, Jofish Kaye, Allison Druin, Cliff Lampe,
Dan Morris, and Juan Pablo Hourcade (Eds.). ACM, 3761–3766. https:
//doi.org/10.1145/2858036.2858139

[13] Ronan Loftus and Marwin Baumann. 2017. Android 7 File Based
Encryption and the Attacks Against It. (2017).

[14] Sebastian Schrittwieser, Peter Frühwirt, Peter Kieseberg, Manuel Lei-
thner, Martin Mulazzani, Markus Huber, and Edgar R Weippl. 2012.
Guess Who’s Texting You? Evaluating the Security of Smartphone
Messaging Applications.. In NDSS.

[15] Tim Stöber, Mario Frank, Jens B. Schmitt, and Ivan Martinovic. 2013.
Who do you sync you are?: smartphone fingerprinting via application
behaviour. In Sixth ACM Conference on Security and Privacy in Wireless
and Mobile Networks, WISEC’13, Budapest, Hungary, April 17-19, 2013,
Levente Buttyán, Ahmad-Reza Sadeghi, and Marco Gruteser (Eds.).
ACM, 7–12. https://doi.org/10.1145/2462096.2462099

10

https://source.android.com/security/trusty/
https://doi.org/10.1109/AICCSA.2009.5069395
https://doi.org/10.1109/AICCSA.2009.5069395
https://doi.org/10.1007/978-3-642-29615-4_4
https://doi.org/10.1145/2699026.2699119
https://doi.org/10.1145/2699026.2699119
https://doi.org/10.1109/INFCOM.2013.6566868
https://doi.org/10.1109/INFCOM.2013.6566868
https://doi.org/10.1145/2858036.2858139
https://doi.org/10.1145/2858036.2858139
https://doi.org/10.1145/2462096.2462099

	Abstract
	1 Introduction
	Proposed Solution
	Objectives
	Contributions

	2 Related Work
	Two-Factor Authentication
	User and System Profiling
	Attacker Models

	3 Solution Overview
	System Architecture
	Profile Verification
	Implementation of the Solution
	Problems found during the Implementation phase
	Attacker Models

	4 Evaluation
	First Test Phase
	Second Test Phase
	STRIDE Analysis
	Security Evaluation of the System
	Evaluation Summary

	5 Future Work
	6 Conclusion
	References

