
1

Classification with Markov Logic Networks in the
presence of domain knowledge

Liliana Mafalda Soares Fernandes
Email: liliana.fernandes@ist.utl.pt

Instituto Superior Técnico, Universidade de Lisboa
Lisbon, Portugal; October, 2017

Abstract—In this work, we study the problem of learning to
classify a set of instances based on an available training set and
domain knowledge represented through a taxonomy. Classifica-
tion is a family of supervised machine learning algorithms that
assigns the input as belonging to one of several pre-defined classes.
Traditionally, classification approaches tended to fall into two
largely separate strands: one focused on logical representations,
and one focused on statistical ones. Logical approaches deal
better with the complexity of the real world while the statistical
approaches excel on dealing with the uncertainty that is present in
any real applications. As the real world is complex and uncertain,
we think is important to explore methods that can have both
characteristics. Markov Logic Networks (MLNs) combine logic
and probability by attaching weights to first-order clauses. By
combining first-order logic (FOL) and probability we can use
the advantages of both. MLNs have gained traction in the AI
community in recent years because of this ability to combine the
expressiveness of FOL with the robustness of probabilistic repre-
sentations. We propose an approach to add domain knowledge,
represented in taxonomies, in classification problems using MLNs
to improve the performance of the algorithms.

Keywords: Machine Learning, Classification, Taxonomies,
Markov Logic Network

I. INTRODUCTION

Existing mining algorithms, particularly in classification,
reached considerable levels of efficiency, and their extension
to deal with more demanding data, such as data streams
and big data, show their incontestable quality and adequacy
to the problem. Despite their efficiency, their effectiveness
on identifying useful information is somehow impaired, not
allowing for making use of existing domain knowledge to
focus the discovery [1].

Classification algorithms are the most commonly used ma-
chine learning methods [2]. Classification represents the family
of supervised learning techniques where a set of dependent
variables needs to be predicted based on another set of input
attributes [3].

Data mining tasks are data-oriented, in which domain
models are induced from data. The bulk of research in this
field concentrates on inducing models from data. However,
in some domains, human expertise forms an essential part of
the corpus of knowledge needed to construct models of the

domain. The discipline of knowledge engineering has focused
on encoding the knowledge of experts in a form that can be
encoded into computational models of a domain. Nowadays,
knowledge engineering and machine learning remain largely
separate disciplines, yet, in many fields, substantial human
expertise exists alongside data. When both data and domain
knowledge are available, why not use these two resources
to improve the effectiveness of the classification [4]? The
use of domain knowledge can bring significant benefits to
machine learning applications, by resulting in simpler and
more interesting and usable models. However, most of existing
approaches are concerned with being able to mine specific
domains, and therefore are not easily reusable, instead of
building general algorithms that are able to incorporate domain
knowledge, independently of the domain [5, 6, 7].

One problem that we can encounter in classification is, for
building classifiers with good accuracy, we need a sufficiently
large and representative training dataset. Because such data is
not always available, this can be partially countered by domain
knowledge. Domain knowledge may be related to examples not
present in the available domain dataset and thus may improve
the generality and robustness of classifiers induced on such
datasets [8].

The first effort to use domain knowledge in machine learning
was undoubtedly made through Inductive Logic Programming
(ILP for short), in this kind of approach, in addition to the
training set, an encoding of the known background knowledge
is also provided. An ILP system will then derive a logic
program as an hypothesis, which entails all the positive and
none of negative examples. The fact that all information must
be written in declarative languages (like Prolog and Datalog)
is one of the drawbacks of ILP, and one of the reasons for
not being widely used. Nevertheless, its structure promotes the
representation and use of domain knowledge. ILP techniques
must also deal with the tradeoff between expressiveness and
efficiency of the used representations. Studies show that cur-
rent algorithms would scale relatively well as the amount of
background knowledge increases. But they would not scale, at
all, with the number of relations involved, and in some cases,
with the complexity of the patterns being searched [1]. Further,
traditional ILP is unable to cope with the uncertainty of real-
world applications such as missing or noisy data, a known
drawback when compared to the statistical approach [9].

Pure logical approaches handles complexity but they don’t
scale very well and can’t deal with the uncertainty in its

2

original form. On the other hand, pure statistical approaches
can scale very well and deal with uncertainty but in some
cases produce models that can’t be represented in a way
that is easy for humans to understand [10]. For automated
classification methods to be adopted in practice, it is crucial
that a relationship of trust may be established between domain
experts and the models generated. When the cost of making
mistakes is very high, numerical validation is usually not
enough. This is why it is so important that the generated
models are simple, understandable, and somewhat aligned with
certain facts that are known to be true in the domain [9].

Statistical approaches also ignore the complexities of the
real world. First, it is not possible to express or make use
of existing domain knowledge, to explicitate relationships
between attributes or hierarchies of features. And second, it
does not allow for constraining the results according to facts
which are known to be true, even if not represented in the
subset of data being fed to the learning algorithm. As the real
world is complex and uncertain the idea is to reach a middle
ground and use logic to handle the complexity of existing
domain knowledge and statistics to handle the uncertainty and
noise in the observations [9].

There is not a lot of research on the use of domain knowl-
edge in machine learning tasks, particularly in classification
problems. One example of a work related to the use of domain
knowledge in learning is the work of Nazeri and Bloedorn
[11] in which the authors, presented a method to improve
the quality of discovered rules by A-priori (associations)
[12] and C4.5/J48 (decision Tree) [13] algorithms applied to
data from aviation safety and intrusion detection domains,
incorporating available domain knowledge into the learning
techniques, by reducing the number of uninteresting rules.
Barracosa and Antunes [14] proposed a new methodology to
anticipate teachers performance based on past survey results. In
their approach they demonstrate that they could improve classi-
fication accuracy, with decision trees (algorithm C4.5/J48), by
identify a set of meta-patterns, that are useful for introducing
some knowledge to enrich the source data. Bochare et al.
[15] proposed an approach to incorporate domain knowledge
into a model for predicting risk of breast cancer in post
menopausal women using genomic data, family history, and
age. This enriched dataset was used with four different clas-
sifiers (C4.5/J48 decision tree algorithm, Naı̈ve Bayes [16],
SVM [17] and Bayesian networks [18]). Pardel et al. [19]
proposed an approach for automatically identifying organs
from medical CT images using domain knowledge. More
specifically, they proposed an algorithm for the classification
of chest organs (trachea, lungs, bronchus) using a decision tree.

There are also some works in classification with domain
knowledge represented by taxonomies. A taxonomy is as
a vocabulary, in which each term usually has hierarchical
relationships, which means that a taxonomy imposes a topical
structure (a tree-like structure) on information. This hierar-
chical relationships are called IS-A (sub-class-of) relationship
which represents a relation between a generalized concept and
a specialized one [20]. One example that uses taxonomies as
the representation for the domain knowledge is the work of
Zhang et al. [21], in which the authors proposed an algorithm,

that is a generalization of the Naı̈ve Bayes Learner for learning
classifiers from attribute value taxonomies and data. Another
example of the use of taxonomies as the domain knowledge
representation is the work proposed by Vieira and Antunes
[9], a hierarchy guided decision tree learning algorithm, an
extension of standard decision tree learning algorithm, that is
able to take advantage of user supplied feature (or attribute
value) hierarchies.

There are also some works in classification with domain
knowledge using instead of taxonomies, ontologies. Ontologies
specify the primary concepts and the relationships among the
concepts in a standardized machine readable format [22]. The
relationship between two concepts in an ontology can be of
any kind, such as “is a part of”, “is an instance of”, “is
a type of”, “is a product of” and so on. In this sense it’s
more expressive than a tree structure taxonomy, because it can
specify the exact nature of the relationship between the two
concepts being described. One example of the use of ontologies
as domain knowledge representation in classification problem
is the work proposed by Zhang et al. [23]. The authors
presented an ontology-driven decision tree learning algorithm
to learn classification rules at multiple levels of abstraction.
Łukaszewski and Wilk [24] proposed an approach to the
problem of the classification using the Naı̈ve Bayes algorithm,
with test costs understood as the cost of obtaining attribute
values of classified examples. On medical diagnosis, it is not
viable to experiment all tests to decide which tests should
be carried out in order to control the tradeoff between the
cost of these tests and the accuracy of a classifier. So the
appropriate approach may be reducing the cost of the required
tests while maintaining the prediction accuracy of a classifier.
The authors assumed that attribute values are represented at
different levels of abstraction. These levels model domain
background knowledge and in order to formally represent
this, the authors introduced an attribute value ontology. Vieira
and Antunes [9] also proposed a method that adds domain
knowledge, represented in web ontology language 2 [25], to a
purely statistical decision tree learner.

The majority of the works presented previously were done
using Naı̈ve Bayes and decision tree algorithms but there are
also examples of adding domain knowledge to classification
problems with Neural Networks. One example is the work of
Tan [26], where the author proposed a hybrid system termed
cascade adaptive resonance theory mapping that incorporates
symbolic knowledge into neural-network learning and recog-
nition. Teng et al. [27] proposed an approach to integrate
domain knowledge with Reinforcement Learning using a self-
organizing neural network. Shu et al. [28] developed a deep
network structure, capable of transferring labelling information
across heterogeneous domains, especially from text domain
to image domain. Zhou et al. [29] proposed a framework for
event trigger identification. Event trigger identification is the
detection of the words describing the event types, and is a cru-
cial and prerequisite step in the pipeline process of biomedical
event extraction. Biomedical event extraction is the process of
automatically detecting description of molecular interactions
in research articles. The authors proposed a framework that
works as follows: first, scientific publications from Medline

3

are crawled to form a corpus where domain knowledge can be
obtained. Then a neural language model is built from such a
corpus using unsupervised learning.

It is our belief that with the introduction of domain knowl-
edge we can built simpler classification models and at the
same time, generalize better. However, to use these models, it
is fundamental that we can understand the reasoning beyond
the predictions, for this reason it is important to use human
interpretable models.

As already mentioned, logical approaches tend to emphasize
handling complexity, and statistical ones uncertainty. Markov
Logic Networks (MLNs) are a simple approach to combine
first-order logic and probabilistic graphical models in a single
representation. By combining FOL and probability we can use
the advantages of both [10]. MLNs have gained traction in
the AI community in recent years because of this ability to
combine the expressiveness of FOL with the robustness of
probabilistic representations [10].

In this work we propose an approach that introduces domain
knowledge, represented as a taxonomy, in the process of
learning a model in the context of classification using MLNs.
The main contribution of this work is a methodology that
enables a MLN to take advantage of user supplied feature
(attribute value) taxonomies and learn a model that is able to
deal with data specified at different levels of abstraction (or in
other words, at different levels in the attribute taxonomies). Our
results have shown that this methodology improves the perfor-
mance of the algorithm. We called the resulting MLN model,
that can take advantage of user supplied feature (attribute
value) taxonomies, Hierarchy based Markov Logic Network
(HMLN).

In addition to an approach to add domain knowledge as
taxonomies we also propose an approach to add domain
knowledge as rules extracted from a tree obtained with a
DT algorithm. In cases where it is easy to extract rules with
good support, our results have shown that this methodology
also improves the performance of the algorithm. However, as
observed in our work, this is not always the case. In cases
where it is not easy to extract rules with good support from a
tree, using the best rules found in the literature, does not lead
to better results.

This document is organized as follows: in section II we
discussed in more detail Markov Logic Networks. In sections
II-C and II-D we present the software used in this work and
how to transform a tabular dataset to be used with MLNs,
respectively. In section III we described our approach, the
HMLN. In section IV we present and discuss the results
obtained. Finally, in section V we present the conclusions of
this work and some ideas for future work.

II. MARKOV LOGIC NETWORKS

Markov Logic Networks (MLNS) were proposed by
Richardson and Domingos [30] and are an approach to com-
bine first-order logic and probabilistic graphical models in
a single representation. Before MLNs, the approaches to do
this, typically focused on combining probability with restricted
subsets of first-order logic, like Horn clauses, frame-based

systems or database query languages but, were often quite
complex [30]. In contrary, the approach proposed by [30] is
simple and yet combines probability and first-order logic with
no restrictions other than finiteness of the domain.

A Markov Logic Network is a first-order knowledge base
with a weight attached to each formula and can be viewed as a
template for construct Markov Networks, because, once those
formulas are grounded to the constants this becomes a Markov
Network [30].

A first-order Knowledge Base (KB) can be seen as a set of
hard constraints on the set of possible worlds: i.e., if a world
violates even one formula, it has zero probability. The basic
idea in MLNs is to soften these constraints: when a world
violates one formula in the KB it is less probable, but not
impossible. The fewer formulas a world violates, the more
probable it is. Each formula has an associated weight that
reflects how strong a constraint is: the higher the weight, the
greater the difference in log probability between a world that
satisfies the formula and one that does not, other things being
equal. From the point of view of probability, MLNs provide
a compact language to specify very large Markov networks,
and the ability to flexibly and modularly incorporate a wide
range of domain knowledge into them [30]. More formally, as
described in [30]:

Definition 1: (Markov Logic Network) A Markov logic
network L is a set of pairs (Fi, wi), where Fi is a formula
in first-order logic and wi is a real number. Together with
a finite set of constants C = {c1, c2, . . . , c|C|}, it defines a
Markov network ML,C as follows:

1) ML,C contains one binary node for each possible
grounding of each predicate appearing in L. The value
of the node is 1 if the ground atom is true, and 0
otherwise.

2) ML,C contains one feature for each possible grounding
of each formula Fi in L. The value of this feature is
1 if the ground formula is true, and 0 otherwise. The
weight of the feature is the wi associated with Fi in L.

The graphical structure of ML,C follows from definition
1: there is an edge between two nodes of ML,C iff the
corresponding ground atoms appear together in at least one
grounding of some formula in L [30]. To better visualise this,
consider the follow example: we want to build a model to
classify if a mushroom is poisonous or not. And we have a
first-order KB that, for simplicity, has only the two formulas
presented in (1), and adapted from [31].

SporePrintColor(x, green) ⇒ Class(x, poisonous)

Habitat(x, leaves) ∧ CapColor(x,white) ⇒ Class(x, poisonous)
(1)

The first step in a MLN is the grounding of the formulas
presented in the KB. Figure 1 shows the graph of the ground
Markov network defined by the formulas in (1) and the
constants mushroom A (A) and mushroom B (B). Each node
in this graph is a ground atom (e.g., CapColor(Mushroom A,
white)). The graph contains an arc between each pair of atoms
that appear together in some grounding of one of the formulas.
ML,C can now be used to infer the probability that Mushroom

4

SporePrintColor(A, green)

CapColor(A, white) Habitat(A, leaves)

Class(A, poisonous)

SporePrintColor(B, green)

CapColor(B, white) Habitat(B, leaves)

Class(B, poisonous)

Fig. 1: Ground Markov network obtained by applying the for-
mulas in (1), to the constants Mushroom A (A) and Mushroom
B (B).

A and Mushroom B are poisonous given their cap color, their
spore print color and their habitat.

Each state of ML,C represents a possible world. A possible
world is a set of objects, a set of functions (mapping from
tuples of objects to objects), and a set of relations that hold
between those objects; together with an interpretation, they
determine the truth value of each ground atom.

The possible groundings of a predicate in Definition 1 are
obtained simply by replacing each variable in the predicate
with each constant in C, and replacing each function term in
the predicate by the corresponding constant.

A. Inference
In a inference problem, we want to find the most probable

state of the world given some evidence. This is known as
Maximum A Posteriori probability (MAP) inference in the
Markov network literature [32]. In Markov logic this reduces to
finding the truth assignment that maximizes the sum of weights
of satisfied clauses. This can be done using any weighted
satisfiability solver. Domingos et al. [32] have successfully
used MaxWalkSAT, a weighted variant of the WalkSAT local-
search satisfiability solver, which can solve hard problems with
hundreds of thousands of variables in minutes. MaxWalkSAT
performs a stochastic search by picking an unsatisfied clause
at random and flipping the truth value of one of the atoms
in it. With a certain probability, the atom is chosen randomly;
otherwise, the atom is chosen to maximize the sum of satisfied
clause weights when flipped. This combination of random and
greedy steps allows MaxWalkSAT to avoid getting stuck in
local optima while searching [32].

B. Training
Once the grounded Markov Network is constructed, the

next step in a MLN, is to calculate the weights associated
to each formula in the KB. There are two approaches to
weight learning in MLNs: generative and discriminative. In
discriminative learning, we know a priori which predicates will
be used to supply evidence and which ones will be queried
[33]. In many applications, like in classification problems, we

know a priori which atoms will be evidence and which ones
will be queried, and the goal is to correctly predict the latter
given the former. If we partition the ground atoms in the
domain into a set of evidence atoms X and a set of query
atoms Y, the conditional likelihood of Y given X is [34]:

P (y|x) = 1

Zx
exp

 ∑
i∈FY

wini(x, y)

=

1

Zx
exp

 ∑
j∈GY

wjgj(x, y)

 (2)

where FY is the set of all MLN clauses with at least one
grounding involving a query atom, ni(x, y) is the number of
true groundings of the ith clause involving query atoms, GY is
the set of ground clauses in ML,C involving query atoms, and
gj(x, y) = 1 if the jth ground clause is true in the data and 0
otherwise. The gradient of the conditional log-likelihood is

∂

∂wi
logPw(y|x) = ni(x, y)−

∑
y′

Pw(y
′|x)ni(x, y

′)

= ni(x, y)− Ew

[
ni(x, y)

] (3)

Computing the expected counts Ew[ni(x, y)] is however
intractable in all but the smallest domains, since counting the
number of true groundings of a first-order clause in a database
is #P-complete [34]. In large domains, the number of true
groundings of a formula may be counted approximately, by
uniformly sampling groundings of the formula and checking
whether they are true in the data [35]. The expected counts
can then be approximate from a small number of Markov
chain Monte Carlo (MCMC) samples. MCMC is a technique
for numerical integration using random numbers that draws
samples from the required distribution and then forms sample
averages to estimate the desired probability, using Markov
Chains [36]. A Markov chain X is a discrete time stochastic
process {X0, X1, ...} with the property that the distribution of
Xt given all previous values of the process, X0, X1, ..., Xt−1

only depends upon Xt−1 [37]. MCMC draws samples by run-
ning a cleverly constructed Markov chain for a long time [36].
The MCMC algorithm typically used is the Gibbs sampling
[36], but for MLNs the much faster alternative MC-SAT is
available [38]. MC-SAT is an MCMC algorithm proposed by
Poon and Domingos [39] that is able to handle deterministic
and near-deterministic dependencies by using Wei et al. [40]
SampleSAT as a subroutine to efficiently jump between iso-
lated or near-isolated regions of non-zero probability, while
preserving detailed balance [39].

MC-SAT applies slice sampling to Markov logic. Slice
sampling is an alternative to Gibbs sampling that is often easier
to implement than Gibbs sampling and more efficient (more
information about slice sampling can be found in [41]). Using
SampleSAT a hybrid strategy proposed by Wei et al. [40] which
interleaves simulated annealing steps and WalkSAT steps, to
sample a new state given the auxiliary variables. Simulated
annealing is a probabilistic technique for approximating the

5

global optimum of a given function and can also be used as
a method for sampling [40]. Detailed information about the
MC-SAT algorithm can be found in [38].

C. Software and libraries used
In this work we use Python using the matplolib, pandas

and numpy libraries. Particularly to run the MLNs we used
the Alchemy 2.0 Software. Alchemy is a open-source software
package for inference and learning in MLNs [42]. Alchemy
was developed by the same research group that proposed the
MLNs.

We run our work on one core of an Intel(R) Xeon(R) CPU
E5-2680 v2 @ 2.80GHz.

D. Transforming the dataset to First-Order Logic
As previous discussed a MLN is a first-order KB with a

weight attached to each formula. To use MLN in our work we
need to have a KB, in other words, predicates and formulas.
Since the datasets used in this work are tabular we had to
have a way to convert them in to predicates and formulas. We
used the methodology proposed by Silva and Cozman [43].
The same methodology is used in one of the examples in the
Alchemy website [42]. In this methodology first we convert
the attributes (including the class attribute) into representative
FOL predicates. In figure 2, for example, for the attribute Odor,
we create a predicate called Odor(row, value odor!). The “!”
operator in the Alchemy allows one to specify variables that
have mutually exclusive and exhaustive values. In this case,
it means that any row has exactly one value for the Odor
attribute.

After convert the attributes to representative FOL predi-
cates we need to build conjunctions between pairs of class
predicate and attribute predicates. For example, for the at-
tribute Odor we create a conjunction between this attribute
and the class attribute resulting in the following formula:
Class(row,+value class)∧Odor(row,+value odor). The
meaning of the “+” operator in the Alchemy is as following:
a weight is learned for each combination of the values in the
ground formulas for the variables preceded by this operator.
With this we will have a formula for all of the combinations
between all the possible values for the attributes Odor and
Class.

III. HIERARCHY BASED MARKOV LOGIC NETWORK

The goal of our work is to add domain knowledge to our
model to improve it’s performance using MLNs and so, we
need to develop a method to do it. For simplicity reasons, we
decided to use taxonomies as the representation of the domain
knowledge.

Our strategy to add the information from attribute tax-
onomies is, to iterate over all ground predicates in the training
set and, if the respective attribute related to that predicate has
a taxonomy, add to the training set a new ground predicate
that have as the constant value, the value of its parent in the
taxonomy. For example, if in our training set we have the
ground predicate Odor(0, pungent) and “bad” is the parent

Habitat Odor Class
0 urban pungent poisonous

Predicates:
Habitat(row, value habitat!)

Odor(row, value odor!)

Class(row, value class!)

Formulas:
Class(row,+value class) ∧Habitat(row,+value habitat)

Class(row,+value class) ∧Odor(row,+value odor)

New training set:
Habitat(0, urban)

Odor(0, pungent)

Class(0, poisonous)

Fig. 2: Example of how to obtain the formulas and predicates
from a tabular dataset as well how to transform the train set
to be used in Alchemy.

of “pungent” we add the ground predicate Odor(0, bad) to
the training set.

After adding the taxonomies, we train a MLN with the
modified training set. When we introduced in section II-D
how to transform our tabular data to FOL, we said that the
predicates will have a “!” operator. This tells the Alchemy that
each row as only one value for the predicate in question. In
our methodology, to add the taxonomies to the training set
we are basically adding a new predicate with the exact same
row but a different value. What we actually do is remove the
“!” operator before doing the training and add this operator
again before performing the inference process. By doing this
we will learn the weights for the formulas with concrete and
also abstract values.

After learning the weights, we have to decided if we want
to abstract or not the attributes before performing inference.
In Markov Logic each formula has an associated weight that
reflects how strong a constraint it is: the higher the weight, the
greater the difference in log probability between a world that
satisfies the formula and one that does not, other things being
equal [30]. The weight of a formula may also be negative,
which effectively means that the negation of the formula
is likely to hold [44]. Or in other words, negative weights
correspond to rules that are usually wrong, zero weights
correspond to rules that have no influence and positive weights
correspond to rules that are usually true [45]. The negative
weights are handled by the propriety that a clause with weight
w < 0 is equivalent to its negation with weight −w, and a
clauses negation is the conjunction of the negations of all of
its literals. Thus, instead of checking whether the clause is
satisfied, we check whether it’s negation is satisfied [39].

6

Having this in mind our criterion to choose if we abstract
or not is to compare the average weight value for each level
(leaves, level 1, level 2, etc) in the attribute taxonomy and
choose the level that have the highest average weight value.
We do this for each attribute so attributes can and probably
will be, at different levels of abstraction.

In our approach, if we decide to abstract an attribute we
remove the formulas with concrete values and increase the
weights of the formulas with abstract values (formulas with
values corresponding to the parents of the attribute taxonomy),
according to the information gain [46] for the attribute in
question. Initially, we simply removed the formulas with
concrete values but would not always produce better results
than the standard MLN.

The approach that worked the best was when we ab-
stract an attribute and has a high information gain (we
considered a value higher than 0.6). In this case, we
need to adjust the weight to reflect it’s importance. The
way we do this is by multiplying the weight of the
formula with abstract value by the number of formulas
with values that corresponds to it’s children in the taxon-
omy. To better explain this, let’s assume that we decide
to abstract the attribute Odor and we have the follow-
ing formulas: w1 Class(row, poisonous) ∧Odor(row, bad),
w2 Class(row, poisonous) ∧ Odor(row,musty) and w3

Class(row, poisonous)∧Odor(row, pungent). “Bad” is the
parent of both “pungent” and “musty” in the Odor taxonomy.
Since we decide to abstract the attribute Odor we are going to
remove w2 Class(row, poisonous)∧Odor(row,musty) and
w3 Class(row, poisonous) ∧ Odor(row, pungent) from the
KB that we are going to use to perform the inference step. Let’s
also assume that Odor has a information gain value higher than
0.6 in our training set. What we do is multiply the weight of the
formula with the abstract value “bad” by two, i.e. the number
of formulas that have as values children of the value “bad” in
the Odor taxonomy. Thus, in the KB only one formula will
remain: w∗

1 Class(row, poisonous) ∧ Odor(row, bad) with
w∗

1 = w1 × 2.
After this step in addition to having the updated KB we

have a dictionary with the attributes that were chosen to be
abstracted and also the corresponding level of abstraction.
Before performing inference, we need to transform the test set
because we have the value at leaves’s level of the attributes
taxonomies. We iterate over each ground predicate and replace
the value of the predicate accordingly. For example, if we have
in the test set, the ground predicate Odor(0, pungent) and
the attribute Odor was chosen to be abstracted at level one in
which the parent for the value “pungent” is “bad”, we replace
that ground predicate by Odor(0, bad).

IV. EXPERIMENTAL RESULTS

In this chapter we present our experimental results. As
mentioned previously, we tested two approaches to add domain
knowledge to MLN models. One of this approaches, introduces
domain knowledge, represented as a taxonomy, in the process
of learning a model in the context of classification using
MLNs. We called the this MLN model, that can take advantage

of user supplied feature (attribute value) taxonomies, Hierarchy
based Markov Logic Network (HMLN) as discussed in III. The
results of this approach are presented in IV-A.

In addition to an approach to add domain knowledge as
taxonomies we also propose an approach to add domain
knowledge as rules extracted from a tree obtained with a DT
algorithm. The results of this approach are presented in IV-B

In our experiments we used the Mushroom and Nursery
Datasets available in UC Irvine Machine Learning Repository.
In the Mushroom Dataset the goal is to classify if a mushroom
is edible or poisonous. This dataset has 22 attributes (one of
this attributes is called Class and is what we want to predict)
and 5644 instances (after removing the rows with missing
values). The goal of the Nursery Dataset is to classify a
application for a nursery school in one of these values: not
recommend, recommend, very recommend, priority or special
priority. This dataset has 9 attributes (one of this attributes
is called Class and is what we want to predict) and 12960
instances (there are no missing values).

The taxonomies used in this work were kindly provided
by Vieira and Antunes [9]. In the case of the Mushroom
Dataset, for the 21 input attributes we have 14 attributes with
a corresponding taxonomy. For the Nursery Dataset, from the
8 input attributes we have 6 attributes with a corresponding
taxonomy.

A. Hierarchy based Markov Logic Network
In this section we present the results for the approach, that

we called Hierarchy based Markov Logic Network (HMLN),
in which the Knowledge Base (KB) is built using conjunctions
between the input attributes and the class attribute as the
formulas in the KB and, the attributes taxonomies are added to
the model. In figures 3 and 4, we present the results for both
standard MLN and HMLN for the Mushroom and Nursery
Datasets, respectively. We can see that the average accuracy
of the models when we add the attribute taxonomies are always
better. We can also observe that contrary to our expectations,
adding taxonomies results in a decrease of the total running
time. Our intuition was that adding the taxonomies would
result in increased running times, since we are adding more
predicates to our training set (as discussed in section III)
and this results in more clauses (conjunctions between the
attributes and the class attribute) that we have to learn the
corresponding weight.

We have more clauses but the same number of class
predicates for both HMLN and standard MLN models, in
the training step. Remembering, in our training sets we have
predicates related to the class attribute and predicates related
to the input attributes, attributes that we want to use to build
a model to predict the class attribute value. In section II-B,
we describe that in learning the clauses weights we partition
the ground predicates in the domain into a set of evidence
predicates and a set of query predicates (in our case this set
have only one element the predicate Class). Our set of query
predicates is the same for both standard MLN and HMLN
models but the set of evidence predicates is different because
we add predicates with values corresponding to the attribute

7

(a)

(b)

Fig. 3: a) Average running time b) Average accuracy in the
test set versus percentage of dataset used to built the MLN
model for the Mushroom Dataset. The grey line is the results
when adding taxonomies (HMLN models) and the black line
is the results without adding taxonomies (MLN models).

parents in the attributes taxonomies. To learn the weights,
the default algorithm used by Alchemy is the MC-SAT. What
we observe in our experiments is that in the case of HMLN
models the time that it takes to finish performing the MC-
SAT is much less than in the case of the MLN models. We
believe that by having a greater number of evidence predicates
while maintaining the same query predicates allows MC-SAT
algorithm to more quickly converge.

B. Knowledge Base consisting of rules extracted from Deci-
sion Trees

In the previous section, we presented our approach, which
we called HMLN, to add the attributes taxonomies to MLNs
models to improve their performance and showed the effective-
ness of our approach. In this approach, the KB is composed by
formulas which are conjunctions between the input attributes

(a)

(b)

Fig. 4: a) Average running time b) Average accuracy in the
test set versus percentage of dataset used to built the MLN
model for the Nursery Dataset. The grey line is the results
when adding taxonomies (HMLN models) and the black line
is the results without adding taxonomies (MLN models).

and the class attribute. After training what we will have is
a formula for each possible combination of values for the
input attribute and class attribute that is present in the training
set. The number of formulas in our KB grows exponentially
with the possible values of the attributes. And thus, we could
end up with a MLN that have a lot of formulas in the KB
for which we need to learn a weight and in return will take
much more time to compute. So, ideally we would like to
have a KB with a fixed number of formulas made by domain
experts. Since we don’t have such KB, we decided to mimic
this by using the Decision Tree (DT) algorithm and extract
two or three rules using the Mushroom Dataset. We used
two different DT implementations to test this approach: the
C4.5/J48 implementation using the Weka Software [47] and
the CART implementation using the machine learning library
for Python scikit-learn [48].

8

The first step in both train and inference in MLN is to con-
vert all the formulas to the clausal normal form (information
about how to convert a formula to clausal normal form can
be found in [49]). Using the DT C4.5/J48 implementation we
extracted three rules that when converted to clausal normal
results in six formulas. Using the DT CART implementation
we extracted two rules that when converted to clausal normal
results in seven formulas. This number is independent of the
train set size and is a lot less clauses, for which we have to
learn the weight, when compared to the approach of using as
formulas in the KB, conjunctions between input attributes and
class attribute. With this approach, with the HMLN, in average,
we had 257 clauses and with the standard MLN model we had
191 clauses.

In figure 5 b), we can observe the results when using
rules extracted form a tree obtained with the DT C4.5/J48
implementation and the the DT CART implementation as the
formulas of the KB, that we called KB(C4.5/J48 rules)MLN
and KB(CART rules)MLN, respectively. Both KB(C4.5/J48
rules)MLN and KB(CART rules)MLN models are always better
than the standard MLN in which the KB was built using
conjunctions between the input attributes and the class and, the
HMLN when using ten or less percent of the dataset. Using
fifteen or more percent of the dataset the HMLN is slightly
better than KB(C4.5/J48 rules)MLN. The KB(CART rules)MLN
model is always slightly better than the HMLN. We were ex-
pecting that since we have a lot less clauses in the KB(C4.5/J48
rules)MLN and KB(CART rules)MLN models they would be
much faster than the standard MLN in which the KB was
built using conjunctions between the input attributes and the
class and, also faster than HMLN but observing 5 a) this
is not the case. Both KB(C4.5/J48 rules)MLN and KB(CART
rules)MLN models are slightly faster than the standard MLN,
but the HMLN is still much faster. It seems that the impact that
the attribute’s taxonomies have in helping the weight learning
algorithm to converge faster is much more than the impact of
having less clauses.

In our work, we also tested this approach with the Nursery
Dataset. But, the trees that resulted were much more complex
than the ones obtained for the Mushroom Dataset so, finding
rules with good support is more difficult. We used then, rules
from the literature as formulas in the KB. However the models
in which the KB were built with these rules were always worse
than the standard MLN.

We could think of this approach of, using a DT model to
build a tree and extract rules to be used as formulas in the
KB of a MLN model, as another method of adding domain
knowledge to improve the performance of the algorithm be-
cause ideally the formulas would be made by a domain expert
and probably they would be very similar to the ones that we
obtained.

Our approach here consists in, first, obtaining a set of rules
by using a DT learner and then using these rules to augment
the training set that is fed to the MLN learner. This kind of
strategy is known as an ensemble that is one of the most active
areas of research in machine learning [50]. An ensemble of
classifiers is a set of classifiers whose individual decisions are
combined in some way to classify new examples [50].

(a)

(b)

Fig. 5: a) Average running time b) Average accuracy in the
test set versus percentage of dataset used to build the MLN
model for the Mushroom Dataset. The grey line is the results
when adding taxonomies and the formulas in the KB are
conjunctions between attributes and the class attribute. The
black line with dots is the results without adding taxonomies
and again the formulas of the KB are conjunctions. The black
line with squares are the results when using a DT C4.5/J48
implementation to generate rules to use as formulas in the
KB. And finally, the black line with triangles are the results
when using a DT CART implementation to generate rules to
use as formulas in the KB

V. CONCLUSIONS

Two key challenges in most machine learning applications
are uncertainty and complexity. Logic, especially, first-order
logic (FOL) provides an expressive, compact and elegant way
to express domain knowledge. Probabilistic methods are better
at handling the uncertainty and noise in real data. How-
ever, both of these are necessary to build intelligent systems
and handle real-world applications. Markov Logic Networks
(MLNs) combine logic and probability by attaching weights
to first-order clauses. By combining FOL and probability we
can use the advantages of both. MLNs have gained traction

9

in the AI community in recent years because of this ability
to combine the expressiveness of FOL with the robustness of
probabilistic representations.

The goal of this work was to extend the work by Vieira and
Antunes [9], by introducing domain knowledge, represented
through taxonomies, in the process of learning a set of MLNs
to improve the models performance. The use of domain
knowledge can bring significant benefits to machine learning
applications, by resulting in simpler and more interesting and
usable models.

In this work we proposed an approach, an extension of the
works of Vieira and Antunes [9] and Richardson and Domin-
gos [30], that introduces domain knowledge, represented as a
taxonomy, in the process of learning a model in the context
of classification using MLNs. We called this MLN model,
that can take advantage of user supplied feature (attribute
value) taxonomies, Hierarchy based Markov Logic Network
(HMLN).

In addition to an approach to add domain knowledge as
taxonomies we also propose an approach to add domain
knowledge as rules extracted from a tree obtained with a
Decision Tree (DT) algorithm.

Our results have shown that HMLNs, outperforms the stan-
dard MLN model and is in fact a lot more faster. The approach
add domain knowledge as rules extracted from a tree obtained
with a Decision Tree (DT) algorithm, in cases where it is easy
to extract rules with good support, our results have shown
that this models also outperforms the standard MLN model.
However, as observed in our work, this is not always the case.
In cases where it is not easy to extract rules with good support
from a tree, using the best rules found in the literature, does
not lead to better results.

We also concluded that, despite the fact than when we can
extract rules from a DT, with good support, using ten or less
percent of the dataset the approach of using rules extracted
from tree to populate the Knowledge Base (KB) is better
than the HMLN, in general, there isn’t much difference in
the accuracy for both approaches. And being the HMLN more
faster we can conclude that HMLN approach is better than
using a DT to extract some rules and use them as formulas in
the KB.

We validate our work using the datasets Mushroom and
Nursery, available in UC Irvine Machine Learning Repository
since we already had the attributes taxonomies that Vieira and
Antunes [9] used in their work. Since these datasets are both
tabular and in MLNs we work with formulas and predicates
in FOL we also presented an approach to extracted from a
tabular dataset formulas and predicates for to be possible to
use a tabular dataset with our approach.

To conclude, we can observe in our work that using domain
knowledge with MLNs improves the model’s accuracy.

VI. FUTURE WORK

Although the results presented have demonstrated the effec-
tiveness of our approach, it can, of course, be further developed
in a number of ways.

One of the things that would be interesting to explore is the
use of FOL, that allows greater expressiveness, to add domain

knowledge to the MLN. In Vieira and Antunes [9]’s work they
also use ontologies as the domain knowledge representation
and this can be good starting point to explore adding domain
knowledge that cannot be represented simply as taxonomies to
MLNs.

Another important work to be done is to explore in more
detail why adding the attributes taxonomies helps the model
converge much faster.

Finally, it would be interesting to test our approach on
problems with a richer, more expressive domain than the
tabular datasets we used here.

REFERENCES

[1] C. Antunes and A. Silva, “New trends in knowledge
driven data mining.” in ICEIS (1), 2014, pp. 346–351.

[2] N. Dogan and Z. Tanrikulu, “A comparative analysis
of classification algorithms in data mining for accuracy,
speed and robustness,” Information Technology and Man-
agement, vol. 14, no. 2, pp. 105–124, 2013.

[3] O. Maimon and L. Rokach, Data mining and knowledge
discovery handbook. Springer, 2005, vol. 2.

[4] R. Dybowski, K. B. Laskey, J. W. Myers, and S. Parsons,
“Introduction to the special issue on the fusion of domain
knowledge with data for decision support,” Journal of
Machine Learning Research, vol. 4, no. 3, pp. 293–294,
2004.

[5] L. Cao, D. Luo, and C. Zhang, “Knowledge action-
ability: satisfying technical and business interestingness,”
International Journal of Business Intelligence and Data
Mining, vol. 2, no. 4, pp. 496–514, 2007.

[6] L. Cao, “Domain driven data mining (d3m),” in Data
Mining Workshops, 2008. ICDMW’08. IEEE Interna-
tional Conference on. IEEE, 2008, pp. 74–76.

[7] ——, “Domain-driven data mining: Challenges and
prospects,” IEEE Transactions on Knowledge and Data
Engineering, vol. 22, no. 6, pp. 755–769, 2010.

[8] V. Mirchevska, M. Luštrek, and M. Gams, “Combining
domain knowledge and machine learning for robust fall
detection,” Expert Systems, vol. 31, no. 2, pp. 163–175,
2014.

[9] J. Vieira and C. Antunes, “Decision tree learner in the
presence of domain knowledge,” in Chinese Semantic
Web and Web Science Conference. Springer, 2014, pp.
42–55.

[10] P. M. Domingos, S. Kok, H. Poon, M. Richardson, and
P. Singla, “Unifying logical and statistical ai.” in AAAI,
vol. 6, 2006, pp. 2–7.

[11] Z. Nazeri and E. Bloedorn, “Exploiting available domain
knowledge to improve mining aviation safety and net-
work security data,” The MITRE Corporation, McLean,
Virginia, vol. 22102, 2004.

[12] R. Agrawal, R. Srikant et al., “Fast algorithms for mining
association rules,” in Proc. 20th int. conf. very large data
bases, VLDB, vol. 1215, 1994, pp. 487–499.

[13] J. R. Quinlan, C4. 5: programs for machine learning.
Elsevier, 2014.

10

[14] J. Barracosa and C. Antunes, “Anticipating teachers per-
formance,” in KDD 2011 Workshop: Knowledge Discov-
ery in Educational Data, 2011, pp. 77–82.

[15] A. Bochare, A. Gangopadhyay, Y. Yesha, A. Joshi,
Y. Yesha, M. Brady, M. A. Grasso, and N. Rishe,
“Integrating domain knowledge in supervised machine
learning to assess the risk of breast cancer,” International
Journal of Medical Engineering and Informatics, vol. 6,
no. 2, pp. 87–99, 2014.

[16] P. Domingos and M. Pazzani, “On the optimality of the
simple bayesian classifier under zero-one loss,” Machine
learning, vol. 29, no. 2-3, pp. 103–130, 1997.

[17] C. Cortes and V. Vapnik, “Support-vector networks,”
Machine learning, vol. 20, no. 3, pp. 273–297, 1995.

[18] J. Pearl, “Bayesian networks,” Department of Statistics,
UCLA, 2011.

[19] P. W. Pardel, J. G. Bazan, J. Zarychta, and S. Bazan-
Socha, “Automatic medical objects classification based
on data sets and domain knowledge,” in International
Conference: Beyond Databases, Architectures and Struc-
tures. Springer, 2015, pp. 415–424.

[20] K. Kozaki, K. Hihara, and R. Mizoguchi, “Dynamic is-
a hierarchy generation for user-centric semantic web,”
in Workshop Ontologies come of Age in the Semantic
Web(OCAS2011) 10 th International Semantic Web Con-
ference Bonn, Germany, October 24, 2011, 2011, p. 29.

[21] J. Zhang, D.-K. Kang, A. Silvescu, and V. Honavar,
“Learning accurate and concise naı̈ve bayes classifiers
from attribute value taxonomies and data,” Knowledge
and Information Systems, vol. 9, no. 2, pp. 157–179,
2006.

[22] G. P. Malafsky and B. Newman, “Organizing knowledge
with ontologies and taxonomies,” Fairfax: TechI LLC.
Available at, 2009.

[23] J. Zhang, A. Silvescu, and V. Honavar, “Ontology-driven
induction of decision trees at multiple levels of ab-
straction,” in International Symposium on Abstraction,
Reformulation, and Approximation. Springer, 2002, pp.
316–323.

[24] T. Łukaszewski and S. Wilk, “Classification with test
costs and background knowledge,” Knowledge-Based
Systems, vol. 92, pp. 35–42, 2016.

[25] B. Motik, P. F. Patel-Schneider, B. Parsia, C. Bock,
A. Fokoue, P. Haase, R. Hoekstra, I. Horrocks, A. Rut-
tenberg, U. Sattler et al., “Owl 2 web ontology language:
Structural specification and functional-style syntax,” W3C
recommendation, vol. 27, no. 65, p. 159, 2009.

[26] A.-H. Tan, “Cascade artmap: Integrating neural compu-
tation and symbolic knowledge processing,” IEEE Trans-
actions on Neural Networks, vol. 8, no. 2, pp. 237–250,
1997.

[27] T.-H. Teng, A.-H. Tan, and J. M. Zurada, “Self-organizing
neural networks integrating domain knowledge and rein-
forcement learning,” IEEE transactions on neural net-
works and learning systems, vol. 26, no. 5, pp. 889–902,
2015.

[28] X. Shu, G.-J. Qi, J. Tang, and J. Wang, “Weakly-
shared deep transfer networks for heterogeneous-domain

knowledge propagation,” in Proceedings of the 23rd ACM
international conference on Multimedia. ACM, 2015,
pp. 35–44.

[29] D. Zhou, D. Zhong, and Y. He, “Event trigger identi-
fication for biomedical events extraction using domain
knowledge,” Bioinformatics, vol. 30, no. 11, pp. 1587–
1594, 2014.

[30] M. Richardson and P. Domingos, “Markov logic net-
works,” Machine learning, vol. 62, no. 1, pp. 107–136,
2006.

[31] W. Duch, R. Adamczak, and K. Grabczewski, “A new
methodology of extraction, optimization and application
of crisp and fuzzy logical rules,” IEEE Transactions on
Neural Networks, vol. 12, no. 2, pp. 277–306, 2001.

[32] P. Domingos, S. Kok, D. Lowd, H. Poon, M. Richardson,
and P. Singla, “Markov logic,” in Probabilistic inductive
logic programming. Springer, 2008, pp. 92–117.

[33] H. Mittal, S. S. Singh, V. Gogate, and P. Singla, “Fine
grained weight learning in markov logic networks,” 2015.

[34] P. Singla and P. Domingos, “Discriminative training of
markov logic networks,” in AAAI, vol. 5, 2005, pp. 868–
873.

[35] P. Domingos and D. Lowd, “Markov logic: An interface
layer for artificial intelligence,” Synthesis Lectures on
Artificial Intelligence and Machine Learning, vol. 3,
no. 1, pp. 1–155, 2009.

[36] W. R. Gilks, S. Richardson, and D. Spiegelhalter, Markov
chain Monte Carlo in practice. CRC press, 1995.

[37] G. O. Roberts, “Markov chain concepts related to sam-
pling algorithms,” Markov chain Monte Carlo in practice,
vol. 57, 1996.

[38] D. Lowd and P. Domingos, “Efficient weight learning
for markov logic networks,” in European Conference on
Principles of Data Mining and Knowledge Discovery.
Springer, 2007, pp. 200–211.

[39] H. Poon and P. Domingos, “Sound and efficient inference
with probabilistic and deterministic dependencies,” in
AAAI, vol. 6, 2006, pp. 458–463.

[40] W. Wei, J. Erenrich, and B. Selman, “Towards efficient
sampling: Exploiting random walk strategies,” in AAAI,
vol. 4, 2004, pp. 670–676.

[41] R. M. Neal, “Slice sampling,” Annals of statistics, pp.
705–741, 2003.

[42] P. Domingos, D. Jain, S. Kok, D. Lowd, L. Mihalkova,
H. Poon, M. Richardson, P. Singla, M. Sumner, and
J. Wang. (2012) Alchemy: Open source ai. [Online].
Available: http://alchemy.cs.washington.edu

[43] V. A. Silva and F. G. Cozman, “Markov logic networks
for supervised, unsupervised and semisupervised learning
of classifiers,” in IV Workshop on MSc Dissertation and
PhD Thesis in Artificial Intelligence (WTDIA), 2008.

[44] F. Niu, C. Ré, A. Doan, and J. Shavlik, “Tuffy: Scaling
up statistical inference in markov logic networks using
an rdbms,” Proceedings of the VLDB Endowment, vol. 4,
no. 6, pp. 373–384, 2011.

[45] K. Beedkar, L. Del Corro, and R. Gemulla, “Fully parallel
inference in markov logic networks.” in BTW. Citeseer,
2013, pp. 205–224.

http://alchemy.cs.washington.edu

11

[46] J. T. Kent, “Information gain and a general measure of
correlation,” Biometrika, vol. 70, no. 1, pp. 163–173,
1983.

[47] E. Frank, M. Hall, G. Holmes, R. Kirkby, B. Pfahringer,
I. H. Witten, and L. Trigg, “Weka-a machine learning
workbench for data mining,” in Data mining and knowl-
edge discovery handbook. Springer, 2009, pp. 1269–
1277.

[48] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

[49] R. J. Brachman, H. J. Levesque, and R. Reiter, Knowl-
edge representation. MIT press, 1992.

[50] T. G. Dietterich et al., “Ensemble methods in machine
learning,” Multiple classifier systems, vol. 1857, pp. 1–
15, 2000.

	Introduction
	Markov Logic Networks
	Inference
	Training
	Software and libraries used
	Transforming the dataset to First-Order Logic

	Hierarchy based Markov Logic Network
	Experimental results
	Hierarchy based Markov Logic Network
	Knowledge Base consisting of rules extracted from Decision Trees

	Conclusions
	Future Work

