Robots, one step ahead of us: Prediction of human movements

Gonçalo Alexandre Mesquita Albuquerque Castilho

Thesis to obtain the Master of Science Degree in Information Systems and Computer Engineering

Supervisors: Prof. Francisco António Chaves Saraiva de Melo
Prof. Manuel Fernando Cabido Peres Lopes

Examination Committee

Chairperson: Prof. Miguel Nuno Dias Alves Pupo Correia
Supervisor: Prof. Francisco António Chaves Saraiva de Melo
Members of the Committee: Prof. Rodrigo Martins de Matos Ventura

November 2017
Acknowledgments

I would like to thank my advisors, Professor Francisco Melo and Professor Manuel Lopes for their patience, guidance and counsel throughout the development of my thesis. Their support was very important to keep me on track and with hope to finish my work.

I would also like to thank my family and especially my grandmother Júlia Mesquita for supporting my studies and giving me a hard time each time I was striding away from my goals.

Lastly I am very grateful for the support of my friends throughout the development of my thesis. Not only did they gave me motivation to continue but also kept me laughing and helped sort my ideas throughout this work. A special thanks to Tiago Gomes who was "suffering" beside me during the development of both our thesis. To my girlfriend Inês Bagulho for her optimism and constant motivation. To my "Mustaches", Patrícia Pereira, Leonor Bandeira and Marta Guerreiro for putting up with me and my rants about this thesis.
Abstract

The ability of predicting human movements allows for improvements in environments where both humans and robots work. These improvements might be in terms of their direct interaction or in order to avoid getting in the way of a human’s action. This thesis proposes the development of a system that is able to predict human movements and trajectories both online and offline. The system uses Probabilistic Motor Primitives to represent the learned movements and will use Dynamic Time Warping to scale movements at different speeds and phases from those learned. Furthermore, the system classifies complete movements and incomplete movements (prediction of an unfinished movement). Lastly, the results of the system both online and offline were presented and discussed as well as a comparison with a simple euclidean distance predictor was made, where the system proved to be better than the euclidean distance predictor.

Keywords

Probabilistic Motor Primitives, Prediction, Trajectory, Dynamic Time Warping, Classification of movements
Resumo

A capacidade de prever movimentos humanos em ambientes onde tanto humanos como robots trabalham permite imensos benefícios. Estes benefícios podem ser em termos da sua interação direta ou de forma a não interferir na atividade do humano. Esta tese propõe o desenvolvimento de um sistema que é capaz de prever movimentos humanos e trajetórias tanto offline como online. Este sistema utiliza Probabilistic Motor Primitives para representar os movimentos aprendidos e usa o algoritmo de Dynamic Time Warping para escalar movimentos com fases ou com velocidades diferentes das dos movimentos aprendidos. O sistema classifica também movimentos completos e incompletos (previsão de um movimento que ainda não terminou). Para terminar, os resultados do sistema, tanto offline como online foram apresentados e discutidos, assim como foi feita uma comparação deste sistema com um preditor simples que apenas utiliza a distância euclidiana, na qual o sistema provou ter uma melhor performance que o preditor que utiliza a distância euclidiana.

Palavras Chave

Probabilistic Motor Primitives, Previsão, Trajectória, Dynamic Time Warping, Classificação de movimentos
Contents

1 Introduction .. 1
 1.1 Motivation ... 3
 1.2 Problem ... 3
 1.3 Hypothesis ... 4
 1.4 Contributions 4
 1.5 Outline ... 5

2 Related Work ... 7
 2.1 Prediction of Human Activity 9
 2.1.1 Decomposition of Tasks and Activities 9
 2.1.2 Handover prediction 10
 2.1.3 Online Prediction 12
 2.1.4 Imitation Learning 13
 2.1.5 Summary 13
 2.2 Dynamic Time Warping 14
 2.3 Motor Primitives 17

3 Prediction of Movements 21
 3.1 Learning Human Movements 23
 3.2 Classifying a new movement 25
 3.2.1 Dealing with movements at different speeds and phases 25
 3.2.2 Using the Dynamic Time Warping for the scaling 25
 3.2.3 Using Multivariate Normal Distributions for the classification 27
 3.2.4 Determining the phase of partial movements using a rolling window 30

4 System Results and Discussion 33
 4.1 How the trajectories are captured 35
 4.2 Synthetic trajectory Tests 38
 4.3 Offline Tests 39
 4.4 Comparison with an euclidean distance predictor 40
List of Figures

3.1 Graph representation of a ProMP with a single degree of freedom. In yellow, the demonstration trajectories are represented. In blue is represented the expected trajectory of what was learned from the demonstration trajectories. In red we have the expected trajectory summed and subtracted by the standard deviation. 24

3.2 Alignment between two trajectories over time. Image from [1] 26

3.3 Cost matrix with the minimum-distance warp path traced through it. Image from [1] . . . 27

3.4 Example of the rescaling with the DTW. In this example the red trajectory corresponds to the learned trajectory and the blue trajectory corresponds to a partial version of the learned trajectory but executed at half the speed. The green trajectory corresponds to the rescaling after applying the DTW. ... 28

3.5 Normal distribution where it is depicted how the probability of point x(t) belonging to an MP is calculated. ... 29

3.6 Example of the rolling window trying to find the best match for the blue trajectory. In this case the algorithm will see the right box as a better match than the left and center box because the right one will return a higher probability when applying the Multivariate Normal Distributions. ... 31

4.1 Marker setup. This image displays how the marker was placed on the wrist of the human. 35

4.2 Camera setup. In the image are presented the 6 cameras (in red) used for the capture of the human movements. All 6 cameras are fixed to the wall and ceiling and connected to an Optitrack hub via USB. ... 36

4.3 Capture area example. In this image we can see an example of the capture area created with 3 cameras. The capture area consists in the overlaying areas the of the cameras observation areas. ... 37

4.4 Test setup. In the image we can see the 4 targets used for the movements, LT, LB, Box and BC. All the movements start at point S. Labeled with 1 is the Optitrack marker used. It is attached to a wristband that will be placed on the user’s wrist. 37
4.5 Graph comparing the accuracy performance of the euclidean distance predictor (in red) and the accuracy performance of the proposed system (in blue).

4.6 Graphic representing the evolution over the percentage of the trajectory that is given to the system. In blue we have the system with 800 learned trajectories and in red we have the system with 200 learned trajectories.

A.1 Learned DOF 1 for Trajectory 1
A.2 Learned DOF 2 for Trajectory 1
A.3 Learned DOF 3 for Trajectory 1
A.4 Learned DOF 1 for Trajectory 2
A.5 Learned DOF 2 for Trajectory 2
A.6 Learned DOF 3 for Trajectory 2
A.7 Learned DOF 1 for Trajectory 3
A.8 Learned DOF 2 for Trajectory 3
A.9 Learned DOF 3 for Trajectory 3
A.10 Learned DOF 1 for Trajectory 4
A.11 Learned DOF 2 for Trajectory 4
A.12 Learned DOF 3 for Trajectory 4
A.13 Learned DOF 1 for Trajectory 5
A.14 Learned DOF 2 for Trajectory 5
A.15 Learned DOF 3 for Trajectory 5

B.1 In blue we have the learned trajectory S to BC, used in the tests. In green we have the learned trajectory S to Box used in the tests. In red we have an example of one of the test trajectories of type S to BC.
List of Tables

2.1 Table containing a brief summary of the learning methods used in the related work of section 2.1. In this table we have presented the approach used by the authors to perform learn the human movements as well as the approach to perform the predictions. It is also presented the type of prediction done in these works. 14

4.1 Synthetic trajectory test results. In the column Total accuracy are presented the results for the percentage of correct predictions given all of the test trajectories seen for a certain percentage of trajectory observed (column percentage of trajectory). 38

4.2 Offline test results. In the column Total accuracy are presented the results for the percentage of correct predictions given all of the test trajectories seen for a certain percentage of trajectory observed (column percentage of trajectory). 39

4.3 Offline test results of the euclidean distance predictor .. 40

4.4 Offline test results with only 200 trajectories in the learning set 42

4.5 Online test confusion matrix ... 43

4.6 Online test accuracy results ... 44
List of Algorithms

2.1 Pseudo code for the Dynamic Time Warping algorithm (adapted from [2]) 15
2.2 Pseudo code for the optimal warp path ... 15
3.1 Pseudo code for the selection of the best class ... 30
Listings
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTW</td>
<td>Dynamic Time Warping</td>
</tr>
<tr>
<td>ATCRF</td>
<td>Anticipatory Temporal Conditional Random Field</td>
</tr>
<tr>
<td>HRI</td>
<td>Human Robot Interaction</td>
</tr>
<tr>
<td>ProMP</td>
<td>Probabilistic Motor Primitives</td>
</tr>
<tr>
<td>MP</td>
<td>Motor Primitive</td>
</tr>
<tr>
<td>SVM</td>
<td>Support Vector Machine</td>
</tr>
<tr>
<td>GMM</td>
<td>Gaussian Mixture Model</td>
</tr>
<tr>
<td>GMR</td>
<td>Gaussian Mixture Regression</td>
</tr>
<tr>
<td>STOMP</td>
<td>Stochastic Trajectory Optimizer for Motion Planning</td>
</tr>
<tr>
<td>p-HMM</td>
<td>parametrized Hidden Markov Models</td>
</tr>
<tr>
<td>DMP</td>
<td>Dynamic Motor Primitives</td>
</tr>
<tr>
<td>IP</td>
<td>Interaction Primitives</td>
</tr>
<tr>
<td>IG</td>
<td>Information Gain</td>
</tr>
<tr>
<td>MD-DTW</td>
<td>Multi-dimensional Dynamic Time Warping</td>
</tr>
<tr>
<td>DOF</td>
<td>Degree of Freedom</td>
</tr>
<tr>
<td>ROS</td>
<td>Robot Operating System</td>
</tr>
<tr>
<td>SDK</td>
<td>Software Development Kit</td>
</tr>
<tr>
<td>MVND</td>
<td>Multivariate Normal Distribution</td>
</tr>
</tbody>
</table>
1.1 Motivation

More and more humans must, in some manner, interact with robots in their everyday life. Be it either in a work environment, like a factory that has multiple robots manufacturing some sort of product, or in a more personal environment like our homes, where we already have robots that clean our home autonomously. Robots have come to a point where they share the same spaces as humans.

These topics enter the area of Human-Robot Interaction (HRI) where the interactions between humans and robots are studied. These studies can improve the work performed with machines in multiple and diversified environments like homes, hospitals, factories, offices and even the streets where humans walk around. Therefore, this area can have a huge economic impact as its breakthroughs can make tasks all the more efficient and safe.

Efficiency is one of the main goals when applying robotics to tasks and therefore improving the interaction between humans and robots is critical to improve efficiency.

To improve this topic, this work aims at developing an intelligent system that is able to learn and perceive how a Human performs in a collaborative task. Using this knowledge the system will predict its movements and actions.

It is expected that having the ability to predict a human’s motion and actions will increase the efficiency in collaborative human-robot tasks, as well as the sense of safety that a human has while working with a robot.

1.2 Problem

Prediction belongs in multiple scenarios as a complement to the execution of any task with collaboration, even becoming a need in certain situations.

Two persons performing a collaborative task intrinsically adapt to one another during its execution, making predictions about their partner’s intentions and movements along the way. This is an aspect of collaboration that can greatly improve efficiency in a workspace, as well as confidence between peers. At first glance this appears as something natural and that we do in our everyday life. In reality, this is not that simple. It is not easy to predict an action of a human but, why can’t this be translated to human robot interaction? There is already proven work when it comes to Humans predicting Robot actions, as well as work on making a Robot more predictable [3] [4] but, in this case, the idea is to give a robot the ability to predict human actions using knowledge acquired through interaction, just like two humans would do.

A prediction will be defined as a classification of a type of movement before it’s conclusion. In order to do this, the system will need to learn different types of movements for different targets. Knowing this, it will, using incomplete trajectories, perform the classification of these trajectories and therefore predicting the type of the movement. A problem that exists with predicting incomplete movements is the
question of different speeds while executing exactly the same movement and trajectory. Since we don’t know at what percentage of the trajectory we are in then we cannot now for certain how to compare with the learned movements. Not only this but, we also do not know to which phase of the learned trajectory belongs the partial trajectory we receive.

Having this in thought, the work developed during this thesis will be based in this question:

• Can a robot efficiently and with a relatively small margin of error recognize human motions with different speeds and phases and also predict the goal of these motions?

1.3 Hypothesis

With this work we contribute with a novel system that correctly predicts the goal of human movements. To this effect we contribute to prove that using Probabilistic Motor Primitives its possible to achieve a good accuracy rate at the earliest possible trajectory percentage complete.

Using the Dynamic Time Warping algorithm the system becomes more robust to differences in speed and phase of the movement which will allow the system to recognize movements despite their speed of execution or phase of the movement observed.

Given this, the hypothesis are:

• Using Probabilistic Motor Primitives we can perform early (30%-70% of the trajectory complete) predictions on the goal of a humans movement;

• Using the Dynamic Time Warping algorithm the system is able to recognize movements despite the speed and phase observed.

1.4 Contributions

This work contributed with a novel framework that uses Probabilistic Motor Primitives to predict and anticipate the goal of human motions during human-robot interaction. Given a set of potential known targets for the movements of the human, the robot can recognize the movement being performed and predict its goal after observing only a portion of the movement.

This work also contributed with an approach that using the Dynamic Time Warping algorithm can increase robustness to the recognizing of motions with different speeds of execution and that have an unknown phase. This allows the robot to perform the recognition of a movement even if it is being performed at a speed that is different from that it learned. The DTW algorithm can be used with both complete and partial movements.

In Summary:
• Framework based on ProMP that given a set of known targets can predict, after observing an incomplete movement performed by the human, which is the goal target of said movement;

• Approach using the DTW algorithm that allows the system to recognize movements despite them having different speeds of execution in regard to the learned movements;

• Approach using the DTW algorithm that allows for the system to recognize movements without knowing beforehand the phase of the incomplete movement observed

1.5 Outline

The next chapter, Chapter 2, discusses the state of the art when it comes to prediction of human activity and also discusses related work that uses the Dynamic Time Warping algorithm and Motor Primitives (both used in this solution). Chapter 3 presents the solution for the prediction system as well as the approaches to solve the problems that were encountered. In Chapter 4, the results of the system are presented and discussed. Finally, in Chapter 5 the conclusion, future work and system limitations are presented.
Contents

2.1 Prediction of Human Activity ... 9
2.2 Dynamic Time Warping .. 14
2.3 Motor Primitives ... 17

Related Work
2.1 Prediction of Human Activity

This work focuses on prediction of human activity using learning algorithms to learn the patterns in said human activity. Therefore, this section will be dedicated to an overview of the relevant literature for this work. The prediction of human activity is currently done in various ways and using different types of frameworks and technologies to achieve it.

2.1.1 Decomposition of Tasks and Activities

In [5] the authors use an Anticipatory Temporal Conditional Random Field (ATCRF) that models the spatial-temporal relations through object affordances and acquire their observations from RGB-D videos recorded with a Kinect. From the videos, they obtain the human pose using the Openni's Skeleton Tracker and extract the tracked object point clouds using SIFT feature matching. The object affordances used in this paper are represented as a potential function based on how the object is being interacted with when the corresponding affordance is active. This way they can predict what the human will do. For instance, using their example, when the active affordance is "drinkable" then the object is found near the human's mouth and therefore it is expected that the object will be moved towards the mouth of the human, also if an object is near a flat surface then its affordance is that it is placeable and therefore it is predicted that it will be placed on top of the surface. To model the movements of the humans they use a combination of non-additive and additive features that in certain cases provide cues for discriminating the sub-activities and the affordance classes. By analyzing for example (as given in the paper) the total distance moved and the minimum and maximum distance we can discriminate sub-activities from an activity for example discriminating Cleaning from moving.

This discrimination of the sub-activities and the affordance classes becomes very interesting in my work's problem as the scenario has a fixed set of activities and sub-activities, similar to the work in [5]. This is an approach that becomes very useful for labeling the data that will be used for the training of the system, as well as offers the possibility to decompose the classes representing the tasks of the assembly plan into pieces of a more general task, and using the affordances as a way to make maximize the probability of a given class.

In [6] the authors aimed to build a system capable of perceiving which task the human is currently performing and from that also predict future actions as well as when they will occur. To build this system they represented the human's action using And-Or trees. These trees have the information of the tasks the human can perform having each path in the tree considered as a plan that can be executed. They represented the nodes as composition elements which collect child nodes and indicate either an AND or OR Rule. An AND rule determines that, if the node is executed by the human then all its children will also be executed and in the specified order. The OR rule, like the AND rule, can be used to determine
the actions the human will do, but it in this case the node only gives the information that one of the child paths will be executed. This representation allows for the filtering of the range of executable actions a Human can execute, reducing the number of actions the robot must ponder at each moment. At the same time, it requires knowledge of the plans a human will execute making it ineffective when the human performs a new action plan.

In Summary:

- AND-rules are simply a sequence of actions that must happen if the first primitive action is executed.
- In the OR-Rules there is uncertainty to which path in the tree the human will take although each path is encoded with a discrete probability.

For each primitive action two probabilistic variables where made, representing its start and end time. The variable representing the end time is conditioned by the start time and the next primitive action's start and end time are conditioned by the previous end time of the given primitive action. They assume a duration prior for each action, distributed according to a trimmed Gaussian whose parameters are learned offline.

They did a simulation with their system in which the Robot had to deliver bins that had pieces the Human needed to build a model. During their simulation, they found that the Robot, when with high confidence due to calibration errors, would overcommit to a task delivering bins the Human did not need because of a bad inference. This problem was solved by lowering the confidence of the robot. In these cases, the Human had to wait slightly longer than on the first condition, but not as long to deliver its desired bin as the overcommitted Robot. Thus, tuning the robot's certainty about its prediction detector is a factor that influences in a high degree the system's performance, making it harder to recover from wrong predictions.

In this approach, I believe that the composition of nodes as a sequence of actions that need to be performed either, necessarily as in the AND nodes, or with a certain probability in OR nodes makes it possible to highly reduce the error rate of prediction, as we won't consider predicting tasks or actions that are not in the node.

Combining this approach with the approach of discriminating sub-activities and affordance classes in [5] can lead to a higher performance of my system as, once again, the possibility of predicting a wrong activity becomes smaller by using an AND-OR representation of the possible class sequences.

2.1.2 Handover prediction

While prediction is an aspect that we want to improve in Human-Robot scenarios, it is something that exists in Human-Human interactions. Therefore, it is only natural that studying these interactions gives
knowledge into how the physical collaboration between a human and another entity work.

In [7], K. Strabala, M. Lee, A. Dragan et al. attack this topic in a more abstract manner by studying handovers between Humans and using an algorithm for prediction by analyzing the interactions.

They studied the taxonomy of handovers and classified them as direct or indirect. Direct handovers are when the object is passed from the giver’s hand to the receiver and indirect handover is when the object is set down, waiting to be picked up by the receiver. They focused on direct handovers and found that handovers have distinct coordination phases. A signaling phase where the giver reaches out his hand holding an item, a transaction phase in which the object is exchanged and finally, a termination phase in which both the giver and the receiver retract their arms.

They coded the following parameters:

- Orientation of the person;
- Eye gaze;
- Hand occupancy;
- Handover signals;
- Inter-subject distance

They analyzed sequences and patterns of events as a means to find out triggers for events. They found that, while different handovers take different amounts of time, they shared one common time point which would be the trigger or the end of the sequence, which is immediately followed by a handover action.

The authors used selected sequence features to train a set of standard machine learning classifiers including Support Vector Machine (SVM's) with linear and radial kernels, k-Nearest Neighbors with a range of values for k and Decision Trees with various settings for the ranking methods. It is referred that the advantage of using Decision Trees, besides its high accuracy is also its amenability to interpretation. Using these techniques, a success rate of 82% was achieved when predicting.

Overall the method used in [7] is able to give insight into the communication before handovers, by learning what distinguishes signal-to-give phases from other interactions. With the results, they found that mutual gaze is not one of the features that the Decision Tree used to predict the intent to handover. This is because mutual gaze only occurred in 43% of the signal-to-give sequences, which gives the idea that it is not necessary for intention to be predicted correctly.

In [7] the knowledge obtained of the handover sequences and patterns led to the conclusion that, at least in handovers, these have certain triggers that precede the actions. Knowing of the existence of this triggers contributes to my work, as this is a starting point for the analysis of the motion data that I
will gather. Given that there exist triggers, analyzing the motion data for these triggers can be used to identify when a certain class will become active.

The study of Human-Human Interactions as was done in [7] is an approach that builds the basis to what a robot is expected to do in an interaction. Most social robots are developed with the objective of delivering a human-like experience, at most, to its human counterparts. Having knowledge of how a human makes its predictions and also when it makes them, gives us a baseline as to how to evaluate the robot’s performance.

M.Huber, M. Rickert, A. Knoll et al. in [8] use this approach dividing their experiment in to two types of interaction: a Human-Human, and a Human-Robot interaction. The experiment consists in the same tasks in the two components, having the subject receiving items and placing them on top of a table, either given by the human or the robot. The robot was programmed to wait between 0 and 4 seconds between hand-overs so that the human would not be able to adapt to a periodical behavior. This really is something that makes sense because periodical behavior, although perceivable and predictable, is not natural during the course of an activity where the robot has a range of actions it can do. Having the human adapted to a periodical behavior is bad because it would result in a loss of efficiency when a new action would be performed.

Comparison of the two types of interaction revealed that the present robot technology allows for efficient robot-human hand-over. This efficient interaction allows be natural since the robot will not make the human overly adapt to specific behaviors of the robot. Although the task of a handing over an object is simple the authors found out that this requires some sort of negotiation for the Robot and Human to have a faster and smoother cooperation. This negotiation is in terms of where the hand-over is done, in terms of spatial coordinates, and how fast it is performed.

2.1.3 Online Prediction

In [9] Mainprice et al use a framework capable of early prediction of the human’s motion. This framework is composed of two stages, the Offline phase and the Online phase.

In the Offline phase in order to perform early motion recognition and predict the subsequent human motion they fit a GMM (Gaussian Mixture Models) to each class of motion. Then they use a Gaussian Mixture Regression (GMR) to extract a new motion that best fits the class.

In the Online Phase, they interleave prediction, planning and execution. They execute the planning for every K possible robot tasks in parallel so that the robot can always fall back to the best solution at each re-planning step. This is interesting, as this can solve the problem of uncertainty when it comes to tasks where a human can change its intention mid action. Still in the Online Phase, they compute the robot’s motions using the Stochastic Trajectory Optimizer for Motion Planning algorithm (STOMP). And for last, by planning for every possible K task the robot can adapt to its motions given the predicted
human’s intent, minimizing interference and changing tasks quickly.

Still regarding the work of Mainprice et al, it is debated that parametrized Hidden Markov Models (p-HMM’s) could bring improvements to the accuracy of the human movements prediction when compared to the GMM’s which were used. This is described as being an advantage, due to the enabling of continuous parametrization of a task, and also it requires less training data.

The work developed by Mainprice is interesting in the scope of my thesis due to the interleaving of prediction, planning and execution. Although the planning and execution of my system will not be the focus and will be simplified, they are necessary to make the robot as efficient as possible in its task. Having the ability to re-plan during the execution of a task and predict in parallel can make it possible for my system to quickly react to unpredictable changes in intention of its human partner and alter its current action.

2.1.4 Imitation Learning

Ben Amor et al. use a different approach from those previous referred until now by using Imitation Learning. In [10] they use Dynamic Motor Primitives(DMP) to represent Interaction Primitives(IP’s). Using these in cooperative scenarios, they infer the behavior of the partner and participate in cooperation with him.

In this paper, they generalize the concept of Imitation Learning to Human-Robot Interaction scenarios. They use this concept to make robots engage in physical activities with a human partner. To this end, they record movements of two humans using motion capture and afterwards learn a compact model of the observer interaction.

Still in this paper, they explore an Imitation Learning approach to learn IP’s, as for example, the movements of an arm in a reaching motion. They achieve this goal through demonstration of several interaction tasks performed by humans in a motion capture environment. They use this motion capture to extract IP’s and create a model which the robot will use to engage in a similar task with the human as well. IP performs three steps to infer a way of reacting to the movement of the observed agent: Phase estimation, Predictive DMP distributions, Correlating both agents.

2.1.5 Summary

In table 2.1 a brief summary of relevant contents of the researched works, such as the learning method used to represent and learn the movements, what was the method used to make the predictions and what was the type of prediction made is presented:
<table>
<thead>
<tr>
<th>Learning and prediction method</th>
<th>What is predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koppula’s anticipatory temporal conditional random field (ATCRF) [5]</td>
<td>Supervised Machine learning with additive and non-additive features</td>
</tr>
<tr>
<td>Mainprice’s Offline/online phase predictor [9]</td>
<td>Gaussian Mixture Models (GMM) with Gaussian Mixture regression (GMR) (Offline phase) Stochastic Trajectory Optimizer for Motion Planning Algorithm (STOMP) (Online phase)</td>
</tr>
<tr>
<td>Strabala, Lee and Dragun’s Support Vector Machine Predictor [7]</td>
<td>Support Vector Machines (SVM’s) with linear and radial kernels, k-Nearest Neighbors with a range of values for k and Decision Trees with various settings for the ranking methods Information Gain (IG), IG Ratio, Gini and Relief</td>
</tr>
<tr>
<td>Hawkins And-Or Trees [6]</td>
<td>Bayes nets and And-Or Trees</td>
</tr>
<tr>
<td>Amor’s Interaction primitives [10]</td>
<td>Imitation Learning with Interaction primitives</td>
</tr>
</tbody>
</table>

Table 2.1: Table containing a brief summary of the learning methods used in the related work of section 2.1. In this table we have presented the approach used by the authors to perform learn the human movements as well as the approach to perform the predictions. It is also presented the type of prediction done in these works.

2.2 Dynamic Time Warping

The Dynamic Time Warping algorithm is a crucial part of the system proposed in this thesis. In overview, this is an algorithm that given two time series, which may vary in speed, measures the similarity between them. This similarity is measured by calculating an optimal match between the two time series.

The DTW algorithm can be applied to temporal sequences of any type of data be it video, audio, graphics or motion as is the case of this thesis and as is presented in section 2.2, as long as it can be represented as a linear sequence.

Besides the measure of the similarity between two time series, the DTW algorithm also produces a “warping path” from which the two series may be aligned in time.

The DTW algorithm in order to calculate an optimal match between two time series, X and Y, it has to “warp” the sequences non-linearly in time. This “warp” consists in stretching or shortening one of the sequences in order to find the best match. The best match is calculated in terms of a distance measure between the warped X and the original Y.

In terms of implementation of the DTW algorithm its pseudo-code is presented in algorithm 2.1. The algorithm receives two time series X, Y of sizes n and m and returns a matrix S of size n x m containing the distances between the pairs of points X[i] and Y[j] being i and j indexes of the vectors X and Y respectively.
Algorithm 2.1: Pseudo code for the Dynamic Time Warping algorithm (adapted from [2])

Data: Let $X = (x_1, \ldots, x_n)$, $Y = (y_1, \ldots, y_m)$ be 2 time series of size n and m

// Initialize the two dimensional array S to store the similarity measures of the differences between time series X and time series Y

$S := \text{array}[n, m]$;

for $i := 0$ to n
 for $j := 0$ to m
 $S[i,j] := \infty$;

$S[0,0] := 0$;

// Using a pairwise comparison, incrementally fill the similarity array with the differences between both time series. This differences will define the warp path.

for $i := 0$ to n
 for $j := 0$ to m
 cost := $d(X[i], Y[j])$; $S[i,j] := cost + \min(\min(S[i-1,j], // \text{decrement})$ $S[i,j-1], // \text{match})$ $S[i-1,j-1]); // \text{match}$

return $S[n,m]$

The optimal warp path is defined as the path through S in which the cost is minimal (see algorithm 2.2). To calculate the optimal warp path the algorithm initializes an empty array which will be our warp path. It will start by appending the pair (0,0) corresponding to the starting indexes and will continue to append pairs (i,j) in which i is an index in time series X and j is an index in time series Y. The algorithm traverses the cost matrix S starting from entry (0,0), until entry (n,m). The algorithm will see each neighbor $S[i+1, j]$, $S[i, j+1]$ and $S[i+1, j+1]$ and append to the warp path the pair of indexes which present the minimal value in S. It will then continue from the indexes it appended until $i=n$ and $j=m$.

Algorithm 2.2: Pseudo code for the optimal warp path

Data: Let $S = \text{array}[n,m]$ be the two dimensional array containing the similarity measures of the differences between two time series $X[n]$ and $Y[m]$

warp_path := [];

$i := 0$;

$j := 0$;

warp_path.append((0,0));

while $i < n$ and $j < m$
 if $\min(S[i+1, j], S[i, j+1], S[i+1, j+1]) == S[i+1, j]$ then
 warp_path.append((i+1, j));
 $i := i+1$;
 end if
 if $\min(S[i+1, j], S[i, j+1], S[i+1, j+1]) == S[i, j+1]$ then
 warp_path.append((i, j+1));
 $j := j+1$;
 end if
 if $\min(S[i+1, j], S[i, j+1], S[i+1, j+1]) == S[i+1, j+1]$ then
 warp_path.append((i+1, j+1));
 $i := i+1$;
 $j := j+1$;
 end if

return warp_path

(MD-DTW). With this algorithm the authors use all dimensions to find the best synchronization between time series.

They use this algorithm for gesture recognition of signs from the standard vocabulary of Sign Language of the Netherlands. These gestures are modeled as multi-dimensional time series where the number of measurements is the dimensionality of the series and the number of time instances its length.

The MD-DTW algorithm is composed of 4 steps. The first is to normalize each dimension of both time-series we want to synchronize separately to a zero mean and unit variance. Then there is an optional step which is smoothing each dimension with a Gaussian filter. Then the algorithm fills the M x N distance matrix, where M and N are the lengths of each time-series, respectively, using the following equation, where K is the number of dimensions:

$$D(i,j) = \sum_{k=1}^{K} |A(i,k) - B(j,k)|$$

In the end the algorithm used the distance matrix calculated to find the best synchronization with the regular DTW algorithm.

Using the MD-DTW to synchronize movements they were able to classify gestures.

In [1], similar to the goal of this thesis the authors classify human motion, and use Dynamic Time Warping to solve the problem of the time and speed differences between motion sequences. They focus on automatic classification of an unknown motion sequence using known motion sequences from a database.

The DTW is applied to warp the motions captured against the motions previously recorded. This use is similar to the approach discussed in section 3.2.2.

This application of the DTW algorithm to solve the problem of trajectories being warped in time and speed was used in [12]. In this work they used ProMP's to perform action recognition and human-robot movement coordination. ProMP's need to have all the trajectories aligned in relation to a common time scale in order to work. Using the DTW they were able to align in time the trajectories they receive with the ones used to train the ProMP's.

In [13] they proposed an alternative to the Dynamic Time Warping algorithm. The purpose behind this work was to present an approximation of the DTW algorithm which has linear time and space complexity. According to the authors, DTW has a quadratic time and space complexity which limits its application to small time series data sets. Having a DTW algorithm which is able to have linear time and space complexity makes it possible to expand its application to experiments with larger time series data sets.

The authors approach to their problem of developing a linear complexity version of the DTW algorithm was done by avoiding the brute-force dynamic programming approach of the DTW algorithm, and instead using a multilevel approach. They first sample the time series to a very low resolution and find a warp path in this lower resolution. Then they project the warp path onto incrementally higher resolution time
series continuously until the full warp path for the entire time series is found.

In a more specific manner, the multilevel approach used in this work is decomposed in three key operations, **Coarsening**, **Projection** and **Refinement**.

In the Coarsening, the time series is shrunk in to a smaller time series that represents the same curve as accurately as possible but with fewer data points.

In the Projection operation, a minimum-distance warp path is found at a lower resolution, and then this warp path is used as an initial prediction for a higher resolution's warp path.

Last, in the Refinement, the warp path obtained at a lower resolution is refined through local adjustments.

They test their algorithm’s accuracy by measuring the error of a warp path which is given by the following equation:

$$ErrorOfWarpPath = \frac{approxDist - optimalDist}{optimalDist} \times 100$$ \hspace{1cm} (2.2)

They evaluated the FastDTW algorithm against two other existing approximate DTW algorithms, Sakoe-Chuba bands and data abstraction. After their test they could conclude that the FastDTW was better than both of the other two algorithms by a big margin and despite the radius value of the algorithm. The FastDTW achieved a maximum error of 19.2% when the radius was 0 and that reduced to 1.5% with the radius equal to 10.

In terms of execution time, the FastDTW is proven faster than the DTW algorithm.

2.3 Motor Primitives

Motor Primitives are the basis behind the approach used in this thesis. In this thesis we use Probabilistic Motor Primitives in order to learn human movements in the form of Motor Primitives.

To address how these form a good approach to learn movements we will talk about some related work about Motor Primitives in this section.

In [14], the authors goal is to find reinforcement learning techniques that can be applied to Motor Primitives in the context of learning high-dimensional motor control tasks. The motor primitives are used in policy search for their “PoWER” algorithm. They describe their motor primitive framework as two coupled differential equations where they have a canonical system \(\dot{y} = f(y, z) \) with movement phase \(y \) and possible external coupling to \(z \), as well as a nonlinear system \(\ddot{x} = g(x, \dot{x}, y, \theta) \) which yields the current action for that system. Both systems are made to have the right properties in order to be useful for the desired class of motor control problems. One big advantage that is addressed by the authors is that the linearity of the function \(g \) enables Motor Primitives to be well-suited for imitation learning and reinforcement learning algorithms.
To perform the experiments to benchmark their "PoWER" system the authors had to learn Motion Primitives of the movements needed for certain actions, one of which was the Ball-in-a-Cup game. Their system state was described in terms of joint angles and velocity of the robot and Cartesian coordinates of the ball. The actions were joint space accelerations where each of their seven joints was represented by a motor primitive.

The authors in [15] used attractor landscapes to learn motor primitives of rhythmic movements. They demonstrated that using attractor landscapes they were able to learn motor primitives for various movement skills using imitation learning. This was done by fitting joint-angle trajectories with control polices, with one control policy per degree of freedom. Then they could use the control policies to replay the learned movements in a humanoid robot using an inverse dynamics controller to track the trajectories generated by the control policies.

In [16], the authors have as their goal the generalization of example trajectories to new situations not observed during training. To achieve this they needed a representation suitable for robot control. They represented every trajectory with parameters that described characteristics of the task as, for example, the position of the goal target and the positions of the points of a trajectory.

The approach presented in this paper uses Dynamic Movement Primitives as their motor representation. This enables the generalization of DMP’s to new situations using the goal of the task and the training set of movements. Since the generalized trajectories are encoded as DMP’s it is possible to apply modifications to the dynamic system in order to account for unforeseen perturbations, such as obstacles, which may not have been a part of the training set. The use of DMP’s makes it possible to also specify constraints and weights to the generalized movements with their respect to the importance of the task. All of the training data can be obtained either by kinesthetic guiding or from human demonstration, as how it is done in my work.

To evaluate the usefulness of their approach they performed tests on discrete movements of reaching, grasping, and ball-throwing. They were able to conclude that their approach was suitable if the example trajectories smoothly transitioned as a function of query points. They also concluded that the generalization of the trajectories using DMP’s allowed for the exploit of the advantages I described earlier of modifying and conditioning a generated generalized movements, given any unforeseen perturbation before execution time.

As we have seen in the former related work, Motor Primitives can be used as a representation for a variety of types of movements and applied to various different algorithms. Daniel et al. [17] adapted the children’s game of Thether ball for a robot application. In their problem the robot had to adapt to a varying position of the ball without being explicitly programmed for that. Therefore it had to have the ability to adapt its movement given the conditions of its environment.

Their approach extends the Relative Entropy Policy Search algorithm to the hierarchical policy case.
They apply this algorithm in combination with Dynamic Movement Primitives. At the same time, they learn a gating network, which selects between primitives given the current context, and the policies of the primitives, which specify the robot’s actual actions.

Each single DMP represents a movement plan for an episode, in an episodic learning case for motor skills, applied for many single-stroke motor skills. A DMP uses a second order linear dynamical system which is modulated by a learnable non-linear function \(f(z; w) \). where \(z \) is a phase variable of the movement. The function \(f(z; w) = \Phi(z)^T w \) is non-linear in the phase variable \(z \) but linear in its parameters \(w \). The parameters \(w \) correspond to the weights and these define the shape of the movement and are learned through imitation learning. Each joint has a different learnable function \(f \) and therefore has different parameters \(w \).

Given the related work presented so far we can conclude that Motor Primitives are a representation of movements that are adaptable to many algorithm’s and techniques. Not also is it very adaptable, it is flexible as it allows for a system to manipulate the learned movements in order to adapt to unforeseen obstacles or constraints when reproducing the movements. The results of using Motor Primitives in works that learn movements or trajectories were also positive since the papers researched proved to have been able to effectively learn the movements and even generalize, reproduce a new movement from the learned one and also classify new movements. Therefore we believe this is a good approach to learn the movements in my work.
Prediction of Movements

Contents

3.1 Learning Human Movements ... 23
3.2 Classifying a new movement ... 25
In this thesis, the core problem being addressed is the challenge of predicting the goal of a human movement. This predictions are done based on movements performed by humans while knowing a set of possible goals and trajectories performed to reach these goals. The system performs predictions based on incomplete movements, performing this prediction before the movement has reached its goal.

To perform a prediction, first the system has to be able to recognize and classify the type of an observed movement from those learned. Having recognized and classified the movement then the system performs the prediction of the goal of the movement.

These predictions are robust to differences in the speed of the movements observed, that is to say that, the speed of the observed movements does not need to be the same as the learned movements. The system is also robust to observing different phases of the movement, as for example, observing a movement that corresponds not to the beginning of a learned movement but instead to a motion in between the full movement from the learned starting position to the goal position.

In the following sections the solution approach will be explained. To learn the human movements Probabilistic Movement Primitives where used. To recognize and classify the movements we used Multivariate Normal Distributions. In order to bring robustness to speed and phase differences we used the Dynamic Time Warping algorithm.

3.1 Learning Human Movements

Many authors use Motor Primitives to allow robots to learn movements [14] [15] [16] [17]. In this work, probabilistic approach of the MP concept was used, that maintains a distribution over trajectories [18].

The goal behind the use of Probabilistic Movement Primitives is to be able to learn a representation of a human’s movement. This is performed using multiple demonstrations of a certain class of movements.

For the purposes of following the usual nomenclature in the bibliography we will refer to each joint or Cartesian coordinates of a movement as a degree of freedom (DOF).

We will denote $Y(t) = \{(y_1(t), y_2(t), \ldots, y_n(t))\}_{t=0,\ldots,T}$ as the trajectory of a movement having n DOF's and where $y_1(t)$ is the position of DOF 1 in the time instant t. We will use a linear regression with m Gaussian basis functions ψ. We can then represent the state vector $Y(t)$ as:

$$Y(t) = \{(y_1(t), y_2(t), \ldots, y_n(t))\}_{t=0,\ldots,T} = \{\psi_1(t), \psi_2(t), \ldots, \psi_n(t)\}_{t=0,\ldots,T} \cdot w + \epsilon_y,$$ \hspace{1cm} (3.1)

where $\psi_n(t)$ is a m dimensional time-dependent basis vector, ϵ_y is a zero-mean i.i.d. Gaussian noise and w is a matrix of the weights calculated from all the trajectories given the basis functions ψ.

The average weight vector W_{avg} can be calculated using the following:

$$W_{avg} = mean((\psi_n^T \psi_n)^{-1}(\psi_n^T \text{Train} Y_n^T)),$$ \hspace{1cm} (3.2)
where $TrainY_n$ is a $n \times t$ matrix (n is the number of training trajectories and t the number of time instants) containing the training trajectories for a certain type of movement. Using the weight vector we can generate an expected trajectory from the learned trajectories.

Having the mean weights calculated we can generate an expected trajectory from what we learned from the training trajectories using the following:

$$\psi_L(t)^T = \psi(t)^T W_{avg}(t),$$

(3.3)

$$Y_L = \sum_{n=1}^{n} \psi_L(t)^T,$$

(3.4)

where t corresponds to a basis index and Y_L corresponds to the learned trajectory.
3.2 Classifying a new movement

3.2.1 Dealing with movements at different speeds and phases

When performing a task with a set of possible movements a person performs each movement at his own pace, defining its own speed for the execution of the movement. When two persons perform the same type of movement and we compare the two movements it is very common that, assuming the trajectories are exactly the same, the speed of the execution differs. This can make a time step by time step comparison impossible without first scaling the movements to the same scale.

But even having every movement in the same scale we still have a second problem of knowing the phase of the movement for incomplete movements. Because the robot can’t know exactly when a human begins a movement it may not always receive the reading of a partial movement from its beginning, which then will introduce the problem of not knowing which phase of the movement this reading belongs to.

In order to deal with the first problem, the Dynamic Time Warping algorithm was used to scale the perceived movement to the same scale of the learning data set used to train the system. Using this I can obtain a scaled version of the perceived movement and then classify the movement from the scaled version.

For the second problem, the solution became easier given that it was possible to obtain the scaled version of the movement and therefore, speed was not an issue anymore. Having every movement on the same scale gives the possibility of comparing the movements time step by time step. To find the phase of the movement a sort of rolling window algorithm is applied, in which we place the movement over the learned trajectory and slide until an optimal match is found.

3.2.2 Using the Dynamic Time Warping for the scaling

As was discussed in 3.2.1 Dynamic Time Warping is used in this system to scale a movement into the scale of the learned movements. The DTW algorithm receives both the movement the human executed and a learned trajectory and tries to obtain an optimal alignment between the movement and the learned trajectory.

As was explained in section ??, the DTW algorithm is used to compare two temporal sequences (which may vary in speed) in terms of their similarity, as well as giving an error measurement on the basis of the match between both sequences. For the purposes of this experiment the algorithm will compare two human movements. In a more general aproach, the DTW is a method that calculates an optimal alignment between the two given temporal sequences. [13] [1]

The optimal alignment is done by “warping” non-linearly one of the sequences by stretching or compacting it along its time axis to determine a measure of their similarity. Their similarity is measured in terms of the distance between one temporal sequence and the warped versions of the other. The al-
algorithm then aims to find the minimum-distance warp path [figure 3.3] that can be constructed from the two time series.

To solve the problem of the scaling of the trajectory in this thesis, the cost matrix was used to construct a scaled version of the received movement. This is done by creating a vector which will be populated by the values of the received movement but at the scale of the learned movement.

The DTW algorithm is run having as arguments a learned trajectory and an observed trajectory. The distance measure used in this system to calculate the similarity between both trajectories is the euclidean distance. The DTW algorithm used is the "FastDTW" [13] algorithm in Python which can be obtained in https://pypi.python.org/pypi/fastdtw. The algorithm returns two arguments, a cost matrix which we referred earlier as being used to construct the scaled version of a received movement, and also returns a distance which corresponds to the similarity measure of the algorithm. This distance will be later used in the calculation of the probability of the movement belonging to a class using the multivariate normal distributions.

Let's define Y as the learned trajectory, X as the new unscaled trajectory, j and i being indexes of each of the trajectory vectors respectively and $D[j, i]$ as a pair in the warp path cost matrix. The warp path is traversed through each pair $D[j, i]$ storing the previous value of $Y[j]$ and $X[i]$. Each time there exists a "jump", which consists of both j and i having changed in value since the last stored value, then the value $X[i]$ is appended to the vector of the scaled trajectory. This is repeated until there are no more pairs in the warp path. In the end the new vector will contain a scaled version of the trajectory received, as shown in figure 3.4. [listing ??]
3.2.3 Using Multivariate Normal Distributions for the classification

Having learned the MP’s of different classes of human movements we can then begin to classify new movements given their trajectories.

To do this the first approach that was tried was to approximate our learned MP’s to normal distributions. Using this we calculate the probability of the human’s movement belonging to any learnt MP given its expected trajectory and standard deviation.

For simplicity, this will be approached for a single point and a single trajectory with only one DOF. Given a point $\text{ex}(t)$ in the expected trajectory and a point $\text{x}(t)$ recorded from a real trajectory the probability of $\text{x}(t)$ belonging to a MP is given by:
Figure 3.4: Example of the rescaling with the DTW. In this example the red trajectory corresponds to the learned trajectory and the blue trajectory corresponds to a partial version of the learned trajectory but executed at half the speed. The green trajectory corresponds to the rescaling after applying the DTW.

\[
\text{ProbabilityOfPoint} = \begin{cases}
cdf(x(t), ex(t), \sigma(t)) \times 2, & \text{if } x(t) \leq ex(t) \\
(1 - cdf(x(t), ex(t), \sigma(t))) \times 2, & \text{if } x(t) > ex(t),
\end{cases}
\]

where the \(cdf \) function is the cumulative distribution function of a continuous distribution having as its mean \(ex(t) \) and as its standard deviation \(\sigma(t) \). This function is applied for the value \(x(t) \) and gives the probability \(P(X \leq x(t)) \) being \(X \) any random value of the distribution. Since this is modeled as a normal distribution the probability \(P(X \leq ex(t)) = P(X \geq ex(t)) = 50\% \), and therefore, it is assumed that the total probability of a value belonging to a learned MP is given by the left tail of the normal distribution if \(x(t) \leq ex(t) \), or given by the right tail if \(x(t) > ex(t) \).

The value of the probability is multiplied by 2 to normalize the values to the scale 0-100%.

In theory, the most obvious way to calculate this probability would be to use the probability density function (pdf) instead of the cdf. But the choice to use the cdf function arose due to an approximation error with the use of the pdf function of the scipy.stats.norm package for Python. To avoid dealing with these errors, the cdf function, also from the scipy.stats.norm package for Python was used.

But this initial approach wasn’t able to achieve positive results for a multi dimensional scenario. Due
Figure 3.5: Normal distribution where it is depicted how the probability of point $x(t)$ belonging to an MP is calculated.

To the movements having 3 DOF’s this approach wasn’t able to calculate correctly the probabilities as it would interpret the 3 DOF’s as independent between each other. To solve this, **multivariate normal distributions** were used in order to make all DOF’s dependent between each other.

To do this, the learned MP’s were approximated to multivariate normal distributions (MVND). Since the movements learned are depicted in 3 DOF’s, the movement is modeled in 3 multivariate normal distributions, one for each DOF.

The MVND of a k-dimensional random vector $x = [X_1, X_2, ..., X_k]^T$ can be written in the following notation:

$$x \sim N_k(\mu, \Sigma)$$ \hspace{1cm} (3.5)

with k-dimensional mean vector μ and $k \times k$ covariance matrix Σ:

$$\mu = E[x] = [E[X_1], E[X_2], ..., E[X_k]]^T,$$

$$\Sigma =: E[(X - \mu)(X - \mu)^T] = [Cov[X_i, X_j]; 1 \leq i, j \leq k].$$ \hspace{1cm} (3.6)

(3.7)

Using this type of distributions, the probability of a movement belonging to a certain class of movements is calculated using the distance between the mean trajectory of a learned movement and the new movement with the following:

$$P(DOF) = e^{-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)}$$ \hspace{1cm} (3.8)

Having calculated the probability for each of the DOF’s for a certain class of movements, the average probability is calculated and compared with the average for every other learned class. The class with the highest probability is the class to which it is assumed the new movement belongs.

But in the case in which the movement is to different from any learned movement, and therefore has
a low probability in the best class, we compare the probability with an empirically defined threshold. This comparison is to avoid classifying movements without enough certainty. In the case the probability is lower than the threshold, the algorithm does not return any class, but instead returns a null object.

Due to the DTW’s ability to rescale movements given a learned movement, it might happen in some cases that the rescaled version fits a learned movement that is in fact different from the observed movement and therefore the calculation of the probability could return a high probability for a class despite it not being the correct class. In order to avoid these mismatches in classification, the distance [section 3.2.2] output returned from the DTW algorithm is used to refine the classification. Having P_a and P_b as the probability of the observed movement being of class a or b, respectively, and assuming P_a is the best possible class seen so far with a DTW distance of $dist_a$ then the decision of the movement being of class a or b will be done with the following in algorithm 3.1:

Algorithm 3.1: Pseudo code for the selection of the best class

Data: Let Y and X be the learned movement and observed movement respectively and $bestClass = a$, $bestDist = dist_a$ and $bestProb = P_a$.

$currentDist$, $rescaledMovement := DTW(Y,X)$

$currentProb := P_b$

$currentClass := b$

$percentageTolerance := (bestDist - currentDist) / bestDist$

if $currentProb \geq bestProb - percentageTolerance$ then

$bestClass = currentClass$

$bestDist = currentDist$

$bestProb = currentProb$

Using algorithm 3.1 we are able to avoid misclassifications due to a rescale of a movement with a low similarity comparatively to the learned movement.

3.2.4 Determining the phase of partial movements using a rolling window

In sections 3.2.2 and 3.2.3 it was discussed how DTW is used to scale movements being performed at different speeds, and was also discussed how the classification of the movements was made using multivariate normal distributions.

When it comes to incomplete movements, in which the system has only seen a partial movement by the human, the multivariate normal distributions can not be applied directly. First, the movement has to be scaled to the learned movement’s scale using the DTW. The DTW can scale even incomplete movements as is shown in figure 3.4. After having scaled the movement, the probability of the the movement belonging to the distribution of the learned movement is calculated, but because the phase of the movement is unknown this probability can not be calculated directly. To solve this problem we calculate the probability using a rolling window. This rolling window consists in sliding the partial movement over the time axis in order to find the best fit, which is the fit that returns the highest probability [figure 3.6].
Figure 3.6: Example of the rolling window trying to find the best match for the blue trajectory. In this case the algorithm will see the right box as a better match than the left and center box because the right one will return a higher probability when applying the Multivariate Normal Distributions.

Having the highest probability we then apply all of these methods to the other learned trajectories and compare the probabilities to return a classification of the partial movement.

The DTW can also calculate the phase of the movement but in movements which are cyclic this could lead to errors. For example, if we have a movement that forms a trajectory, like a cosine function, then the trajectory will repeat itself. If we only see a portion of the trajectory it will match with any of the cycles of the cosine function, but since this is applied to a multi dimensional scenario, if this cosine function only refers to one of multiple DOF’s it could have a mismatch with the phase returned by the DTW respective to another DOF where the trajectory is non-cyclic. In order to avoid this we use the rolling window and find the best match having all of the DOF’s in consideration at the same time.
System Results and Discussion

Contents

4.1 How the trajectories are captured ... 35
4.2 Synthetic trajectory Tests ... 38
4.3 Offline Tests .. 39
4.4 Comparison with an euclidean distance predictor 40
4.5 Performance differences caused by sample complexity 41
4.6 Online Tests ... 42
To test the system with real trajectory data, an OptiTrack (http://www.optitrack.com/) system was used. The setup of the system included 6 cameras mounted on the ceiling in a closed office. The motion data was captured using a ROS (Robot Operating System) node.

The OptiTrack system is a system capable of recording 3D motion data. This is done by using multiple synchronized cameras installed around the target, or targets, in which, each camera captures 2D images and then using triangulation and the images captured, a 3D position the target(s) is computed.

One of the main perks of using the OptiTrack for this work is its capability of capturing all types of human body and rigid body movements, also including subtle and fast motions. Not only can it track rigid body movements, it can also track props along with skeleton data, which is required due to the tools and items that will be present in the experiment. The OptiTrack works with its own software, the Motive, as well as a camera SDK. This system also supports the use of markers which can be useful to mark specific objects and landmarks in the environment. For the duration of the tests performed a marker attached to the wrist of the human was used (figure 4.1.

![Marker setup. This image displays how the marker was placed on the wrist of the human.](image)

4.1 How the trajectories are captured

For the offline and online tests, with the exception of the test with synthetic trajectories, all of the trajectories used are recorded from real human movements.

The setup used to record these trajectories consisted in a work area where 6 Optitrack cameras (figure 4.2) formed the capture area (figure 4.3) for the movements. The movements were done on top of a table which had 5 points marked, all of which are visible in figure 4.4. The five points were S, Box,
Figure 4.2: Camera setup. In the image are presented the 6 cameras (in red) used for the capture of the human movements. All 6 cameras are fixed to the wall and ceiling and connected to an Optitrack hub via USB.

LT, LB and BC. All of the recorded trajectories had the common starting point, point S. We performed 4 types of trajectories in which the user would move its hand from point S to one of the 4 other points, S to LT, S to Box, S to LB and S to BC. For each training set the system received the same amount of trajectories for each type of trajectory in order to avoid differences in sample complexity between the types of trajectories. We recorded a total of 1116 trajectories performed by 4 different persons. The trajectories used for the training of the system were scaled in order to have the same time length. All other recorded trajectories that were used for training were not scaled.

We recorded 2 training sets and one test set. The 2 training sets are, one with 800 trajectories, having 200 trajectories of each type and the other one contains 200 trajectories, 50 of each type. These two different training sets differ mainly in sample complexity and were used to test the performance differences caused by sample complexity. The learning set consisted in 116 trajectories, 27 for S to Box, 30 for S to BC, 29 for S to LT and 30 for S to LB. The number of test trajectories for each type of trajectory is not the same because after the running of the tests and results it was found that 3 S to Box and 1 S to LT trajectories where recorded incorrectly and therefore discarded from the test set.

For the Online Tests the trajectories were captured using the same setup but in real time. The OptiTrack system captured a point every 0.01 seconds and sends it to the predictor which appends it to the observed trajectory vector. It then performs a prediction given what it has seen until the moment. The system resets its observed trajectory vector each time it does not record any significant movement (a difference of 5 cm) after 0.3 seconds. During the Online Tests the system cannot capture any information of the percentage of the complete trajectory it has observed. Due to this limitation the online tests does not feature the results of the predictions at a given trajectory percentage as is done in the offline tests.
Figure 4.3: Capture area example. In this image we can see an example of the capture area created with 3 cameras. The capture area consists in the overlaying areas the of the cameras observation areas.

Figure 4.4: Test setup. In the image we can see the 4 targets used for the movements, LT, LB, Box and BC. All the movements start at point S. Labeled with 1 is the Optitrack marker used. It is attached to a wristband that will be placed on the user’s wrist.
4.2 Synthetic trajectory Tests

To test the performance of the system in a scenario with less noise than the real scenario tests with synthetic trajectories were performed.

The trajectories that were used to test the system are presented in the appendix A. Those trajectories received perturbations in order to generate different trajectories for the training and also for the test trajectories. This was done by applying random noise to the training trajectories. For the test trajectories the random noise could be 3 times more than on the training set, to generate the possibility of generating trajectories that were significantly different from the training set.

<table>
<thead>
<tr>
<th>Percentage of trajectory</th>
<th>Accuracy for each type of trajectory</th>
<th>Trajectory 1</th>
<th>Trajectory 2</th>
<th>Trajectory 3</th>
<th>Trajectory 4</th>
<th>Trajectory 5</th>
<th>Total accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td></td>
<td>40/40</td>
<td>40/40</td>
<td>40/40</td>
<td>40/40</td>
<td>40/40</td>
<td>100%</td>
</tr>
<tr>
<td>90%</td>
<td></td>
<td>40/40</td>
<td>40/40</td>
<td>40/40</td>
<td>40/40</td>
<td>40/40</td>
<td>100%</td>
</tr>
<tr>
<td>80%</td>
<td></td>
<td>31/40</td>
<td>35/40</td>
<td>40/40</td>
<td>40/40</td>
<td>40/40</td>
<td>93%</td>
</tr>
<tr>
<td>70%</td>
<td></td>
<td>33/40</td>
<td>35/40</td>
<td>40/40</td>
<td>40/40</td>
<td>40/40</td>
<td>94%</td>
</tr>
<tr>
<td>60%</td>
<td></td>
<td>31/40</td>
<td>37/40</td>
<td>40/40</td>
<td>30/40</td>
<td>40/40</td>
<td>94%</td>
</tr>
<tr>
<td>50%</td>
<td></td>
<td>28/40</td>
<td>40/40</td>
<td>40/40</td>
<td>40/40</td>
<td>34/40</td>
<td>91%</td>
</tr>
<tr>
<td>40%</td>
<td></td>
<td>26/40</td>
<td>40/40</td>
<td>40/40</td>
<td>40/40</td>
<td>23/40</td>
<td>84.5%</td>
</tr>
<tr>
<td>30%</td>
<td></td>
<td>28/40</td>
<td>40/40</td>
<td>40/40</td>
<td>40/40</td>
<td>40/40</td>
<td>94%</td>
</tr>
</tbody>
</table>

Table 4.1: Synthetic trajectory test results. In the column Total accuracy are presented the results for the percentage of correct predictions given all of the test trajectories seen for a certain percentage of trajectory observed (column percentage of trajectory).

In table 4.1 the results of the test are shown.

For the test the system was trained with a total of 1200 trajectories, 200 for each type of trajectory. The test was performed using 200 trajectories, 40 of each type. To test the system's performance with partial trajectories the 200 trajectories were cut in order to feed the system partial versions of the trajectories.

The results show that for a case in which the noise of the learning and test set is very low the system is able to, despite the percentage of trajectory observed, perform predictions with an average accuracy of 93.8%. This accuracy corresponds to the percentage of correct predictions in a given test set and a given percentage of trajectory. Having these high results in terms of accuracy rate with this scenario led us to conclude that the system is performing correctly the predictions, which allow us to perform the tests with real trajectories with confidence.

We can also conclude that the capability of performing a correct prediction is not the same for every type of trajectory. We can see in table 4.1 that Trajectory 1 is the one with the lowest correct number of predictions for the trajectories of that type and that for example, for Trajectory 3 the system always predicts correctly the trajectory. This is due to the DTW being able to rescale an observed trajectory to a scale in which it returns a high probability of matching with the MVND. Since the trajectories of
type Trajectory 3 are the most distinct from the other 4 trajectories (even though using the rescale of
the DTW), since the noise applied to the trajectories is very low the trajectories of type Trajectory 3
remain always very similar to the learned trajectories and therefore the MVND always returns a higher
probability for this Trajectory, in relation to the other 4 types which explains the high accuracy rate for
Trajectory 3.

4.3 Offline Tests

In this section the results of the prediction system in an offline state, where it learned with real human
trajectories and was also tested with real human trajectories will be discussed.

The offline test had the system learning 4 different possible trajectories, as was discussed in section
4.1, being so that 2 pairs of the trajectories had similar initial trajectories in order to create a challenge
for the system.

The training set and test set are disjoint. The training set consists of 800 trajectories, 200 for each
learned trajectory. The test set consists of 116 complete trajectories with 30 for each learned trajectory.
To test the accuracy of the algorithm while receiving partial trajectories what was done was a cut to the
test trajectories, related to the percentage of the trajectory that would be tested. This way using only the
116 trajectories it was possible to test the system’s accuracy while receiving 100%, 90%, 80%, 70%,
60%, 50%, 40% and 30% of a trajectory.

In table 4.2 the results are shown:

<table>
<thead>
<tr>
<th>Percentage of trajectory</th>
<th>Accuracy for each type of trajectory</th>
<th>Total accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S to Box</td>
<td>S to BC</td>
</tr>
<tr>
<td>100%</td>
<td>27/27</td>
<td>30/30</td>
</tr>
<tr>
<td>90%</td>
<td>26/27</td>
<td>27/30</td>
</tr>
<tr>
<td>80%</td>
<td>25/27</td>
<td>26/30</td>
</tr>
<tr>
<td>70%</td>
<td>26/27</td>
<td>20/30</td>
</tr>
<tr>
<td>60%</td>
<td>25/27</td>
<td>5/30</td>
</tr>
<tr>
<td>50%</td>
<td>8/27</td>
<td>0/30</td>
</tr>
<tr>
<td>40%</td>
<td>0/27</td>
<td>0/30</td>
</tr>
<tr>
<td>30%</td>
<td>0/27</td>
<td>0/30</td>
</tr>
</tbody>
</table>

Table 4.2: Offline test results. In the column Total accuracy are presented the results for the percentage of correct
predictions given all of the test trajectories seen for a certain percentage of trajectory observed (column
percentage of trajectory).

Analyzing the results we can see that the system is able to perform predictions with a fairly high
accuracy rate of 71.6% when the percentage of the observed trajectory is of 60%. As was discussed
in our hypothesis in section 1.3, we proposed that using Probabilistic Motor Primitives we could perform
predictions with only 30%-70% of the trajectory complete. Looking at the overall accuracy of the predic-
tions performed by the system in the interval of 60% to 70% of the trajectory complete we can consider
that having 71.6% and 89.7% falls in the expectation behind the hypothesis proposed.

Looking at the performance of the Dynamic Time Warping algorithm, it allowed for the algorithm to perform predictions on incomplete movements as the system was able to receive incomplete trajectories and still classify those trajectories.

We can also see that the capability of performing a correct prediction is not the same for every type of trajectory, as what was seen and discussed in section 4.2. In this offline test, the system at 60% of the observed trajectory only classifies correctly 5 out of 30 tested movements for the S to BC trajectory while doing only 8 wrong classifications in the rest of the other 86 tests for the other types of trajectories. For S to BC the initial part of the learned movements are similar to S to Box (see figure B.1 in appendix B), which given only a partial observation of the movements can lead to mistakes in the classification as the MVND for S to Box and S to BC will both return a high probability and the distance outputted by the DTW will not be very different between both types of movements.

When the percentage of the trajectory falls below 60% the system becomes somewhat inaccurate, having around 30% accuracy when the trajectory is \leq40% and only 44.8% of accuracy at 50% of the trajectory. Although this shows that the algorithm is unable to predict with confidence when the observed trajectory is at \leq50%, this is understandable as the pairs of trajectories S to Box - S to BC and S to LT - S to LB share similar initial trajectories which as was explained above, will return similar probabilities from the MVND and similar distances from the DTW.

4.4 Comparison with an euclidean distance predictor

In order to evaluate the system against a heuristic based predictor tests with an euclidean distance predictor were performed. This predictor, given the last position seen predicts the possible target given the distance to it.

The test was done using the same test data set used in the offline tests.

<table>
<thead>
<tr>
<th>Percentage of trajectory</th>
<th>Accuracy for each type of trajectory</th>
<th>Total accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S to Box</td>
<td>S to BC</td>
</tr>
<tr>
<td>100%</td>
<td>27/27</td>
<td>30/30</td>
</tr>
<tr>
<td>90%</td>
<td>27/27</td>
<td>27/30</td>
</tr>
<tr>
<td>80%</td>
<td>20/27</td>
<td>26/30</td>
</tr>
<tr>
<td>70%</td>
<td>15/27</td>
<td>22/30</td>
</tr>
<tr>
<td>60%</td>
<td>15/27</td>
<td>15/30</td>
</tr>
</tbody>
</table>

Table 4.3: Offline test results of the euclidean distance predictor

We can see from table 4.3 that the euclidean distance predictor is worst than the predictor using the DTW and the ProMP's. This can be explained by the fact that the euclidean distance predictor only takes into account the current position of the hand and not the trajectory it took nor the form of the trajectory.
Since some of the trajectories of the test data are not direct (they do not form a trajectory that follows the shortest possible path from the starting point to the target point) and instead form a curvy trajectory, using only the euclidean distance to the learned points will not give a correct answer with a relatively confident margin until the trajectory is reaching its end (80% or more of the trajectory).

![Figure 4.5](image.png)

Figure 4.5: Graph comparing the accuracy performance of the euclidean distance predictor (in red) and the accuracy performance of the proposed system (in blue).

4.5 Performance differences caused by sample complexity

To evaluate the sample complexity of the system the first tests were performed with a reduced amount of training trajectories. In the version of the final tests there were 800 total trajectories (200 for each type of trajectory). In this reduced version the system learned from only 200 trajectories (50 for each type of trajectory) which results in 75% less trajectories than the final version.

In table 4.4 are the results of the test and in figure 4.6 the evolution of the accuracy of the system with the two different sample complexities is plotted.

Looking at the results obtained in table 4.2 and comparing them with the results in table 4.4 it can concluded that the version with 800 learning trajectories outperforms the version with 200 learning trajectories overall. It is also possible to conclude that bellow 50% of the observed trajectory the sample complexity becomes less important as both versions have similar accuracy rates. Nevertheless, there exists a big gap between the two versions in the interval of 90% to 60% of the observed trajectory, which also coincides with where the system is most accurate.
Given these results, the conclusion is that the system is sensible to changes in terms of the size of the learning data set and therefore sample complexity is important for its performance.

4.6 Online Tests

In this section the results obtained in an online state will be presented and discussed. The online tests were performed using movements captured in real time by the Optitrack system with the marker visible in figure 4.4. These movements were all performed from the same starting point, point S. 4 different types of movements were performed, S to Box, S to BC, S to LT and S to LB. All of the positions are visible and marked in figure 4.4.
In these tests the system has no information about the percentage of the full trajectory captured in any moment, as well as any dimension of the movement vectors captured by the Optitrack system is not controlled or set. Therefore the system has to rely on its ability to scale the captured movements to the same size as the ones in the training data set and also it has to detect the phase of the movements automatically.

The system is able to classify any of the 4 movement types plus a "None" label that is returned whenever the system does not have enough certainty of its prediction to perform a prediction.

To perform the test 200 trajectories were performed, 50 of each type. The system is able to perform one or more predictions during a movement. Due to the prediction being performed asynchronously (to avoid not capturing any position with the Optitrack) the system takes a variable time to perform a single prediction. So, for the same type of movement and the same duration of time the system may perform a different number of predictions along the movement until its conclusion.

We define a prediction for this test as a classification of the type of trajectory seen until any given time or percentage of observed trajectory.

The confusion matrix for this test is presented in table 4.5. In this confusion matrix are presented all of the predictions performed along each of the 200 trajectories performed. These predictions were not all performed with the same percentage of observed trajectory. All of the predictions were made before the conclusion of the movement and after the reading of the first 3 points of the trajectory by the Optitrack. It is possible to confirm that the number of true positives is significantly larger than the false positives in every type of movement.

<table>
<thead>
<tr>
<th></th>
<th>Predicted S to Box</th>
<th>Predicted S to BC</th>
<th>Predicted S to LT</th>
<th>Predicted S to LB</th>
<th>Predicted None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual S to Box</td>
<td>126</td>
<td>9</td>
<td>11</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>Actual S to BC</td>
<td>15</td>
<td>143</td>
<td>11</td>
<td>19</td>
<td>6</td>
</tr>
<tr>
<td>Actual S to LT</td>
<td>24</td>
<td>0</td>
<td>107</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Actual S to LB</td>
<td>5</td>
<td>0</td>
<td>32</td>
<td>87</td>
<td>9</td>
</tr>
</tbody>
</table>

Table 4.5: Online test confusion matrix

The system was unable to predict a type of movement a total of 28 times in 637 predictions. All of these predictions happened in the beginning of the movement, where due to a lack of points captured, or a not yet defined trajectory the system was unable to classify the trajectory observed with enough certainty. This certainty was defined empirically using a threshold variable for which the system had to have a certain probability of a trajectory being of a given type for it to give a prediction. This variable was set to 0.8 in which the MVND had to return a probability of more than 80% for the value to be accepted.

In S to LT and S to LB movement types, respectively, there is a more common misclassified movement. In S to LT the majority of misclassified movements are of type S to Box, and in S to LB the majority of misclassified movements are of type S to LT. This occurs because the initial predictions are...
made without enough data points to perform a correct prediction with high confidence, also, the begin-
ing of the movement is common or similar. For example, the S to LB movement shares a similar initial
trajectory with S to LT which generates both a high probability of the movement being of the type S to
LT or S to LB. This initial prediction inaccuracy is coherent with the results obtained in the Offline tests
and is visible in the Online test results in table 4.6 as well.

<table>
<thead>
<tr>
<th>Type of trajectory</th>
<th>Percentage of correct first predictions</th>
<th>Percentage of correct last predictions</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>S to Box</td>
<td>48%</td>
<td>92%</td>
<td>74.1%</td>
</tr>
<tr>
<td>S to BC</td>
<td>26%</td>
<td>98%</td>
<td>73.7%</td>
</tr>
<tr>
<td>S to LT</td>
<td>68%</td>
<td>86%</td>
<td>76.4%</td>
</tr>
<tr>
<td>S to LB</td>
<td>36%</td>
<td>84%</td>
<td>65.4%</td>
</tr>
<tr>
<td>All</td>
<td>44.5%</td>
<td>90%</td>
<td>72.4%</td>
</tr>
</tbody>
</table>

Table 4.6: Online test accuracy results

Overall the system is only able to achieve an average of 44.5% of correct first predictions, which is
similar to the 43.3% accuracy of the offline tests when the trajectory is at 50% completion.

On the other hand, the system has a high accuracy rate for its last predictions, having an overall
average of 90% accuracy which shows that the system has a good rate of correct classifications, being
able to correctly classify 9 out of 10 movements before their completion.

To evaluate how the system performed in terms of predicting each of one of the learned trajectory
types individually, the precision of the classifier was calculated. This precision can be calculated as the,
\[
\frac{\text{#TruePositives} + \text{#FalsePositives}}{\text{#Positives}},
\]
for each type of trajectory learned. In terms of the precision of the system the results were as follows:

- Precision for S to Box = 74%
- Precision for S to BC = 94.1%
- Precision for S to LT = 66.5%
- Precision for S to LB = 69%

The precision for S to LT and S to LB are the lowest and fall below 70%. This can be explained due
to the similarity between both movements, which can lead to uncertainty in the early predictions of both
movements. In the case of the S to BC movements, the precision is of 94.1% which is by far the highest
prediction. This value is very high because although it shares some points of the average trajectory with
S to Box it's trajectories are more direct and therefore easier for the system to predict. This results show
the same limitation shown in the offline tests where we saw that the system had problems predicting
partial trajectories that are very similar to more than one learned trajectory.
Conclusion

Contents

5.1 Conclusions ... 47
5.2 System Limitations and Future Work 47
5.1 Conclusions

This thesis addressed the problem of predicting the actions of a human, having its hypothesis presented in section 1.3. To solve this problem a solution using Probabilistic Motor Primitives was proposed, that could later be applied to a robotic system. This solution was divided in two main sections. First the learning of the human movements and second the classification of a new movement.

To classify a new movement it was necessary to deal with movements at different speeds and phases, as well as partial movements. This was solved by using the Dynamic Time Warping algorithm for the speed and a rolling window for the phase. This proved capable of solving the problem both for real and synthetic data.

To perform the classification, Multivariate Normal Distributions were used. These were able to give a probability of a given trajectory belonging to a given distribution. Using this probability it was possible to infer on which class the trajectory belonged.

To benchmark the system’s capability to perform predictions, 4 types of tests were done: Synthetic trajectory tests, Offline Tests, Online Tests and a comparison with an euclidean distance predictor. It was also possible to conclude that the system’s performance is sensible to different sample complexities in which, the higher the complexity the better. Last, it was concluded that the system outperforms a heuristic predictors based on the euclidean distance to a target.

5.2 System Limitations and Future Work

The future work for this prediction system starts by creating a scenario with a robot using this system and a human to see if there are significant improvements to the efficiency of a task with this addition. Also with this scenario, measuring the humans trust and confidence in the robot, knowing it has the ability to make predictions could lead to further conclusions. Furthermore it would be interesting to test the system in a scenario where the robot doesn’t work as an assistant to the human but instead as its partner in an assembly task having both the same tasks.

In terms of limitations of the system its major limitation is that early predictions have a low accuracy rate which makes it difficult to decide when the robot should accept the prediction.
Bibliography

Graphs of the synthetic trajectories
Figure A.1: Learned DOF 1 for Trajectory 1

Figure A.2: Learned DOF 2 for Trajectory 1
Figure A.3: Learned DOF 3 for Trajectory 1

Figure A.4: Learned DOF 1 for Trajectory 2
Figure A.5: Learned DOF 2 for Trajectory 2

Figure A.6: Learned DOF 3 for Trajectory 2
Figure A.7: Learned DOF 1 for Trajectory 3

Figure A.8: Learned DOF 2 for Trajectory 3
Figure A.9: Learned DOF 3 for Trajectory 3

Figure A.10: Learned DOF 1 for Trajectory 4
Figure A.11: Learned DOF 2 for Trajectory 4

Figure A.12: Learned DOF 3 for Trajectory 4
Figure A.13: Learned DOF 1 for Trajectory 5

Figure A.14: Learned DOF 2 for Trajectory 5
Figure A.15: Learned DOF 3 for Trajectory 5
Graphs of the offline test trajectories
Figure B.1: In blue we have the learned trajectory S to BC, used in the tests. In green we have the learned trajectory S to Box used in the tests. In red we have an example of one of the test trajectories of type S to BC.