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Hydrothermal vents are underwater volcanic singularities that extrude superheated jets of enriched water from the 
ocean crust. They comprise some of the most extreme environments found on Earth. Prokaryotes that thrive in such 
environments are particularly interesting for bioprospecting since their enzymes should function under the similarly 
harsh conditions of industrial processes. Under the SEAHMA project (SEAfloor and subseafloor Hydrothermal 
Modeling in the Azores sea), 36 samples were taken from vents near Azores, from which 296 isolates were obtained 
and characterized. During the SEAVENTzymes project, aiming to identify industrial relevant biocatalysts, this 
collection of isolates was screened for the production of polysaccharide-degrading enzymes, lipases/esterases and 
peptidases. Phenotypic tests were useful to pinpoint promising aerobic mesophilic isolates. However, sequence-
based screening, by degenerate-PCR, of the anaerobic thermophilic subset, fell short from expected, with virtually no 
genes identified. Here we performed whole-genome nanopore sequencing of a Bacillus sp. isolate to assess the 
potential of this methodology as an alternate approach for bioprospecting enzymes. From the sequencing data we 
were able to identify putative genes encoding peptidases, lipases, esterases and starch-, cellulose-, xylan-, mannan-, 
pectin- and chitin-degrading enzymes, in accordance with previous phenotypic assays. This was accomplished with 
low depth of sequencing - ca. 3.7-fold -, by annotating nanopore long reads (mean of 3.8 kilobases) directly, with no 
need for prior error correction or assembly. We propose that this approach can develop into a full pipeline for 
biotechnological potential assessment of isolates or samples, which could be implemented to revisit the SEAHMA 
collection. 

 
INTRODUCTION 
Deep-sea hydrothermal vents are underwater 
singularities driven by volcanic activity near the 
Earth’s tectonic plate limits. As cold seawater 
percolates trough small crevices into the hot crust, 
where pressures can reach several hundred 
atmospheres, it heats up to 270-400ºC, and reacts 
with the surrounding rocks, losing oxygen, becoming 
strongly acidic (pH of 2-3) and getting enriched in 
reduced compounds, till it finally extrudes back from 
the crust as a superheated jet of water1. Here, we 
find the most extreme conditions on Earth, with sharp 
chemical and physical gradients that regardless, are 
able to support very rich communities of macro- and 
microorganisms, surpassing in biomass those of 
coastal or tropical systems2. Prokaryotes, in 
particular, are widely distributed and diverse in such 
environments. It is the interest in understanding 
these organisms and their diverse and extreme-
resisting metabolic mechanisms that has been 
driving deep-sea exploration, in a major way due to 
the biotechnological potential that is anticipated3. 
Industrial processes entail extreme conditions that 
are somewhat similar to those found in deep-sea 
hydrothermal vents4. Prokaryotes thriving in vent 

environments are expected to hold naturally tailored 
enzymes with extreme-resisting characteristics, 
making them the ultimate frontier for industrial 
enzyme bioprospection4. Particularly, there is a large 
justified investment in the bioprospection of extreme-
resisting versions of biomass-degrading enzymes, 
since these enzymes dominate the global enzyme 
market, having a central role in titan industries such 
as the food, feed, paper, textile chemical and 
pharmaceutical industries4,5.  
Portugal is a privileged place for industrial enzyme 
bioprospecting since it detains exclusive economic 
rights over a large fraction of the North Atlantic 
Ocean, enclosing multiple hydrothermal vent fields. 
Several projects have explored these vent fields, one 
such example is the SEAHMA project (SEAfloor and 
subseafloor Hydrothermal Modeling in the Azores 
sea). During this project, five hydrothermal fields 
near Azores, namely Lucky Strike, Menez Gwen, 
Menez Hom, Mount Saldanha and Rainbow, were 
visited by the research cruise SEAHMA-1. From a 
collection of 36 samples, 296 prokaryotes were 
obtained and further characterized by multiple 
fingerprinting approaches. The SEAVENTzymes 
project arose as the natural progression of the 
SEAHMA project. Its purpose was to search for 
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biotechnologically relevant enzymes in this privileged 
collection of hydrothermal vent prokaryotes. 
Specifically, it aimed for the bioprospection of novel 
hydrolytic enzymes with industrial applications (e.g. 
amylases, cellulases, xylanases, mannanases, 
pectinases, chitinases, proteases and lipases). 
Aerobic isolates were subjected to phenotypic 
assays to evaluate their potential. Conversely, 
thermophilic anaerobes, which require certain 
conditions that render the phenotypic screening 
unfeasible, were subjected to molecular-based 
screening by the use of degenerate PCR primers 
targeting the genes of interest. However, there were 
virtually no genes of interest amplified, even with 
multiple stages of PCR optimization. Thus, even 
though the phenotypic screening of the mesophilic 
aerobes yielded several positive results, overall, the 
project had limited success in the exploitation of the 
SEAVENTbugs collection. 
After 13 years from the first instance of the 
SEAVENTzymes project, the interest in extreme-
resisting enzymes still persists, but now, several 
technological advances have emerged. Fortunately, 
with the conservation and maintenance of the 
SEAVENTbugs collection, we are now able to revisit 
the project with a fresh approach.  
Sequencing methods of bioprospecting offer great 
advantages over the screening approaches taken 
during the first SEAVENTzymes project. For 
instance, whole-genome sequencing acts as a 
window to the full genomic potential of an isolate or a 
sample, deeming the screening independent of 
multiple focused tests or enzyme expression 
conditions. Moreover, it can be applied independently 
of the growth requirements of the organism, which is 
a concern in the screening of vent microorganisms 
that require physico-chemical extremes incompatible 
with streamlined phenotypic assays.  
Nanopore sequencing, in particular, brings an 
additional set of advantages to the sequencing field. 
In nanopore sequencing6, biological engineered 
nanopores are embedded in an electrically resistant 
polymer membrane (Figure 1 A). When a voltage is 
applied across the membrane, ions in solution pass 
through the nanopores and create a current. Free-
floating DNA molecules, driven by their charge, tend 
to cross the pores causing a disruption of this 
current. The changes in current are detected by 
electrodes and are recorded as squiggles (Figure 1 
B), which in turn can be decoded into sequences. 
Being a third-generation technology, it brings two 
major improvements for whole-genome sequencing 
over the second-generation: the ability to sequence 
single molecules, avoiding the errors and biases 
introduced during PCR amplification, and, most 
importantly, the massive increase of read length. 
Contrary to other technologies, the read lengths 
offered by nanopore sequencing have no theoretical 
instrument-imposed limitation. Nevertheless, the 
most distinctive characteristic of nanopore 

sequencing, and specifically the MinION device, is its 
portability and small footprint.  The MinION is no 
larger than a smartphone (Figure 1 C) and runs off a 
personal computer. Furthermore, it enables real-time 
analysis, meaning that there is no need to wait till the 
end of an experiment to get access to sequence 
information. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 | Schematic representation of nanopore-based sequencing 
of 2D reads (A) and squiggle lines resulting from a DNA molecule 
passing the nanopore (B); MinION sequencer picture – property of 
Oxford Nanopore Technologies (C). For 2D nanopore sequencing a 
hairpin adapter is added during library preparation, which links both 
strands of a DNA molecule and allows for their contiguous 
translocation and sequencing, ultimately enabling the generation of a 
consensus sequence and increasing read quality. Besides the hairpin 
adapter, a leader adapter is also ligated to the DNA molecule with an 
attached motor protein, that controls the speed of translocation, and a 
tether that allows for the concentration of DNA in the membranes near 
the pores. As DNA molecules pass through the nanopores, disruptions 
of the baseline current are recorded by electrodes as squiggles, which 
can be decoded into sequences. 

 
For the R7/R7.3 version of the nanopore technology, 
used in this work, there is a high error rate 
associated with the process of attributing bases to 
current squiggles, reaching up to 30%, and being 
mostly dominated by indel errors. To decrease the 
error rates, nanopore sequencing uses a hairpined 
sequence library that allows for the contiguous 
translocation of both forward and reverse strands of 
a single DNA molecule (Figure 1 A).  Sequencing 
information from both strands can eventually be 
conjugated to generate a consensus sequence, 
which will have a higher quality score. The forward 
strand generates what is called a ‘1D Template’ read, 
whilst the reverse strand generates a ‘1D 
Complement’ read. The consensus sequence 
obtained from the joint analysis of paired template 
and complement reads is called a ‘2D’ read. 
Thus, nanopore sequencing produces single-
molecule long reads, from real-time portable 
sequencing. From the nature of this technology, we 
could anticipate some competitive advantages for the 
bioprospecting of enzymes from hydrothermal vent 
microorganisms.  
We propose that nanopore sequencing can be 
implemented as an alternate more advantageous 
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method for the bioprospection of industrial relevant 
enzymes from hydrothermal vent prokaryotes. Thus, 
this work aims to proof-of-concept the use of this 
methodology as a screening method, by first 
implementing it for the search of biomass-degrading 
enzymes on a single isolate of the collection, already 
characterized with phenotypic assays. For that 
purpose we will complete the following tasks: 
(I) Reanalyze the results from the SEAVENTzymes 
project to choose a promising isolate. 
(II) Use nanopore sequencing to perform whole-
genome sequencing of the chosen isolate. 
(III) Evaluate sequencing data quality and read 
processing needs. 
(IV) Mine the sequencing data for biodegrading-
enzymes with industrial potential and integrate the 
results with previous phenotypic results. 

 
METHODS 
Reanalysis of the screening results from the 
SEAVENTzymes project 
All results from both growth and colorimetric 
phenotypic assays performed during the 
SEAVENTzymes project were integrated and 
subjected to a Principal Component Analysis (PCA) 
in NTSYSpc v2.21q (Exeter Software).  
 
Isolate recovery, identification and selection  
Isolates of the SEAVENTbugs collection were 
recovered by streaking 5 µl of the cryopreserved 
cultures onto plates of Marine Broth (Difco) Agar, 
incubating them at 22ºC for 3 to 5 days until growth 
was visible. Genomic DNA was extracted from the 
recovered isolates using a modified version of the 
Guanidium Thiocyanate Method7. The modifications 
concerned the initial stages of the protocol. Cells 
were resuspended in 250 µl of lysis buffer (50 mM 
Tris; 250 mM NaCl; 50 mM EDTA; 0.3% (w/v) SDS; 
pH 8.0) and 100 µl of microspheres. After a 
homogenization step in a vortex for 2 min, the cells 
were incubated at 65ºC for 30 min, followed by 
another 2 min of homogenization. 250 µl of GES (5 M 
Guanidium thiocyanate; 10 mM EDTA; 0.5% (w/v) 
Sarkosyl; pH 8.0) was added and at this stage the 
remaining steps of the original protocol were 
followed7.  
16S rRNA gene was partially amplified using the 
universal primers PA 5’AGAGTTTGATCCTGGCTCA 
G3’ and 907r 5’CCGTCAATTCMTTTRAGTTT3’. 
Reactions were carried out in 50 µl, containing 1X 
PCR buffer, 2 mM of MgCl, 1 µM of each primer, 50 
µM of each of the four dNTPs, 1 U of Taq 
polymerase (Invitrogen) and 1 µl of template DNA 
(50-100 ng). PCRs were run in a Biometra T 
Gradient thermal cycler, with the following PCR 
conditions: 3 min of initial denaturation at 94ºC, 
followed by 35 cycles of denaturation at 94ºC for 1 
min, annealing at 55ºC for 1 min and extension at 
72ºC for 1 min, with a final extension at 72ºC for 3 
min. The amplification products were purified using 

the JetQuick PCR Product Purification Spin Kit 
(Genomed) and sequenced by Biopremier (Lisbon, 
Portugal). A phylogenetic reconstruction with both 
the isolates’ partial 16S rRNA gene sequences, and 
their top BLAST hits was generated by MEGA 
software v7.0.16 using the neighbor-joining algorithm 
accompanied by a bootstrap analysis of 1000 fold. 

 
Whole-genome nanopore sequencing 
The MG SD 082 isolate was streaked onto a plate of 
Marine Broth (Difco) Agar and incubated for 72 hours 
at 22ºC. Cells were harvested and DNA extraction 
was performed with the Promega Wizard Genomic 
DNA Purification Kit. 2D-sequencing library 
preparation was performed with the Oxford Nanopore 
Technologies Genomic Sequencing Kit SQK-MAP-
006, following the manufacturer’s instructions, and 
employing the suggested fragmentation step with a 
Covaris g-tube. Two different DNA libraries were 
prepared from two independent cultures of the same 
isolate. Library 1 was performed exactly as the 
manufacturer’s instructions. Library 2 was performed 
in a similar manner, with the exception that the 
cleaning step after the Covaris g-tube fragmentation 
was done with 0.6X by volume of magnetic 
Agencourt AMPure XP beads (Beckman Coulter) 
instead of 1X. For each of the two sequencing runs 
(Run 1 and Run 2) a new R7.3 flow cell was used 
and mounted into the MinION Mk I device, connected 
to a PC with an installment of the control software 
MinKNOW v0.51.2.40. The flow cell was primed as 
per the manufacturer’s instructions. At this stage, the 
sequencing mix was immediately loaded into the flow 
cell and the ‘48 hours sequencing protocol’ script 
was run on MinKNOW. The flow cell was topped-up 
with freshly prepared sequencing mix every 12 
hours. 
 
Sequencing data analysis 
Basecalling of the sequencing data was performed in 
the Metrichor system EPI2ME v2.39.3.  
The sequencing data of both runs was pooled 
together and repartitioned into three separate 
datasets: all 2D reads, 2D Pass reads and all 1D 
reads. Sequences were extracted in fasta format 
from basecalled fast5 files using Poretools v0.3.0.  
RAST online server was used to determine the 
closest neighbor of the sequenced isolate by 
submitting only high quality reads - 2D Pass reads. 
The genome sequence of the closest neighbor, 
determined to be Bacillus velezensis strain FZB42 
[NC_009725.1] (former B. amyloliquefaciens subsp. 
plantarum FZB42T) was retrieved from the Genome 
database at NCBI as a fasta file and used as a 
reference for the purpose of comparing different 
subsets of the sequencing data. 
Each of the three datasets, that is, 1D, 2D and 2D 
Pass reads, was subjected to independent 
correction, assembly and polish. Canu was used to 
correct each of the original datasets as suggested by 
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Canu developers. The value inputted for the 
expected size of the genome to be assembled was 
the one corresponding to the genome of the closest 
neighbor, as determined by RAST, i.e. 3.9 Mb. The 
threshold for minimum read length accepted was set 
to 100 bases, whilst the threshold for minimal overlap 
between reads was set to 50 bases. Following 
correction, canu –trim and canu –assemble 
commands were run to complete the assembly 
pipeline. The assembled datasets resulting from 
Canu were further polished using Nanopolish v0.2.0, 
as described by the developers.  
At this stage, each original dataset (2D, 2D Pass and 
1D), generated a set of three derived datasets, 
namely correction, assembly and polish. Each of the 
12 datasets was subjected to a series of read and 
mapping quality assessments. Statistical analysis 
concerning the resulting metrics was performed in 
RStudio v1.0.143.  
Read and contig metrics of each dataset were 
obtained by QUAST.  
K(5)-mer composition of the chosen reference and 
each dataset was determined using the ‘kmer’ script 
from Poreminion v0.0.4. Based on the frequency 
tables of the k-mer counts, Kullback-Leibler 
divergence was calculated as a measure of entropy 
of one dataset with regard to the chosen reference, 
following the equation: 
 
  

 
 

where S represents the dataset in question, R 
represents the reference and f the relative frequency 
of the k-mer i in the total of 1024 possible k-mers of 
length 5. 
Mapping potential of the different datasets was 
assessed based on the mapping of the reads against 
the chosen reference, using BLAST+. For the 
purpose of counting mapped reads and evaluate 
mapping statistics, only the highest scored mapping 
for each independent read was considered.  
Finally, all datasets were subjected to RAST with 
standard parameters for determination of gene recall 
potential, by performing a sequence-based 
comparison with the reference in the SEED viewer. 
 
Annotation and enzyme identification 
All 2D reads were submitted to RAST online server 
for annotation, with standard parameters, taking 
advantage of the embedded RAST ORF finder. 
Pinpointing relevant industrial enzymes was done by 
manually curating the total set of annotations. The 
selected annotations were those concerning starch-, 
cellulose-, xylan-, mannan-, pectin-, chitin-degrading 
enzymes, lipases/esterases and proteases. The 
selected annotated sequences were further 
subjected to PSORTb v3.0.2.  
For Blast2GO annotation, the 2D reads were first 
genecalled using Prodigal. The predicted protein 
sequences were fed to Blast2GO and a BLASTP was 

performed against the nr database with standard 
parameters. After BLAST was completed, and still in 
the Blast2GO interface, the results were mapped to 
GO terms and annotated. InterProScan was run and 
the annotations were recalculated in an integrated 
manner. Additionally, PSORTb was run inside the 
Blast2GO interface. To conclude the Enzyme codes 
were mapped to the previously determined GO 
terms. The results were manually curated to pinpoint 
the final set of annotations of interest, just as with 
RAST results. The coding sequences of interest of 
both annotation systems were further subjected to a 
BLASTP against both the MEROPS database, as 
well as the CAZy database, to confirm the annotation 
of peptidases and carbohydrate-active enzymes, 
respectively. Annotation dereplication was performed 
by manual curation of repetitive annotations. BLAST 
was used to assist this process, by evaluating if the 
original reads yielding equally annotated ORFs were 
indeed mapping to the same coordinates and genes 
of the reference genome.  

 
RESULTS AND DISCUSSION 
Integrating all phenotypic screening results from 
the SEAVENTzymes project by PCA allows to 
pinpoint promising isolates 
To choose a single isolate to work towards our aim of 
testing whole-genome nanopore sequencing 
screening capabilities, we reviewed the screening 
results from the SEAVENTzymes project. During the 
SEAVENTzymes project, mesophilic aerobic isolates 
were subjected to phenotypic screening for the 
detection of biomass-degrading enzymes with 
industrial potential. Two different methods were 
applied: (I) growth assays with the target-enzyme 
substrate as the sole source of a nutrient, and (II) 
colorimetric assays based on commercial 
chromogenic substrates for the target-enzymes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 | Projection of the isolates on the principal component 
space constructed from the integrated analysis of all results from the 
phenotypic screening performed during the SEANVENTzymes project. 
Percent variance of the system associated with each principal 
component is shown. Only the set of isolates that are distinguishable 
from the main cluster have their code names indicated, which were 
shorten for clarity. Isolates with the same color circles were found to 
be clustered together by fingerprinting analysis (data not shown). 
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               Bacillus subtilis strain DSM10T [AJ276351.1]  

                Bacillus amyloliquefaciens strain BCRC 11601T [NR_116022.1] 

                  Bacillus amyloliquefaciens [NR_117946.1] 

                  Bacillus methylotrophicus strain CBMB205T [NR_116240.1] 

                MG SD 082 
                MG SD 036 
                    Bacillus subtilis [KX454033.1] 
                    Bacillus methylotrophicus [KT902018.1] 
                    Bacillus amyloliquefaciens subsp. plantarum strain FZB42T [NR_075005.1] 

         Vibrio cholerae strain ATCC 14035T [NR_115936.1] 

Vibrio tubiashii strain NBRC 15644T [NR_113791.1] 

Vibrio tubiashii [KU197861.1] 
  

 Vibrio tubiashii [KU197895.1] 

 Vibrio neptunius strain LMG 20536T [NR_025476.1] 

 Vibrio coralliilyticus strain ATCC BAA-450T [NR_117892.1] 

 MG CR 023 
 Vibrio neptunius [AY620978.1] 

 Vibrio coralliilyticus [NR_114052.1] 

 MG CR 020 
  
 Vibrio brasiliensis [KT247568.1]  
 Vibrio brasiliensis strain LMG 20546T [NR_117887.1] 

 Vibrio brasiliensis [KC178717.1] 

 MG SA 018 
 MG CR 021 

                    Rheinheimera baltica strain OSBAC1T [NR_025541.1] 

            Rheinheimera japonica [NR_136858.1] 

          Rheinheimera japonica strain KMM 9512T [LT600527.1] 

            Rheinheimera aquimaris [LT600527.1] 

              Rheinheimera aquimaris strain SW-353T [NR_044068.1] 

           RB RS 041 
           RB PS 050 
           RB BA 058 
           RB BA 060 
           RB BA 059 
           RB BA 053 Figure 3 | Phylogenetic reconstruction of recuperated isolates and their top BLAST hits by neighbor-

joining clustering of their 16S rRNA partial gene sequences. Percent bootstrap values, derived from 1000-
fold sampling, are indicated near the respective nodes. Isolates selected based on PCA analysis are 
indicated in bold. The type strain of the type species of each represented genus was also included, namely 
Bacillus subtilis strain DSM10T, Vibrio cholerae strain ATCC 14035T and Rheinheimera baltica strain OSBAC1T.  

Even though there was a lack of association between 
the two screening methods (data not shown), both of 
the methods had high reproducibility in discerning 
positive from negative isolates (over 94%). Thus, 
they are most likely portraying different aspects of 
the enzyme production capability of each isolate. For 
the purpose of selecting a promising isolate with 
overall biomass-degrading capabilities, we integrated 
all results by PCA. 
In Figure 2 we see that most isolates are grouped in 
a focalized cluster. Only a smaller set of isolates was 
distinguishable from the main group (shown in 
colored circles), which indicates that these isolates 
have unique responses to the phenotypic assays. 
When analyzing the phenotypic results for each of 
these isolates evidenced by PCA we found that they 
indeed represent some of the overall best producers 
of enzymes in the collection, in terms of total enzyme 
number and level of production/activity (data not 
shown). Since the purpose was to select a single 
isolate, for a more informed decision, these pre-
selected isolates based on PCA were further 
analyzed by partial 16S rRNA gene sequencing, in 
an attempt to taxonomically position them. We 
restricted our analysis to three groups of isolates that 
had shown to be coherently clustered together by 
PCA and by fingerprinting analysis (data not shown). 
 
Promising isolates belong to the Bacillus, 
Rheinheimera and Vibrio genera 
The 16S rRNA gene of isolates pre-selected based 
on PCA was partially sequenced and a phylogenetic 
reconstruction is shown in Figure 3.  
The isolates MG SD 082 and MG SD 036 belong to 
the Bacillus genus and seem to be indistinguishable 
by comparison of partial 16S rRNA gene sequence 
from the B. amyloliquefaciens subsp. plantarum 

FZB42T and two other Bacillus strains, one belonging 

to B. subtilis and the other to B. methylotrophicus. 
Discrimination of species within the Bacillus genus 
has been proven difficult by 16S rRNA gene 
sequence. Here, we were also unable to identify the 
isolates at the level of species. The close clustering 
of B. amyloliquefaciens subsp. plantarum strain 
FZB42T with B. methylotrophicus stains can be 
explained in the light of a recent publication in the 
International Journal of Systematic and Evolutionary 
Microbiology by Dunlap et al. (2016)10. Dunlap et al. 
revealed that the type strains of B. methylotrophicus 
KACC 13015T, B. velezensis NRRL B-41580T and 
B. amyloliquefaciens subsp. plantarum FZB42T, are 
likely later heterotypic synonyms of B. velezensis, 
and should be reclassified as such. The fact that MG 
SD 082 and MG SD 036 16S rRNA gene sequences 
are closely clustered with those of both 
B. amyloliquefaciens subsp. plantarum FZB42T and 
two strains of B. methylotrophicus, may indicate that 
the isolates are closely related to the restructured 
B. velezensis specie (post hoc confirmed using 
nanopore-sequencing whole-genome data). 
MG CR 021 and MG CR 23 fit into the Vibrio genus 
and belong to at least two different Vibrio species, 
since they were separated into two different clusters.  
Finally, operational cluster 3 (in blue) belongs to the 
Rheinheimera genus and all isolates seem to be very 
closely related between them and with the 
Rheinheimera aquimaris type strain. 
 
Bacillus sp. MG SD 082 demonstrated its ability 
to produce polysaccharide-, lipid- and peptide-
degrading enzymes by phenotypic assays 
Considering both the phenotypic results and the 16S 
rRNA gene based identification, the chosen isolate to 
be subject to nanopore sequencing was MG SD 082, 
a Bacillus sp. recovered from the seafloor sediments 

of the Menez Gwen 
hydrothermal vent field. As 
seen in Figure 4, the MG SD 
082 isolate seems to produce 
endo-hydrolytic enzymes 
acting on starch, cellulose, 
xylan, mannan and casein, 
as evidenced by the 
colorimetric assays. The 
production of starch-, xylan- 
and mannan-degrading 
enzymes was further 
confirmed by growth assays. 
The NAUCr(ES)/NAUCr(BM), 
where NAUCr stands for 
relative Net Area Under 
Curve, calculated for the 
growth in media with 
cellulose and casein was 5 
and 2, respectively. Although 
these values indicate that the 
growth in media with the 
enzyme substrate (ES) was 
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higher that the growth in base media (BM) alone, 
they still fall under the defined threshold for positive 
results based on replicate analysis. Growth assays 
further evidenced the production of chitin-degrading 
enzymes and lipases, which were however, not 
observable by colorimetric assays. 
  
 
 
 
 
 
 
Figure 4 | Growth and colorimetric screening results obtained during 
the SEAVENTzymes project for the selected isolate Bacillus sp. MG 
SD 082. Bar graph represents the results for growth assays in media 
with starch (STA), carboxymethylcellulose (CMC), xylan (XYL), mannan 
(MAN), pectin (PEC), chitin (CHI), casein (CAS) and a mixture of 
‘tween’ 20 and ‘tween’ 80 (TWS). Radial graph represents the results 
from the colorimetric screening where 0 represents a negative result, 1 
represents a weak positive result, 2 an evident positive result and 3 a 
strong positive result. Colorimetric assays were performed with AZCL-
amylose (AMY), AZCL-pullulan (PUL), AZCL-hydroxyethylcellulose 
(HEC), AZCL-xylan (XYL), AZCL-glucomannan (MAN), chitin-azure 
(CHI), AZCL-casein (CAS) and a mixture of ‘tween’ 20 and ‘tween’ 80 
plus calcium chloride (TWS).  

 
Thus, the MG SD 082 isolate was selected not only 
because it presented consistent promising results in 
both growth and colorimetric assays, but also 
because it belongs to a genus that is recurrent in 
seafloor sediments and well known for its 
biotechnological utility and production of industrial 
relevant enzymes - the object of study of this work.  
 
Independent sequencing runs differ in yields and 
read length distributions 
Two 2D-nanopore-sequencing runs were performed 
with the Bacillus sp. MG SD 082 DNA.  
Run 1 sequenced a total of 44.47 Mb of 1D data, 
whilst Run 2 sequenced only 31.01 Mb, equating to 
12.25 Mb and 9.34 Mb of 2D consensus data, 
respectively. The differences in total data yield 
between the two runs are likely related with the 
amount of available pores of the flow cells used, 
which is known to affect throughput. The number of 
working pores of the flow cells varies greatly as a 
result of the manufacture of the flow cell itself and the 
storage conditions to which it was subjected6. It is 
expected that a flow cell with higher number of 
working nanopores would produce more data. Run 1 
was performed with 27% functional nanopores (559), 
whilst Run 2 used as little as 16% (334), thus 
explaining the lower throughput of Run 2. But despite 
the differences between the two runs, the maximum 
data yield obtained was still bellow some of the yields 
reported using the same R7.3 chemistry8.  
Run 1 also demonstrated a 2D read length 
distribution much more skewed towards smaller read 
lengths that Run 2. Indeed, the mean 2D read length 
for Run 1 was 2.97 Kb, statistically different from the 
mean of Run 2, which was 6.60 Kb (Mann-Whitney 
test, p=2.91x10-81, α=0.05). This implies a high 
concentration of low molecular weight 2D molecules 

in the Run 1 sequencing library, which might have 
been a result of unwanted fragmentation of the DNA 
prior to library preparation. Run 2 however, had the 
expected average 2D read length of 6.60 Kb. This 
was accomplished with a minor tweak during library 
preparation, where larger fragments were size 
selected by using a limiting proportion of DNA 
sequestering beads before the adapter linkage.  
Nevertheless, both runs still sequenced 1D reads 
that reached more than 100 Kb in length, revealing 
the long-read capability of this technology.  
In terms of 2D mean quality scores, the two runs 
generated distributions with similar means (8.8 for 
Run 1 and 8.7 for Run 2). It seems quality depends 
more on the chemistry and basecalling of the 
technology and less on library or flow cell variability.  
Thus, overviewing the sequencing metrics revealed 
that the two runs generated considerably different 
data yields and read length distributions. 
 
2D reads represent a smaller but higher-quality 
fraction of the nanopore-sequencing data 
Since the overall yield of either run was lower than 
what expected, the data from both experiments was 
pooled together to create a richer dataset. Figure 5 
presents summary metrics for the pooled data. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 | Yield, read and quality metrics of the repartitioned 
datasets 1D, 2D and 2D Pass. Theoretical coverage was calculated as 
the ratio of data yield by the size of the genome of B. velezensis strain 
FZB42. Boxplots are represented with Spear whiskers that extend to 
minimum and maximum values. For 2D read length distributions the 
maximum values are omitted for clarity purposes. Qscore of a read 
refers to the per base quality score mean.  

 
2D nanopore sequencing generates three sets of 
data, one of which, 2D Pass, (2D reads with QScores 
≥9) is automatically filtered with the intention of 
constituting the usable higher-quality dataset. Yet, 
we have found in preliminary tests that using all 2D 
data, rather than just 2D Pass, can increase several 
fold the coverage of the dataset. Additionally, we 
have seen that a large portion of 1D reads does not 
get transformed into 2D consensus. That means that 
a great fraction of the information portrayed in 1D 
data gets lost when selecting to used only the 
consensus data. It would be of interest to take 
advantage of this untapped potential of 1D data, 
since it represents the largest share of the actual 
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Figure 6 | K(5)-mer relative frequencies comparison between each dataset and the chosen 
reference B. velezensis FZB42. Each point in the graphs represents one of the 1024 possible 
k(5)-mers traced as its relative frequency in the specific dataset (y-axis) versus its relative 
frequency in the reference genome (x-axis). Kullback-Leibler divergence (dKL) was used as a 
numeric measure of entropy of the dataset when compared to the reference. The two points that 
are consistently furthest away from the dispersions represent the k-mers ‘AAAAA’ and ‘TTTTT’, 
which are homopolymers known to be underrepresented in the nanopore-sequencing data. 

generated data by nanopore sequencing.  
We characterized each dataset to understand their 
usefulness for our ultimate goal of mining industrial 
enzymes. We anticipated that there were three main 
characteristics of the data that should impact their 
suitability for our intended purpose, namely coverage 
of the genome, read length and read quality.  
We have found that either dataset has mean read 
lengths (between 3.7-4.3 Kb) sufficient to span entire 
bacterial genes - assuming an average gene size of 
1 000-1 200 bases -, the highest theoretical coverage 
is achieved with 1D data (19.26-fold), and that 2D 
Pass data offers the highest quality data (10.1 on 
average). These datasets are most likely going to 
lead to very dissimilar responses to downstream 
enzyme mining systems.  
Here, we also evaluated the need for data 
processing for the purpose of mining enzymes, by 
comparing the original datasets with their corrected, 
assembled and polished versions. 
For the purpose of comparing datasets based on 
read/contig lengths, we used NG50 and LG50 
assembly quality metrics. The best datasets are 
those that have the highest NG50 lengths and the 
lowest LG50, having a high contiguity.  
After processing the data, 1D non-processed reads 
still comprise the highest amount of sequencing data 
(Table 1), representing the highest theoretical 
coverage we could achieve with the data generated. 
Furthermore, it offers 12 408 reads with more than 1 
Kb in length, providing a large amount of sequences, 
which could, in theory, span entire bacterial genes.  
1D reads correction decreased greatly the amount of 
1D data to 14%. The effect of correction in the 2D 
and 2D Pass datasets also had the same general 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
i
mpact. Yet, the decrease in data amount was less 

steep, with 2D data being reduced to 74% and 2D 
Pass data to 92%. This is a predictable response 
since 2D Pass reads have higher quality scores and, 
as such, should require a less aggressive correction. 
  

Table 1 |  Read/contig metrics of the 1D, 2D and 2D Pass datasets 
and their corrected, assembled and polished versions. 

Dataset 
Total 

(b) 
 Reads/ 
contigs 

> 1 Kb NG50  LG50 

1D 75.48 M 18 604 12 408 85 087 8 

1D corrected 10.22 M 2 890 1 663 74 291 10 
1D assembled 618.65 K 260 154 na na 

1D polished 618.65 K 260 154 na na 

2D 21.59 M 5 557 3 539 14 929 79 

2D corrected 15.87 M 3 487 2 315 13 655 99 
2D assembled  6.64 M 1 915 1 128 9 329 118 

2D polished 6.64 M 1 915 1 128 9 329 118 

2D Pass 9.25 M 2 157 1 350 11 541 125 

2D Pass corrected 8.50 M 1 771 1 184 11 236 140 
2D Pass assembled 4.49 M 1 321 817 7 175 185 

2D Pass polished 4.49 M 1 321 817 7 175 185 
na – not applicable. 
 

 

Further assembling the 1D corrected reads led to a 
decrease of data to levels that were not sufficient for 
1-fold coverage of the genome. From the 2D data 
and 2D Pass data, we would expect an improvement 
in NG50 and LG50, by boosting the contiguity of the 
data with the assembly of reads, but this did not 
happen. Further polishing the assembled data did not 
seem to have any impact on the datasets either. 
Both the correction and assembly algorithms are 
lossy processes that tend to eliminate low quality 
regions of the data, depending greatly on data 
coverage to surpass that limitation. Here, it seems 
that the aggressive trimming, combined with the 
generally low coverage of the data, trumped the 
benefits of assembling the reads, and did not 
improve contiguity of the datasets.  

Overall, we found that the non-
processed 1D dataset offers the 
best theoretical coverage and 
read-length distribution metrics. 
However, read length and data 
yield are not sufficient indicators of 
the value of a dataset. Aiming to 
evaluate sequence accuracy, we 
compared the k(5)-mer 
composition of each dataset with 
the chosen reference (Figure 6).  
K-mer frequency comparison 
allows for an appreciation of the 
differences between the 
sequences of a dataset and the 
reference, without the need for 
alignment. The entropy of the 
comparison can be calculated as 
a Kullback-Leibler divergence 
(dKL).  
1D data is highly divergent from 
the reference (dKL=0.176). 
Moreover, 1D data processing 
worsens the overall quality of the 

data (dKL>>0.176). As expected by the quality score 
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distribution, 2D Pass data shows the lowest 
divergence in relation to the reference (dKL=0.024), 
particularly when processed till the assembled stage 
(dKL=0.013). This decrease in entropy may be due to 
the elimination of lower quality data from the dataset 
and/or by improving accuracy from consensus calling 
aligned reads.  
To conclude, although 1D reads constitute larger 
amounts of data, equating to a higher theoretical 
coverage and high number of gene-size sequences, 
this data is very dissimilar from the expected true 
sequence information. Contrariwise, 2D reads, either 
Pass or not, are a much smaller fraction of the 
sequencing data with less gene-size sequences, but 
seem to be highly similar with the expected original 
sequence. The accuracy of the data can eventually 
be a better fit for the purpose of mining genes. What 
remains to be answered is if, for the intended 
purpose, the increase in accuracy obtained by 
processing 2D and 2D Pass data compensates the 
loss of information caused by the aggressive 
trimming algorithms. 
 
Low-coverage non-processed 2D nanopore-
sequencing data offers high gene recall 
A straightforward way to evaluate usefulness of the 
datasets for enzyme mining is to compare their 
mapping and gene-recalling statistics (Figure 7).  
 

On average, only 31.9% of the extension of a 
particular 1D read is mapped, showing mean percent 
identities of 76.9%. It seems like 1D reads are 
mosaic in nature, harboring hotspots of higher fidelity 
that are able to map to the reference. This data 
profile eventually led to the low gene recall of 1D 
data to only 47 genes, i.e. only 47 genes of the 
reference were found in the dataset. Low quality 
reads with high error rates, particularly with the indel 
rich profile reported for nanopore sequencing6 can 
create frameshifts that hinder the genecalling of the 
data. Again, we can see how processing 1D reads 

was detrimental for their usefulness, reducing the 
number of genes of the reference that were recalled 
from 47 to only 1 after correction and 0 after 
assembly. 2D data offers the highest number of 
mapped reads of all tested datasets (3 543), with 
mappings spanning almost the entirety of the read 
(83.2%). Average identity was found to be 85.2%, but 
values go as low as 70%. Regardless, 2D reads had 
the highest gene recall, with 2 711 genes found from 
the total 3 863 of the reference genome. Note that, 
although we had estimated a theoretical coverage of 
5.51-fold for 2D data, when true depth of sequencing 
was examined in SAMtools, it only reached a value 
of 3.7-fold per base on average (data not shown).  
On further inspection, we found that there were a 
total of 208 Kb - 5% of the genome - that were not 
covered in any instance by this dataset. This alone 
does not explain why it failed to recall 1 152 genes - 
30% of the total genes. Undercalling of genes might 
be a consequence of the error rate of the data, that, 
based on mapping identity assessment, is 
approximately 15%, which is in accordance with what 
has been reported6. 
Correction of 2D reads shifted the mapping identity 
and read coverage up, reaching a mean of 92.3% 
and 90.0%, respectively. Yet, the loss of data in the 
correction process, discussed before, led to a 
decrease in the number of genes recalled (2 538). 

Although the processed dataset 
recalled fewer genes, the overall 
higher accuracy and higher mapping 
percent identity led to the 
identification of 222 genes that were 
not disclosed in the original 2D 
dataset. The same applies for 2D 
assembled data. Assembling the 
data further enabled the calling of 85 
new genes, which may be a result of 
the higher accuracy of the dataset by 
consensus calling of aligned reads 
and/or an eventual assembly of 
reads disclosing previously 
interrupted genes. 
Note that the difference in terms of 
amount of data between the 2D 
dataset and the 2D Pass dataset is 
of 12.34 Mb. Yet, they differ in gene 
recall by only 93 genes. That means 
that the majority of genes called in 

2D data were actually coming from reads with quality 
scores above 9.  Having said that, in certain 
applications, one must weight the benefits of using 
2D data versus 2D Pass data. 2D data offers an ever 
so slight increase in gene recall associated with a 
major increase in the amount of data to be 
processed. 
Since the increase in computational effort was not 
limiting in the specific context of this work, the 2D 
dataset was chosen to be subjected to mining for 
industrial relevant enzymes.  

Gene recall 
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Figure 7 | Read mapping coverage, distribution of mapping percent identity and gene recall 
of each dataset. These metrics were calculated using as reference the genome of B. velezensis 
strain FZB42. Results from the polished assembly were omitted since values were equal to the 
assembled datasets. ‘Error-bars’ in read coverage graphs represent standard deviation. Read 
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Bacillus velezensis MG SD 082 2D nanopore-
sequencing data allows direct annotation of 
polysaccharide-, lipid- and peptide-degrading 
enzymes in accordance with phenotypic assays 
As seen in Figure 8, the ORFs called by Prodigal, 
and submitted to Blast2GO reached a total of 21  348. 
RAST however, identified in the same data 51 481 
ORFs, more than twice as much as Prodigal. By the 
difference in amount of called ORFs, it can already 
be foreseen that the genefinders employed for the 
Blast2GO and RAST annotation are very different in 
their predictions and are most likely going to lead to 
very different annotation results. At the end of the 
annotation process, Blast2GO had attributed 
functional annotations to 2 493 ORFs and RAST to 
10 860. In a first glance both systems were able to 
assign putative biological functions to an extensive 
set of ORFs, including some non-ribosomal peptide 
synthetases (data not shown). In the set of RAST 
annotations we found 381 entries, which may 
represent biomass-degrading enzymes of industrial 
interest. Blast2GO only generated 126. 

 

Since 2D data has the redundant nature of a non-
assembled dataset, at this stage we dereplicated the 
selected ORFs by eliminating repetitive annotations 
in different reads. Furthermore, we found that several 
identical annotations were emerging in the same 
reads. When investigated further we understood that 
in a particular read, a gene was being annotated in 
fractions, even though the reads were spanning the 
entirety of the gene. This is the unwanted result of 
using error-prone reads, and specifically indel-prone 
reads. Since the annotation depends on the 
alignment of protein sequences rather than DNA 
sequences, it is more sensitive to frameshift-like 
errors, which can drastically change the resulting 
predicted protein sequence. 
For the purpose of counting ORFs of interest, same-
read replicated annotations were subtracted. At this 
point, we constructed a set of relevant annotations 
for each annotation system. Blast2GO in combination 
with Prodigal generated a total of 64 annotations 
which fit into the industrial enzymes category, 
whereas RAST revealed 84. Both annotation 
systems shared a total of 37 annotations. Thus, by 

applying both annotation systems, we were able to 
identify, in the Bacillus velezensis MG SD 082 whole-
genome nanopore-sequencing data, evidences for 
the production of a total of 111 putative industrial 
relevant enzymes capable of acting on the 
degradation of starch, cellulose, xylan, mannan, 
pectin, chitin, proteinaceous compounds and lipids, 
which seems to be in accordance with the phenotypic 
assays performed during the SEAVENTzymes 
project in Figure 4. As an example, mining the whole-
genome nanopore-sequencing data unveiled a 
putative extracellular α-amylase. The production of 
this endo-acting extracellular enzyme would generate 
the positive result observed in the colorimetric 
assays with AZCL-amylose, since the enzyme can 
act on the internal linkages of the cross-linked 
substrate. Furthermore, two other cytosolic enzymes 
with the capability to act on starch utilization were 
identified, namely an α-glucosidase (EC 3.2.1.20) 
and an oligo-1,6-glucosidase (EC 3.2.1.10), which 
release monomers of glucose from their action on 
starch-derived oligosaccharides. The combination of 

these enzymes reflects the 
ability of the isolate to 
degrade starch into glucose, 
and explains the results 
obtained in the growth 
assays performed with 
starch as the sole source of 
carbon. 
There was a specific result 
in the colorimetric assays for 
which we could not detect 
the responsible enzyme – an 
endo-acting cellulase. 
Rather, we identified some 
enzymes with potential to 

act on the external ends of cellulose. In an attempt to 
find this enzyme we further submitted all ORFs called 
by RAST and Prodigal from the 2D data, 2D 
corrected and 2D assembled, to a dbCAN BLASP 
against the CAZy database of carbohydrate-active 
enzymes. There was still no evidence of such 
enzyme. It could have easily been a miscalled gene 
that was obscured by erroneous data. However, 
further investigation revealed that neither of the two 
genes coding for putative cellulases of the reference 
genome were covered by the 2D reads. Thus, the 
absence of the enzyme is most likely a result of low 
coverage sequencing, that is, assuming that the 
genome of the chosen reference is any indication of 
the genome of the MG SD 082 isolate. 
 
FURTHER CONSIDERATIONS 
In this work, we indeed proof-of-concept the use of 
whole-genome nanopore sequencing to evaluate the 
biotechnological potential of a Bacillus velezensis 
isolate from hydrothermal vent sediments, with 
regard to industrial relevant enzymes.  
We assayed the potential of different possible 
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datasets of the nanopore-sequencing technology, 
either processed or non-processed, for the purpose 
of mining enzymes, in terms of overall genome 
coverage, read/contig length, general 
quality/accuracy, and gene recall amenability. In the 
end, we found that, from low-coverage sequencing, 
non-processed long 2D reads enabled direct 
annotation with the highest gene recall. In this 
dataset we were able to find evidences for several 
enzymes of interest in accordance with previous 
phenotypic results, despite the lower-throughput and 
less-than-optimum error rates of the used R7.3 
version of the technology. Although not explored in 
depth in this work, ultimately, the same whole-
genome nanopore-sequencing data also enabled the 
identification of the isolate at the species level – 
Bacillus velezensis - and unveiled several other 
ORFs of biotechnological interest that transcended 
our initial set of industrial relevant enzymes (e.g. 
biosynthetic clusters of secondary metabolites). The 
fact that we stumbled upon such genes, reflects one 
of the major advantages of sequencing-based 
strategies over the phenotypic assays. We can easily 
unveil a large and diverse set of determinants of 
interest by mining the same sequencing data, with no 
need for a specific assay for each group. 
Furthermore, we were able to identify a much larger 
collection of relevant enzymes than both phenotypic 
screening approaches together. Albeit, the products 
of the predicted genes still have to be heterologously 
expressed for confirmation. 
Just as other sequence-based technologies, the 
ability to mine for enzymes in nanopore-sequencing 
data depends on our current understanding of 
sequencing information and knowledge of enzymes 
and their function. Fortunately, even though some 
genes may escape us under our current knowledge 
base, the sequence data obtained has permanent 
character and it can be revisited again, as new 
methods of studying and understanding these 
sequences develop and disclose new opportunities 
and potential in “old” data. Overall, even with the 
current limitations of sequence-based methods, the 
MinION revealed itself a useful and accessible 
sequencing platform. Its portability and real-time 
potential was not explored directly in this work, nor its 
implementation with metagenomic samples but, it is 
these aspects, accompanied by the generation of 
very long reads, that deem this technology so 
interesting for bioprospecting deep-sea vent 
microorganisms. The study of microorganisms from 
deep-sea environments, or other remote locations, 
typically entails the collection, preservation and 
transport of environmental samples to laboratories. 
However, this paradigm has several disadvantages, 
being the most relevant the potential loss or 
corruption of unique samples. This may represent an 
irreparable damage to a project since the deployment 
of sampling procedures in remote locations is many 
times limited to brief opportunity windows or even 

singular visits. Additionally, since the sampling is so 
divorced from the analysis step, the exploration of 
these locations becomes a reactive practice. ‘In-field’ 
sequencing, enabled by the real-time portable 
character of nanopore sequencing, would be useful 
to, for instance, reiterate sampling in response to 
opportunities unveiled by sequencing whilst still in 
the field, supporting a more proactive approach. 
Thus, this technology has the ability to change the 
paradigm of deep-sea exploration and as it evolves it 
promises to expedite screening methods to quasi 
real-time. 
Indeed, in this work we only proof-of-concept that 
long 2D reads generated by the nanopore sequencer 
can be annotated directly for bioprospecting 
purposes with no need for data processing. But it is 
this independency of data processing that would 
eventually allow the implementation of real-time 
annotation, by enabling mining of 2D reads as soon 
as they are sequenced by the device.  
From our analysis, we propose that whole-genome 
nanopore sequencing has the capability to become a 
relevant system for the biotechnological potential 
assessment of prokaryotic isolates or samples from 
deep-sea hydrothermal vents or other remote 
environments.  
As for the SEAVENTbugs collection, we have still not 
grasped all its potential. We are now in a position 
where we can implement this technology to screen 
all isolates of interest, or even the metagenome of 
the preserved SEAHMA samples. Furthermore, the 
sequencing data generated can be useful to assist in 
the following stages of the bioprospection project, by 
enabling the well-informed design of cloning 
experiments.  
Future projects should implement on this system, 
and evaluate metagenome sequencing, develop real-
time annotation pipelines and finally deploy such 
methodologies to actual remote locations. 
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