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To be great, be whole; exclude 

Nothing, exaggerate nothing that is you. 

Be whole in everything. Put all you are 

Into the smallest thing you do. 

The whole moon gleams in every pool. 

It rides so high. 

From Poems of Fernando Pessoa. Translated by Edwin Honig and Susan M. Brown, in City 

Lights Books.1998 

 

Para ser grande, sê inteiro: nada 

Teu exagera ou exclui. 

Sê todo em cada coisa. Põe quanto és 

No mínimo que fazes. 

Assim em cada lago a lua toda 

Brilha, porque alta vive. 

Odes de Ricardo Reis. Fernando Pessoa, in Presença, nº37. Coimbra: Fev. 1933 
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Abstract 

In history matching problems, we aim to model the internal reservoirs’ properties, porosity and 

permeability, by perturbing the model parameter space in order to match the available production data. 

However, reservoir modelling conditioned to history matching consumes a lot of CPU time since we 

need to solve a fluid flow simulator at each iteration step. To optimize this procedure one solution is to 

modify the scale of the reservoir, upscaling it. This upscaling reduces the number of grid block and the 

number of unknown parameters allowing for faster fluid flow simulations but ignores the small scale 

heterogeneity from the reference model. 

 

The advantage of implementing multiscale parameterization techniques is to use fast update of 

coarse models to constrain the history matching models in fine scale. With this methodology a 

significantly reduction in processing time is obtained so it guarantees a faster and more efficient 

estimation that generates more consistent models. The procedure promotes a good integration of 

dynamic data in the static model and ensures that the matching is retained through the downscaling 

step. 

 

In this work we proposed a new history matching methodology that couples different geological 

scales by using Block Direct Sequential Simulation. In order to speed-up the history matching procedure 

we first optimize the reservoir model at a very coarse grid which is then used as an auxiliary model to 

perform the history matching at a very fine scale. In this workflow we also proposed to quantify the 

uncertainty in the geological properties using a stochastic adaptive sampling and Bayesian inference in 

the both scale levels: fine grid and coarse grid. We show this novel approach in a challenging synthetic 

case study based on a fluvial environment. 

 

The results obtained show from the coarse and fine grids are consistent with the reference model 

resulting in a very promising multiscale history matching methodology. There is a crucial improvement 

in processing time when compared with the traditional geostatistical history matching that would need 

much more iterations and consequently more execution time. 

 

 

 

 

 

 

KEYWORDS: History Matching, Geostatistics, Multiscale Inverse Modelling, Block Direct Sequential 

Simulation, Uncertainty Quantification, Particle Swarm Optimization. 
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Resumo 

Uma metodologia de ajuste do histórico de produção tem como principal objectivo a modelização 

das propriedades internas do reservatório, porosidade e permeabilidade, através da perturbação dos 

parâmetros do modelo de modo a ajustar os dados de produção do modelo simulado com os dados de 

produção do modelo real. No entanto, modelar um reservatório condicionando essa modelização ao 

histórico de produção é um processo lento, com um tempo de processamento e com uma necessidade 

de memória computacional elevados, uma vez que é necessário processar várias equações de 

dinâmica de fluidos em cada iteração. Para optimizar este processo, uma das hipóteses é modificar a 

escala do reservatório, aumentando-a. Este aumento reduz o número de blocos do reservatório e 

consequentemente o número de parâmetros desconhecidos, permitindo o processamento das 

equações de fluidos de uma forma mais expedita. 

 

Com a aplicação de técnicas de multi-escala consegue-se uma rápida otimização do modelo de 

malha grosseira e consequentemente utilizar este modelo de malha grosseiro otimizado para 

condicionar a modelização da malha fina. Com esta metodologia consegue-se uma significativa 

redução do tempo de processamento e consequentemente obtêm-se modelos de reservatório mais 

consistentes, mais rapidamente e com mais eficiência. Este procedimento promove uma boa integração 

dos dados dinâmicos no modelo estático e garante que a informação e o ajuste do histórico de produção 

são mantidos durante a redução de escala. 

 

Neste trabalho propõe-se uma nova metodologia de ajuste de histórico de produção que incorpora 

diferentes escalas geológicas utilizando uma simulação sequencial direta por blocos. Por forma a 

acelerar o processo de ajuste do histórico de produção começa-se por optimizar o reservatório numa 

escala muito grosseira que depois será utilizado como modelo auxiliar para realizar um novo ajuste de 

produção numa malha muito fina. Neste fluxo de trabalho propôs-se quantificar a incerteza nas 

propriedades geológicas do reservatório utilizando um amostragem adaptativa estocástica e uma 

inferência Bayesiana nas duas diferentes escalas: malha fina e malha grosseira. Esta nova abordagem 

é aplicada num reservatório sintético. 

 

Esta metodologia é bastante promissora, uma vez que os resultados da malha grosseira e da malha 

fina são bastante consistentes com o modelo de referência. Há uma significante melhoria no tempo de 

processamento quando comparado com um processo geoestatístico tradicional de ajuste de histórico 

de produção. 

 

PALAVRAS-CHAVE: Histórico de Produção, Geoestatística, Modelização Inversa Multi-escala, 

Simulação Sequencial Directa por Blocos, Quantificação de Incerteza, Particle Swarm Optimization. 
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Chapter 1.  Introduction 

 

This thesis was developed as part of the Master of Science Degree in Petroleum Engineering, 

promoted by the Instituto Superior Técnico, Lisbon. 

 

The main motivation for this dissertation came as a follow-up of the internship held in the 1st semester 

of the second year of the Master Programme. These six months allowed the acquisition of modelling 

skills and geostatistical simulation which were very important for the implementation of this project. This 

internship was developed through a partnership between the CERENA from Instituto Superior Técnico 

in Lisbon and the Uncertainty Quantification Group from Institute of Petroleum Engineering of Heriot-

Watt University in Edinburgh.  

 

This project comprises the development and the implementation of a novel multiscale geostatistical 

history matching methodology for reliable reservoir modelling and the integration of a stochastic adaptive 

sampling and a Bayesian inference for uncertainty quantification. The project involved different stages: 

1. To build a 3D reservoir model with a realistic production strategy to use as case study; 

2. The development and the implementation of a new multiscale geostatistical history matching 

algorithm; 

3. The integration of a stochastic adaptive sampling and a Bayesian inference in the previous 

workflow for the uncertainty quantification. 

 

1.1 Thesis Challenge Statement 

The oil and gas industry is a very challenging and complex industry. There is a huge uncertainty, a 

lot of different risks and considerably amount of money involved in the exploration and production of oil 

and gas reservoirs. Generally, in a oil and gas project, the available information is mostly discrete, 

sparse and with different support volume and resolution: core measurement; well logs and seismic 

surveys, each data type with different complexity in the financial project evaluation. 

 

With the decreasing of oil price and consequently the reduction of the projects profitable with limited 

budgets, companies are given more attention to uncertainty and expect to obtain new tools that allows 

them to estimate and predict with accuracy the oil recovery.  A good reservoir modelling is the correct 

answer to these new challenges. 
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In reservoir modelling we try to describe the spatial distribution of the subsurface properties of interest 

by integrating all the available data: well-log data, seismic reflection, production data and geology. The 

geology of the reservoir is defined and this geological definition allows the characterization of different 

type of rocks: carbonates, shales and sand; different types of structural elements: faults, rollover, 

anticlines; the existence of channels and other different types of structures. It is also defined the 

petrophysical reservoir properties such as porosity, permeability and saturation and it is through this 

information that we are able to study and predict the fluid flows in the reservoir.  

 

The more understanding about the reservoir’s properties, the better the modelling and its 

characterization, leading to better decision making and lower uncertainty. A good representation of the 

reservoir allows a better definition of the number and the location of new wells, define the amount of 

existing oil and predict the economic return generated by the same. The reservoir modelling should 

represent, in a reliable way, the reservoir characteristics and should be processed within an acceptable 

period of time. The computers and the software have improved and developed deeply in the last years 

and now they allow data processing faster and more efficiently, however the amount of required and 

available information remains extremely high. The processing time reduction keeping the quality of the 

model is one of the industry challenges. 

 

The static data from well-logs is usually enough to estimate and to model static information like oil 

original in place. However, this information is not enough to predict the behaviour of the reservoir during 

production and consequently the amount of oil recovery. To do that, we need to incorporate dynamic 

data in the modelling procedure. In a history matching problem, dynamic data is incorporated into model 

a reservoir, i.e., we model the geological reservoir properties conditioned to the known dynamic data. 

With this methodology we aim to model the internal reservoirs’ properties, porosity and permeability, by 

perturbing the parameter model space in order to match the available production data 

 

Reservoir modelling conditioned to history matching consumes a lot of CPU time since we need to 

solve a fluid flow simulator at each iteration step. In order to speed-up this iterative procedure one 

solution is to modify the scale of the reservoir by upscaling it. The upscaling reduces the number of grid 

block and the number of unknown parameters allowing for faster fluid flow simulations. On the other 

hand, upscaling reduces the small scale heterogeneity. As a result, after obtaining an optimised coarse 

grid model is very important to refine it, conditioning the fine grid model to block and point data. 

 

Different authors studied this problem and proposed alternative solutions. Lui & Journel (2009) 

developed an extension of the traditional Direct Sequential Simulation (DSS) that is able to integrate 

data in different supports, Block Direct Sequential Simulation (Block-DSS), a reliable form of stochastic 

downscaling. Mata-Lima et al. (2007) developed a new inverse modelling methodology that is able to 

integrate dynamic data in a static model through the application of a stochastic sequential simulation. 

Aanonsen and Eydinov (2006) developed a multiscale technique that is characterized by physical 
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models with multiple scales, in this case, different spatial scales. The matching of these scales is made 

using the data production history from each model. 

 

In this work we present a new stochastic framework, which allows the inference of high resolution 

reservoir models conditioned simultaneously to: well-log data and historical production data, while 

keeping the computational costs low without compromising the accuracy of the retrieved subsurface 

models. An important aspect of the proposed multiscale geostatistical history matching methodology is 

the inclusion of the uncertainty assessment during the optimization procedure. Through the generation 

of multiple history matched models we will be able to quantify the uncertainty and the probability of future 

production; the proposed approach also allows the inference of the most likely scenario along with the 

respective confidence intervals. The uncertainty quantification is performed by recurring to stochastic 

adaptive sampling and Bayesian inference (Hajizadeh et al. 2009; Mohamed et al., 2009; Christie et al., 

2006). 

 

To sum up, the challenge of this thesis is to build a 3D high resolution model conditioned to the 

known data: well-log data and historical production data, faster and with accuracy that takes into account 

the uncertainty on it. 

 

The goal is to provide a new workflow and a software tool that is able to optimize this process and 

answer to this big challenge. 

1.2 Thesis Contributions 

The ultimate goal of this thesis may be summarized by the following question: How to optimize and 

speed-up reservoir modelling conditioned to historical production data? 

 

This thesis proposes a way to speed-up traditional iterative history matching, by integrating a multi-

scale optimization as part of the history matching procedure. The multi-scale model update loop consist 

on the optimization of the reservoir model on a coarse grid, and then performing history matching on a 

fine scale based on the large scale  properties inferred from the coarse grid optimization. The proposed 

methodology (Figure 1) couples different geological scales through geostatistical assimilation of the 

small scale geological features using Block-DSS and updating the large scale geological properties 

using Particle Swarm Optimization, in order to quantify the uncertainty. The uncertainty quantification is 

integrated in the two loops:  (i) model in a very coarse reservoir grid; (ii) model in a fine reservoir grid. 

We show this novel approach in a challenging synthetic case study based on a fluvial environment. 
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Figure 1 – Proposed MSGHM, General Workflow 

 

The multi-scale geostatistical history matching methodology provides following advantages: 

• Significantly reduction of computing time; 

• A more reliable solution and subsurface Earth model for the fine grid, honouring the available 

well-log data; 

• A faster and more efficient estimation that generates more consistent models; 

• A good integration of dynamic data in the static model. 

 

For the development of these algorithms a set of softwares were used. The construction of the 

reservoir was made using Petrel® from Schlumberger. The implementation and the development of 

multiscale geostatistical history matching was made using a Matlab’s geostatistical toolbox from 

CERENA/CMRP, Instituto Superior Técnico. The fluid flow simulations were ran using Eclipse® from 

Schlumberger. Raven, from Epistemy was used for the multi-scale uncertainty assessment. 

 

1.3 Thesis Outline 

The overall structure of this dissertation takes the form of five chapters, organised in the following 

way: Chapter One – Introduction; Chapter Two – Theoretical Background; Chapter Three – Methodology 

and Workflow; Chapter Four – Case Study; Chapter Five – Conclusions and Future Work. 

 

Chapter One is a short introduction about this dissertation. In this chapter the reader will understand 

what the main motivations to develop this thesis were. Is established the challenges of this topic in 

industry, the challenges of this topic in the discipline, what are the industry interest, on this day, in this 

subject and how this project tries to contribute to solve them. It is explained the importance of the study 

and the importance of developing this topic and how this novel approach helps the industry optimizing 

the computational time and let us reach a faster and more accurate reservoir model and therefore better 

hydrocarbons reserves estimations. Also in this chapter is possible to understand the outline of this 

dissertation and a slight introduction to the importance of reservoir study and characterization. 

 

Chapter Two begins by laying out the theoretical concepts behind the research and gives a brief 

overview of the recent history of history matching tools. In this chapter is explained and described some 

of the main concepts used in this project. To understand this project is very important to acquired specific 
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knowledge about topics that are incorporated in this problem as history matching, geostatistical 

modelling and uncertainty quantification. It is also very important to realize what had already been 

studied, developed and implemented by other authors.  

 

Chapter Three explains the methodology used for this study. There are two different methodologies 

in this project; the first one is the multiscale geostatistical history matching and the other one is the 

quantification of the uncertainty in the multiscale geostatistical history matching method. In the workflow 

of multiscale geostatistical history matching two different algorithms are applied. The first one is an 

algorithm of geostatistical history matching that integrates one traditional geostatistical history matching 

and one downscaling geostatistical history matching frameworks, with two different spatial scales. The 

second one is an extension to the previous proposed algorithm that integrates two traditional 

geostatistical history matching and one downscaling geostatistical history matching frameworks, with 

two different spatial scales. In both methodologies the aim is to obtain a fine grid reservoir model with a 

high resolution and that integrates the information of the point data, the dynamic data.  

 

Chapter Four presents a case study. All the previous workflows are applied in a synthetic reservoir 

created in the beginning of the internship. It is made a short introduction into this synthetic reservoir to 

better understand his properties, his characteristics and what are the models used as a reference. In 

chapter 4.2 the workflow of multiscale geostatistical history matching is applied and the main results are 

illustrated, commented and compared with the synthetic case. In chapter 4.3 the workflow of uncertainty 

quantification is applied and the main results are illustrated, commented and compared with the 

synthetic case. 

 

Chapter Five describes the main conclusions about this new methodology and what are the 

limitations in this process. It is also indicated what can be the next steps and the future works. 

1.4 Reservoir Study and Characterization 

On reservoir characterization the aim is to define the reservoir geology which allows us to identify 

the type of rocks: carbonated, shales or sand; the type of structural elements: faults, rollover, anticlines; 

the existence of channels and other kind of sedimentary structures. In this characterization is also 

defined the petrophysical reservoir properties such as porosity, permeability and saturation and it is 

through this information that we can study and predict the fluid flows in the reservoir. The higher is the 

level of knowledge of the reservoir the better will be the decisions taken. It will be easier to define the 

number and the location of new well, to define the amount of existing oil and to predict the economic 

return generated by the same. That is why is very important a good reservoir study: to obtain a model 

as close as possible to reality. 

 

The study of petroleum reservoir consists in modelling a reservoir built with the knowledge acquired 

from the wells data and seismic data. This modelling is extremely important and it is through it that we 

will get more information about the reservoir. However this modelling is rather difficult and has 
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associated a high level of uncertainty. Oil reservoirs are spatial structured phenomena, but the 

information available about them is rare and discrete because we only have information from the wells 

already drilled and seismic data. We can get more consistent models and reduce the level of uncertainty 

by applying probabilistic models and geostatistical tools.  

 

Geostatistics is a statistical tool that studies a phenomenon that changes in time and space, widely 

used to model spatial phenomenon. The application of this statistical tool allows us to define the spatial 

and/or the temporal distribution of a measure using discrete and rare available experimental data. The 

implementation of this geostatistical tools to define the spatial inference of a property can be done by 

two methods, deterministic and stochastic. The application of deterministic method results in a unique 

solution without any uncertainty associated, stochastic method on the other hand takes into account the 

uncertainty of the model, since the result is given by a series of equiprobable models. So the stochastic 

method is extremely important in the study of oil reservoirs because the information available from the 

wells is mostly discrete and rare, so the uncertainty associated is relevant and must be taken into 

account in the process of the reservoir modelling. 
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Chapter 2.  Theoretical Background 

 

The development of a thesis requires a great theoretical knowledge about very specific themes as 

geostatistical modelling, direct sequential simulation, direct sequential co-simulation, block direct 

sequential simulation, history matching, uncertainty quantification and stochastic adaptive sampling 

(e.g. particle swarm optimization). It is very important allocate a significant part of this explaining a little 

more about these concepts. It is also very important to understand what has been wrote and published 

about these topics in order to understand what should be the way forward. 

 

2.1 History Matching 

In reservoir modelling we try to describe the spatial distribution of the subsurface properties of interest 

by integrating all the available data: well-log data, seismic reflection, production data and geology. The 

more understanding we have about the reservoir’s properties: geological, petrophysical and fluid 

properties; the better is the reservoir modelling and its characterization, leading to better financial and 

technical decision that have a high impact in the performance of oil and gas companies. Predict the 

future hydrocarbons production of the reservoir has a huge magnitude that allows supporting a field 

development strategy, so we need good models that are able to give us good forecast productions, to 

ensure good decisions making. Otherwise, generally, the available information is mostly discrete, sparse 

and with different support volume and resolution: core measurement; well logs and seismic surveys so 

there is a lot of uncertainty that needs to be considered in in reservoir modelling. 

 

In a history matching problem, dynamic data is incorporated within the modelling procedure, i.e., we 

model the geological reservoir properties conditioned to the known dynamic data. With this methodology 

we aim to model the internal reservoirs’ petrophysical properties, porosity and permeability, by 

perturbing the model parameter space in order to match the available production data. This perturbation 

is done until a minimum value for a given objective function is achieved. In traditional history matching 

one single deterministic model is generated with reservoir properties adjusted in order to calibrate the 

model, but this model does not take into account the spatial uncertainty of the modelled properties. 

However with the increasing of computing resources, new history matching techniques are being 

developed aiming the generation of multiple reservoir history matching models, which are able to reflect 

the uncertainty of the model.  

 

The main idea behind most history matching procedures is to perturb the model parameter space 

following the next sequence of steps (Figure 2): 
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1. Knowing some data: prior knowledge and observation from well (porosity, permeability), models 

from a reservoir model are created that try to describe the spatial distribution of the subsurface 

properties of interest; 

2. Run a dynamic simulation in the previous models to obtain the simulated production history per 

existent well; 

3. Compare the production data from this realization with the real historical production data through 

an objective function. The simulation that minimizes this objective function is accepted. 

4. Create a perturbation in the initial model with the information obtained from the objective function 

and repeats all the previous steps until a minimum value to the objective function is achieved 

 

This steps are represented in the next suggest general framework. 

 

 

Figure 2 – History Matching Framework (Adapted from Christie, 2006). 

 

Notice that history matching process is an inverse process, ill-posed, very nonlinear and with non-

unique solution (Subbey 2004), i.e., there are a high number of variables in the fluid flow simulation that 

are independent and there is no nonlinear relations between the solution and these variables, so there 

are several different variable combinations of reservoir model that can generate a good match to the 

production data with the same degree of accuracy. 

 

There are different ways to perturb the model that try to solve this ill-posed problem. In this thesis a 

combination of two different perturbations methodologies are implemented: 

1. Stochastic simulation algorithm, Direct Sequential Simulation; 

2. Stochastic sampling algorithm, Particle Swarm Optimisation. 
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Stochastic sequential simulation algorithms started to be developed in the late 90’s by Hu et al. with 

a gradual deformation methodology and the big advantage is the simplicity of implementation. This 

algorithm perturbs the field preserving the spatial continuity of the property. There are different types of 

perturbation of sequential deformation done by direct sequential simulation and co-simulation (Mata-

Lima 2008), gradual deformation (Hu et al. 2001) Probability perturbation method (Caers and Hoffman 

2006). The stochastic sampling algorithm started to be implemented in the early 90’s and is a good and 

much implemented methodology because it searches for multiple good models so it is less likely to get 

confined in a local minim. There are different types of algorithms as Particle Swarm Optimization, Ant 

Colony Optimisation and the Neighbourhood Algorithm. 

 

The implementation of these algorithms, in the new proposed methodology, is more specified in 

Chapter 3. 

 

2.2 Geostatistical Modelling 

2.2.1 Exploratory Data Analysis and Spatial Continuity Analysis 

When a geostatistical tool is used to modelling a reservoir, the first step is the exploratory analysis 

of the available experimental data, in this case the data from the wells, logs and seismic. Each variable 

is studied and analysed individually, setting up data patterns and trends. With the analysis of histograms, 

distribution function and box-plot, it is possible to get information about the measures of centre: the 

mean and the median; the measures of location as quartiles: the minimum and maximum and the 

measures of spread: variance and interquartile range. With the bivariate analysis is possible to get 

information about the relationship between two variables but the two variables should be related to each 

other and they should be dependent. In this analysis we evaluated the correlation between the variables 

with a correlation coefficient which measures the linear dependence between them. 

 

The next step is the analysis of the spatial continuity of the data. The main goal of the spatial 

continuity analysis is the characterization and quantification of the spatial phenomenon from the 

available experimental data, providing information about the anisotropy of the properties and the main 

directions of continuity. The study of the spatial continuity analysis and the identification of the anisotropy 

are performed by computing experimental variograms (Equation 1). 

 

The estimator variogram, or semi-variogram, allows quantifying the spatial continuity of Z(x)for 

different values of h. For a quantitative characteristic Z(x), represented by the pairs of points Z(x�)and 

Z(x� + h) and distanced of h in one direction, all the values measures for each azimuth and lag can be 

spatially correlated and expressed by the equation of variogram (Equation 1): 

 

 

γ(h) = 	 1
2N(h) ��Z(x�) − Z(x� + h)��

�(�)

�� 
 (1) 



 

10 

 

with Z(x�)– sample value in x�; Z(x� + h) – sample value in x� + h; h – lag distance; N(h) – number 

of pairs. 

 

In modelling experimental variograms there are some concepts that are important to take into 

account. The range, a, represents the maximum correlation between the samples and is given by the 

distance to the sill. The sill, C, represents the spreading of the variable and from this value the samples 

are no longer correlated so its study is not important. The nugget effect represents the small scale 

variability and turns the variogram different from 0 at h = 0. 

 

After the construction of the variograms it is necessary to adjust them to a smooth curve that captures 

the spatial pattern of the unknown reality. The variogram model must be unique and coherent and should 

represent the trend of γ(h)related to h. We can use more than one theoretical model such as the 

spherical model, the exponential model or the Gaussian model. The most used and the steadiest are 

the spherical model and the exponential model. 

 

2.2.2 Direct Sequential Simulation 

Stochastic Sequential Simulation 

The stochastic sequential simulation gives a set of equiprobable models, under a set of a prior 

assumption, of the physical phenomenon with the same variability and spatial continuity, mean, 

histograms and variograms as revealed by the experimental data. With them we are able to quantify the 

uncertainty of spatial location of the properties and the morphology of a given resource and analyse the 

extreme behaviour of these characteristics (Soares, 2006). 

 

The Bayesian relation is the base of all the sequential steps of sequential simulation and with it we 

can calculate a set of random values ! , !� , … , !$ with a distribution law F(! , !�, … , !$) using the 

sequential simulation of the different conditional distribution law (Equation 2). 

 

 F(! , !�, … , !$) = F(! ) × &(!�|! ) × &(!(|! , !�, !() …&(!$|! , … !$) ) (2) 

   

In a stochastic simulation we need to apply two different phases, first we need to estimate the local 

distribution function and then simulate using a Monte Carlo methodology. There a few different ways to 

estimate the local distribution incorporating the main properties in a spatial simulation process, the 

Sequential Indicator Simulation (SIS), the Sequential Gaussian Simulation (SGS) and the Direct 

Sequential Simulation (DSS) but all of those simulations must honour the experimental data, reproduce 

the same statistics as the experimental data statistics and reproduce the same spatial variability as the 

experimental variograms. With the application of a Monte Carlo methodology we guarantee the 
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generation of a random simulated value at a point and we can assure the independence between the 

algorithm different realizations.  

 

Direct Sequential Simulation (DSS) 

Direct sequential simulation model, DSS, is a method that doesn't require any transformation of the 

original variable, being a strong advantage over other methods of sequential simulation. In the SIS is 

used an indicator formalism and in the SGS there is a Gaussian transformation. 

 

In this model local means and variances by simple kriging are used for re-sample the law of global 

conditional distribution function, unlike the SGS that uses them to define the laws of local distribution. 

In practice, there is a re-sampling of the global cdf F*(z), in order to obtain a new function F*+(z) with 

intervals centred on local mean and with a range proportional to the conditional local variance; these 

two parameters are estimated by simple kriging σ,-� (x.) (Soares, 2001): 

 

To simulate a value z(x) using DSS algorithm the following steps should be done: 

1. Define a random path that includes all the entire simulation grid x/ , u = 1,… ,N, with N equal to 

all number of nodes in the simulation grid; 

2. Estimate the local mean and variance of z(x/), with the kriging estimator z(x/)∗ and the estimator 

variance σ,-� (x/). These values must be conditioned to the experimental data and to the 

previously simulated values; 

3. Define the interval F*(z) to be sampled, using the Gaussian distribution law: 

 G0y(x/)∗	; 	σ,-� (x/)1 		with		y(x/)∗ = φ(z(x/)∗) (3) 

4. Generate a value z,(x/) from the cdf F*(z); 
• Generate a value u of an uniform distribution U(0,1); 

• Generate a value y, from the G 0y(x/)∗; σ,-� (x/)1; 
• Simulate the value from the original variable z,(x/) = φ) (y,); 

5. Loop until every node from the simulation grid is simulated. 

This methodology is represented in the next framework (Figure 3). 
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Figure 3 – Direct Sequential Simulation Representation. Sampling of global probability distribution 67(7)	by intervals defined by the local mean and variance of	7(89). The simulated value 7(89)∗	is drawn from 

the interval of 67(7)		defined by : 0;(89)∗; <=>? (89)1 (Modified from Soares, 2001) 

 

Note that the Gaussian transform is only used to re-sample the interval of the distribution F*(z). 
 

The simulated model resulting from the DSS honour the data point, hard data, at its location; 

reproduces the statistic, prior probability distribution, from the experimental data and is able to reproduce 

the spatial continuity imposed by the variogram model. 

 

Direct Sequential Co-Simulation (Co-DSS) 

DSS can be applied to the secondary variables simulation. After obtained, by DSS, an image of Z (x) 
the algorithm is applied to Z�(x), assuming one of the previous simulated models as secondary 

information. To use a co-simulation algorithm a spatial correlation between Z (x)and Z�(x)characterized 

by a correlation coefficient must exist. The Direct Sequential Co-Simulation takes into account the 

constant value of the correlogram, that is, considers that for the entire space, variables always have the 

same spatial correlation, a situation that may not occur in the characterization of petrophysical properties 

of the reservoir.  

 

To simulate the new property, Z�(x), conditioned to the previously simulated secondary variable Z @ (x) 
using Co-DSS algorithm the following steps should be done: 

1. Simulate the secondary variable Z (x) with DSS in the entire simulation grid; 

2. Define a random path that includes all the entire simulation grid x/ , u = 1,… ,N, with N equal to 

all number of nodes in the simulation grid; 
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3. Estimate the local mean and variance using collocated simple co-kriging estimate �Z�(x/)∗�A,-  
and the co-kriging variance σA,-� (x/), conditioned to the original experimental data Z�(x@), the 

previously simulated values Z�(x@)∗ and the values of the secondary variable Z @ (x@); 
4. Define the interval F�Z�(x)� to be sampled, using local mean and variance of the previous point; 

5. Draw the value Z�@ (x.)from the global cdf F�Z�(x)�; 
6. Loop until every node from the simulation grid is simulated. 

 

2.2.3 Joint Probability Distribution 

In some situations, with the Co-DSS, the experimental bi-histograms were not respected, so a new 

algorithm was developed to mitigate this problem and to solve it. (Horta & Amilcar, 2010). 

 

The Co-DSS with join distribution allows the reproduction of the non-linear relationships between 

properties, in this case porosity and permeability, and is able to reproduce the experimental bivariate 

cumulative distribution function between the primary and the secondary variable even when the 

correlation between them is low (Figure 4). 

 

 

Figure 4 – Bi-distribution from Co-simulated Models using Co-DSS e Co-DSS with Joint Distribution 
(Figure from Azevedo, 2013). 

 

The simulation of a reservoir property, Z�(x), with Co-DSS with joint distribution takes exactly the 

same steps as the traditional Co-DSS, the big difference is how the conditional cdf F�Z�(x)|Z (x)�is 

integrated in the workflow. Instead of drawing the value of Z�B(x) from the global cdf F�Z�(x)�, Horta & 

Soares (2010) proposed to sample from the conditional distribution. Given the previous simulated data 

Z @ (x), the bi-distribution F�Z�(x)|Z (x)�, Z�B(x) is simulated from (Equation 4): 

 

 F�Z�(x)|Z (x) = Z @ (x)� (4) 
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2.2.4 Block Direct Sequential Simulation (Block-DSS) 

In a simulation with DSS only point data support is consider.  To overcome this limitation Block Direct 

Sequential Simulation was developed, allowing the integration of data with two different scale supports, 

for example, coarse scale support data given by seismic and fine scale support data given by well and 

core data. The fine volume support point data, gives us high resolution information but only from point 

locations; the coarse volume support, block data, gives us less resolution information but it usually gives 

information from large areas. So if nowadays is very common to have information from two types of 

supports, seismic data (block data) and well-logs data (point data), is very useful to have an algorithm 

that allows the integration of this two different support data to model a reservoir more reliable and with 

more accuracy.  

 

Lui & Journel (2009) developed an extension of the traditional DSS that is able to integrate data in 

different supports, Block-DSS. This new methodology instead of using a simple kriging approach uses 

a block simple kriging algorithm. Notice that this is a form of stochastic downscaling. 

 

Traditional Integration 

The big challenge in block simple kriging is to compute the block-related covariance table due to the 

large computational cost. To overcome this limitation, Lui & Journel (2009) proposed a new 

approximation based on fast Fourier transforms to compute these covariance matrices. 

 

The CE̅F, block-to-point covariance, and CF̅F+, block-to-block average covariance, are given as 

(Equation 5 and 6): 

 

 CHIJ = 1
n�CIIL

M

N� 
 (5) 

 CHJJ+ = 1
nn+��CILIOP

M+

Q� 

M

N� 
 (6) 

 

with CEE+ as the arithmetic average of the point covariance, n the number of points RS in block B and 

n’ the number of points RT+ in block B’. 

 

Block Simple Kriging 

The estimator algorithm, block simple kriging, is an extension of simple kriging that incorporates point 

data support and block data support. In this workflow the block data support U(VW) is defined as a spatial 

linear average of the point data support P(u′) within a given volume VW. 
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 B(v�) = 1
|v�|\ L�^P(u+)_du+	∀�

.
bc

 (7) 

 

were dWis a spatial average function. 

 

The block simple kriging estimation at any location e is given as (Equation 8): 

 

 

Zfg∗ −m. = ΛjD = � λ�(u)�D(u)� −m.
M(/)

�� 
 (8) 

 

where m is the stationary mean, m(e) are all the available data, n(e) is the specific datum at e 

location. 

 

Knowing that R is the point-support data, U is the block-support data, o is the kriging weights for 

point-support data and block-support data and n is the data value vector (Equation 9): 

 Λj = �λIλJ�	and	D = �P	B� (9) 

 

The system of linear equations can be re-written with a matrix notation (Equation 10): 

 

 K. Λ = k (10) 

 

where K is the data-to-data covariance matrix, s is the data-to-unknown covariance matrix and Λ  are 

the kriging weights (Equation 11 and Equation 12): 

 K = tCII CHIJCHIJu CHJJv (11) 

 k = tCIIwCHJIwv (12) 

 

The kriging variance at any location e is given as (Equation 13): 

 

 σfg� (u) = VarzZ(u) − Zfg∗ (u){ = C(0) − Λj . k (13) 

 

The block data support U(VW) defined in Equation 7 does not incorporate the error of assuming that 

the block data are a linear average of the property to be simulated. To take this into account the error, 

}(VW), should be added to the diagonal of the block-to-block covariance matrix and the block data 

equation nF(VW) should be defined as (Equation 14): 

 

 DJ(v�) = B(v�) + R(v�) (14) 
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Block-DSS 

With Block-DSS a reservoir is simulated conditioned to block and point data. This methodology 

incorporates block simple kriging with DSS. 

 

According to Liu and Journel (2009) the workflow for this methodology follows the next steps:  

1. Generate and introduce the value from the point-to-point covariance map, CPP’, to be look-up  

2. Define a random path to visit each node u of the grid 

3. For each location u: 

a. Search the conditioning data, the previous simulated values and the available data; 

b. Compute the block-to-block average,	CF̅F+, block-to-point average, 	CF̅E, point-to-block 

average, 	CE̅F, and point-to-point, CPP’,  local covariance matrix; 

c. Solve the mixed-scale kriging system: this information provides the local kriging mean 

and variance; 

d. Define the local cdf, with the mean and variance achieve by the kriging estimate and 

variance; 

e. Draw a random value from de cdf in the previous point and add the simulated value to 

the data set; 

4. Check block reproduction; 

5. Repeat from step 3 until simulated all nodes in the grid. 

Notice again that the big challenge of this algorithm is solving the covariance matrix because it 

consumes more than 90% of the total simulation CPU time. This is why we store the pre-computed block 

covariance table which then can be looked up to avoid repetitive calculation in the simulation process. 

 

 

Figure 5 – Block Kriging Covariance Matrix 

With the implementation of this methodology we are able to simulate models with a high resolution 

conditioned to low resolution models, hence Block-DSS is a procedure of stochastic downscaling. 
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2.3 Uncertainty Quantification 

Nowadays the uncertainty quantification is vital in reservoir modelling. With a huge lack of reservoir 

information one single model is not enough anymore, even if this model is the best history matched 

model. It is important to produce a set of model that match the production data and are consistent with 

the known prior information allowing the quantification of the uncertainty. Through the generation of 

multiple history matched models we can, not only quantify the probability of future production but also 

what scenario is the most likely and what are the respective confidence intervals. 

 

The DSS described in point 2.1.2 is able to take into account the spatial uncertainty associated with 

the stochastic simulation however it does not take into account the uncertainty in the geological 

parameters represented in the spatial continuity and in the prior probability distribution. In the traditional 

DSS methodology the stationarity and the spatial continuity pattern for porosity and permeability is 

assumed, therefore a considerable amount of uncertainty needs to be assessed. 

 

There are several stochastic sampling algorithms that allow us to quantify this uncertainty: the Ant 

Colony Optimisation (Hajizadeh et al. 2009), the Particle Swarm Optimisation (Mohamed et al., 2009) 

algorithm and the Neighbourhood Algorithm (Christie et al., 2006) and all these algorithms are based in 

the Bayesian Theorem. 

 

All this algorithms use a Bayesian approach; they use the prior information about the reservoir and 

these priors are update using Bayes rule (Equation 15). This prior information is given as a probability 

of unknowns input parameters and they came from a different number of sources, for example outcrops, 

reservoir analogues. The prior updating is made with observations from the reservoir, in this case from 

production data. 

 

2.3.1 Bayesian Theorem 

The Bayesian theorem is based on the premise that we can calculate a probability that incorporates 

prior knowledge. The Bayesian theorem is given by the equation (Equation 15): 

 

 p(m|O) = p(O|m)	p(m)
p(O)  (15) 

 

with, �(�|�)– posterior probability, probability of the model � given the observed values �; �(�|�) 
– likelihood term, probability of the data assuming that the model is true; �(�) – prior probability, given 

as the sum of independent probabilities for model parameters; �(�) – normalized constant, if the term 

is small it suggests that the model doesn’t fit the data well. 
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In a more simple way the previous expression can be written as (Equation 16): 

 

 posterior ∝ likelihood× prior (16) 

 

This means that to calculate the posterior probability we need to take into account the likelihood and 

the prior values.  

 

The misfit, ��, represent how well a model fits the data and is calculated through the negative 

logarithm of the likelihood function, L (Equation 17 and Equation 18): 

 

 L = p(O|m) = exp	(−Mf) (17) 

 Mf = − log(	p(O|m)	) = −log	(L) (18) 

 

If we assume that the measurement errors are independent, identically distributed and Gaussian, 

this mean they are unchanging with time production schedule so we can write the formula as: 

 

 M =�^q��, − q,N�_�
2σ�

u

j� 
 (19) 

 

with, �� – data variance; ���� – observed values; ��S� – simulated values; � – number of 

observations. 

 

According to Christie et al. (2006) the Bayesian framework for uncertainty quantification is given by: 

  

 

Figure 6 – Bayesian Framework for Uncertainty Quantification (Figure from Christie, 2006) 

Generally, the available information from a reservoir is mostly discrete and sparse and came from 

core measurement; well logs, seismic surveys and production data. We can use this information and 

the information from analogues reservoir to try to define the reservoir and its parameters. For exemple 
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in a fluvial channel we know that we have meandering structures with depth, sinuosity and other 

differentes parameters but we don’t know its distribution and probabilities. So taking into account our 

knolegment and our believes we can start to define a prior probability for this unknowm parameters. 

Then we model different possible reservoir with this prior probablity and match their dynamic response 

with the real known dynamic data. The results from this evaluate misfit allow us to update our beliefs 

about the probabilities using a Bayesian framework. This model update is made giving a posterior 

probability based on the observations.  

 

2.3.2 Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO) was originally developed by Kennedy & Eberhart (1995) and is 

very popular for history matching. Is relatively simple to implement and computationally efficient, for the 

reason that is a swarm intelligence algorithm with a fast convergence and with a randomizing search 

that allows the exploration of the global space and trying not to get stuck in a local minima. 

 

The principle behind PSO is inspired in the social behaviour of a bird flocking or fish schooling. In 

PSO a population of particles are placed randomly in the search space. Considering that each particle 

moves in randomly directions, maintains a memory of the previous best position and a velocity along 

each direction, so the direction of each particle is influence by their own previous successes and the 

successes of the neighbourhood. 

 

The algorithm can be explained in the following steps: 

1. A population of particles of ninit models are placed randomly in the search space. A random 

velocity is allocated for each particle.  

2. At each iteration the fitness of each particles are evaluated; 

3. For each particle, update the position and value of ����� (best solution the particle has seen).If 

the current fitness value of one particle is better than the ����� value, then we store and replace 

the ����� value and the current position by the current fitness value and position; 

4. Update the current global best fitness value and the corresponding best position ����� across 

the whole populations ����� 
5. Update the velocity for each particle according to Equation 20 and update the position for each 

particle using Equation 21. 

6. Repeat steps 2-5 until a stopping criterion is met, for example, a maximum number of iterations 

is reached or a pre-defined fitness value 
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Velocity Update 

The update velocity for each particle is given by (Equation 20): 

 

 vN-� = wvN- + c r x^pbestN- − xN-_ + c�r�x(gbest- − xN-) (20) 

 

where,  S¡ is the current particle ¢ position at iteration s; £ is the inertial weight which influences the 

convergence of the algorithm, �����S¡ is the ����� of particle ¢; �����¡ is the global best of the entire 

swarm at iteration s; ¤  and ¤� are random vectors with each component corresponding to a uniform 

random number between 0 and 1; ¥  is a weighting factor, the cognition component and represents the 

acceleration constant which changes the velocity of the particle towards �����S¡; ¥�  is a weighting factor, 

the social component and represents the acceleration constant which changes the velocity of the particle 

towards �����¡. 

 

 

Figure 7 – Particle Swarm Optimization Velocity Construction (Figure from Mohamed, 2010) 

 

Position Update 

The update position for each particle is given by the previous position added to the particle’s velocity 

(Equation 21). 

 

 xN-� = xN- + vN-�  (21) 

 

The particle position is updated taking into account the progress of the objective function. The 

updated equation for the personal best position �����S¡ is (Equation 22): 

 

 pbestN-� = ¦pbestN- 			if	f(xN-� ) ≥ f(pbestN-)
xN-� 							if	f(xN-� ) < f(pbestN-) (22) 
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where f is the misfit that is being minimised and s is the iteration number. 

 

PSO was implemented using the next parameters, described by Rojas (2013). 

 

Table 1 - PSO Parameters (Table from Rojas 2013) 

PSO Parameter Characteristic 

Number of Particles Number of models used in the optimization 

Group Size 
Number of particles for each group of particles (to generate 

group of particles) 

Initial Inertia 
Tendency of the particle to continue in the same direction it has 

been moving 

Initial Decay Weight used to reduce the initial inertia in every step 

Cognitive Components 
Linear attraction towards the best position ever found by the 

particle 

Group Component 
Linear attraction towards the best position found by a group of 

particle 

Social Component Linear attraction towards the best position found by any particle 

Minimum Steps Minimum number of time-steps a swarm is allowed to search 

Energy Retention Allows the swarm to retain the strategy used in previous steps 

Particle Behaviour 
Select between flexible and conventional behaviour of the 

swarm 
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Chapter 3.  Methodology and Workflow 

 

This thesis introduces a new geostatistical history matching methodology. The proposed multiscale 

geostatistical history matching takes into account the uncertainty at multiple scales. We developed and 

implemented a new algorithm to speed-up the history matching on multiple scales and then quantify the 

uncertainty on it.  

 

The proposed methodology integrates two different workflows: 

1. Multiscale Geostatistical History Matching, MSGHM – integrates two geostatistical history 

matching workflows at different scales (Figure 8): 

 

Figure 8 – Multiscale Geostatistical History Matching General Workflow 

2. Uncertainty in Multiscale Geostatistical History Matching – integrates uncertainty quantification 

in the both scale levels (Figure 9): 

 

Figure 9 – Uncertainty in Multiscale Geostatistical History Matching General Workflow 
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3.1 Multiscale Geostatistical History Matching 

The proposed Multiscale Geostatistical History Matching (MSGHM) workflow integrates one 

traditional geostatistical history matching and one downscaling geostatistical history matching 

frameworks, coupling two different spatial scales (Figure 10):  

 

 

Figure 10 – Multiscale Geostatistical History Matching Workflow 

 

After obtaining some results with this methodology an extension to the proposed workflow was made. 

With this extension we tried to infer if the proposed algorithm can be improved or not improved. This 

algorithm will be called Multiscale Geostatistical History Matching Extended Algorithm (MSGHMEA). 

The proposed algorithm integrates two traditional geostatistical history matching and one downscaling 

geostatistical history matching frameworks, with two different spatial scales (Figure 11): 

 

 

Figure 11 – Multiscale Geostatistical History Matching Extended Algorithm Workflow 

 

Both algorithms of multiscale integrated a traditional geostatistical history matching (Mata-Lima 

2007) and a new geostatistical history matching methodology that integrates a block kriging with a direct 

sequential simulation, Block-DSS, which is a form of stochastic downscaling. 

 

Notice that the methodology proposed in the upscaling is independent of the method used in the 

downscaling. 
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3.1.1 Geostatistical History Matching  

The study of new methodologies of geostatistical history matching was implemented a long time ago 

and consists of using well-log data and historic production data from multiple wells to model static 

reservoirs.  

 

Geostatistical history matching methodologies comprise the use of historic production data from 

multiple wells to model the reservoir  static properties. In reservoir modelling the production data is 

usually integrated by inverse methods involving the perturbation of the model parameters until we get a 

good match between the synthetic production data and the real production data. With a geostatistical 

history matching, a perturbation approach is done in the reservoir properties in order to reproduce the 

complex processes of fluid flow simulation. To do that is required a stochastic modelling, geostatistical 

model, and a deterministic modelling, fluid flow simulation. 

 

The stochastic modelling is applied to model the petrophysical properties of the reservoir, porosity 

and permeability, and the methodology implemented is DSS and Co-DSS, described in the previous 

chapter. This algorithm is implemented using software developed in Centro de Modelização de 

Reservatórios Petrolíferos, CERENA, a research centre from Instituto Superior Técnico. The 

deterministic modelling was implemented using the Eclipse® software. The dynamic simulation gives 

us the information about the direct response of the fluid flow in the reservoir and this allow us to get 

more information about the petrophysical properties not sampled in the reservoir. 

 

Mata-Lima et al. (2007) developed an inverse modelling methodology to integrate dynamic data in a 

static model through the application of geostatistical DSS tool. 

With the application of this new methodology we can attachment perturbation on permeability field 

preserving the spatial pattern. The new approach developed by Mata-Lima consists of three steps: 

1. Create a set of equiprobable models from a reservoir property with a stochastic DSS tool; 

2. Run a dynamic simulation to obtain the production history for each reservoir model simulation – 

Eclipse® 100; 

3. Compare the production data from this realization with the real production data through an 

objective function. This objective function compares the values of each well at different time. The 

simulation that minimizes this objective function is accepted. 

4. Create a perturbation in the initial model with the information obtained from the objective function 

and repeats all the previous steps until a minimum value to the objective function is achieved 

This methodology is represented in the following detailed framework (Figure 12). 
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Figure 12 – Geostatistical History Matching Detailed Workflow  
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This methodology allows us to generate multiple models of petrophysical properties. These models 

must honour the information provided from the wells: both the static data from well-logs and the dynamic 

data from the production well. In each step of this methodology the simulated model must check the 

spatial continuity of the reference model and must decrease the difference between the dynamic data 

from the simulated model and the observed model. 

 

As mentioned before, to implement this methodology we need some prior information, well-log data 

and production data. The well-log data is used in the first step of this algorithm. Knowing the distribution 

and the spatial continuity of the well-log we can assume that the distribution of the properties and the 

spatial continuity of the reservoir at the same. With this information we can implement the stochastic 

simulation, DSS, and generate a set of equiprobable reservoirs models. For each previous reservoir 

model simulation we can run a dynamic simulation and obtain the direct response of the fluid flow in the 

simulated reservoir.  Knowing the real production data from the production wells and the fluid flow 

response from the simulated reservoir we can match them and evaluate the misfit. The model with the 

lowest misfit is used as a secondary image in a new iterative process to perturb, by co-simulation, the 

petrophysical properties of the reservoir. This perturbation, that generates new reservoir models using 

the previous simulation as soft data, aims to reach a faster convergence decreasing the difference 

between the dynamic data from the simulated model and the observed model and therefore allows us 

to achieve a good simulated model with a good match of production data. 

 

To improve the efficiency of this methodology and reach a faster convergence two improvements are 

implemented: (i) a multi-criteria objective function (ii) a local perturbation developed by Mata-Lima 

(2008). 

 

Multi-Criteria Objective Function 

A multi-criteria objective function takes into account the values of pressure and oil production from 

each well and for each time. This algorithm is implemented when we have information from more than 

one well and the objective function tries to match the response of the entire set. 

 

The misfit  dependents on the production wells, on the variables: well oil production rate, WOPR, 

well bottom hole pressure, WBHP and on the time steps (Figure 13). The objective function, M, applied 

in this multiscale geostatistical history matching methodology consist the minimization of the function: 

 M =	�£�©©��ª�R},ªU«R��¢�� ^qNQ-��, − qNQ-,N�_�
2σNQ�  (23) 

 

with, σNQ�  – data variance, qNQ-��, – observed values, qNQ-,N� – simulated values, WOPR – well oil 

production rate, WBHP – well bottom hole pressure. 
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Figure 13 – Multi-Criteria Objective Function Representation 

 

Local Perturbation 

Mata-Lima (2008) developed a new kind of perturbation; the regional perturbation which is reached 

locally by defining influence zones around each well. This methodology can be applied when we have 

dynamic data information from more than one producer well. 

 

With the regional perturbation, a best compose image is reached. This best compose image is 

created as a patchwork, patches are defined around each well and the realization with the lowers misfit 

from each patch are merged together. The images with the closest dynamic response are calculated by 

the previous objective function that takes into account the dynamic data per well. 

 

 

Figure 14 – Best Composed Image Representation 
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With these changes the method reaches a faster convergence to the objective function. In addition 

it is a very simple methodology to implement. This approach allows us to obtain a better result and more 

approximate models of reality and hence more consistent, honouring the initial data and keeping the 

same spatial patterns as revealed by the variograms. Notice that this patchwork does not guarantee the 

spatial continuity and the connectivity of the channels in the original images and is just used as 

secondary information, soft data, in the next iterative process. 

 

3.1.2 Multiscale Geostatistical History Matching 

A typical 3D reservoir model has approximately 10 million of active cells, which makes it impossible 

process geostatistical reservoir modelling conditioned to production data because of the high 

computation time of the fluid flow simulator at each iteration step. The solution to optimise this procedure 

is to create a model more lightweight and easier to analyse and to study. By upscaling the model we 

can reduce the number of grid block and the number of unknown parameters allowing for faster fluid 

flow simulations. However with this upscaling technique we lose important information, such as the small 

scale heterogeneity and in the end what we really want to achieve is a fine scale model, with fine scale 

details for fluid flow simulation. To try to minimize these problems new multiscale history matching 

methods have been developed. 

 

A multiscale technique is characterized by physical models with multiple scales, in this case, different 

spatial scales. The matching of these scales is made using the data production history from each model. 

 

Aanonsen and Eydinov (2006) developed a multiscale methodology that includes two changes of 

scales. The process begins with a fine scale model and the production data information from this model 

will be used as reference. It starts to increase the scale of this model to a coarse grid using a global 

upscaling and this new coarse grid model is history matching with the production data from the reference 

model reservoir. Then this coarse grid model will be refined using a downscaling and a new history 

matching is done to match his production data with the production data from the reference model. The 

method used for the upscaling is independent of the method used for the downscaling however all the 

models, coarse and fine grid must be consistent with static and dynamic data. Aanonsen (2008) uses 

as a downscaling method, the sequential Gaussian simulation with block kriging, SGSBK, described by 

Behrens et al. (1998). The workflow for this methodology is represented in Figure 15. 

 

The aim of the multiscale modelling is to obtain an efficient and accurate approximation to the solution 

in the fine scale, high resolution model. The advantage of implementing multiscales parameterizations 

techniques is to use fast update of coarse models to constrain the history matching models in fine-scale. 

With this methodology a significantly reduction in processing time is obtained so it guarantees a faster 

and more efficient estimation that generates more consistent models. The procedure promotes a good 

integration of dynamic data in the static model and it ensures that the matching is retained through the 

downscaling step. 
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Figure 15 – Multiscale History Matching (Modified from Aanonsen, 2005) 

 

This new algorithm incorporates some concepts and some methodologies that we previously point 

out. The main idea of this new geostatistical history matching underlies the multiscale developed by 

Aanonsen and Eydinov (2006), but instead of using a Gaussian approach we will use a Direct Sequential 

approach. As a result this novel algorithm of multiscale geostatistical history matching incorporated a 

traditional geostatistical history matching according to Mata-Lima et al. (2007) and the downscaling 

geostatistical history matching is made recurring to Block-DDS developed by Lui & Journel (2009). 

 

We proposed a new history matching methodology that couples different geological scales recurring 

to Block-DSS. In order to speed-up the history matching procedure we first optimize the reservoir model 

at a very coarse grid which is then used as an auxiliary model to perform the history matching at a very 

fine scale. 

 

The advantage of implementing multiscale parameterizations techniques is to use fast update of 

coarse models to constrain the history matching models in fine-scale. This large scale correction 

integrated in a downscaling procedure provides a better first initial fine model for the final adjustments 

in the fine grid. With this methodology a significantly reduction in processing time is obtained so it 

guarantees a faster and more efficient estimation that generates more consistent models compared to 

history matching directly on the fine grid. The procedure promotes a good integration of dynamic data 

in the static model and it ensures that the matching is retained through the downscaling step. This 

methodology reduces the overparameterization problem preserving spatial variability. 

Multiscale Geostatistical History Matching Algorithm 

The proposed geostatistical history matching algorithm comprises a multiscale technique that is 

characterized by physical models on multiple scales, in this case, two different spatial scales. The 
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proposed workflow integrates two geostatistical history matching loops: (i) model a very coarse reservoir 

grid; (ii) model a fine grid taking into account the coarse matched grid by integrating block kriging with 

direct sequential simulation, Block-DSS.  

 

The MSGHM procedure can be summarized in the following sequence of steps (Figure 16): 

1. Collect prior information: well-log data, production data and spatial continuity.. The production 

data will be used as a reference in the misfit. 

2. Run a traditional geostatistical history matching: 

a. Create a set of equiprobable models from a reservoir property with DSS; 

b. Run a dynamic simulation to obtain the production history for each reservoir model 

simulation; 

c. Compare the production data from this realization with the real production data through 

an objective function. This objective function compares the values of each well at 

different time. The simulation that minimizes this objective function is accepted; 

d. Create a perturbation in the initial model with the information obtained from the objective 

function and repeats all the previous steps until a minimum value to the objective function 

is achieved; 

3. A best coarse grid reservoir model is achieved; 

4. Run a downscaling geostatistical history matching - the best coarse grid model will be refined 

using a Block-DSS to downscale the matched coarse grid: 

a. Compute the block-to-block average, 	CF̅F+, block-to-point average, 	CF̅E, point-to-block 

average, 	CE̅F, and point-to-point, CPP’,  local covariance matrix; 

b. Create a set of equiprobable models from a reservoir property with a stochastic DSS 

tool; 

c. Run a dynamic simulation to obtain the production history for each reservoir model 

simulation – Eclipse® 100; 

d. Compare the production data from this realization with the real production data through 

an objective function. This objective function compares the values of each well at 

different time. The simulation that minimizes this objective function is accepted; 

5. A best fine grid reservoir model is achieved. 
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Figure 16 – Multiscale Geostatistical History Matching Detailed Workflow 
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To implement this methodology we need some prior information, well-log data and production data. 

The well-log data is used in the first step of this algorithm. Knowing the distribution and the spatial 

continuity of the well-log we can assume that the distribution of the properties and the spatial continuity 

of the reservoir is the same. With this information we can implement the stochastic simulation, DSS, and 

generate a set of equiprobable reservoirs models. For each previous reservoir model simulation we can 

run a dynamic simulation and see the direct response of the fluid flow in the simulated reservoir.  

Knowing the real production data from the production wells and the fluid flow response from the 

simulated reservoir we can match them and evaluate the misfit. The model with the lowest misfit is used 

as a secondary image in a new iterative process to perturb, by co-simulation, the petrophysical 

properties of the reservoir. When the minimum value defined to the objective function is achieved a best 

coarse grid reservoir model is obtained and used in the next procedure. This best coarse grid model is 

refined using a block direct simulation to downscale the matched coarse grid. The block kriging 

covariance matrix is computed only once and stored, to be looked up and avoid repetitive calculation in 

the simulation process. A set of equiprobable reservoirs models are generated and a new history 

matching is done to match the observed production data at a finer scale. The simulation that minimizes 

this objective function is accepted and a best fine grid reservoir model is achieved. The methodology 

proposed for the upscaling is independent of the method used for the downscaling. 

 

3.1.3 Multiscale Geostatistical History Matching Extended Algorithm 

This methodology is an extension of the workflow introduced in the previous section. With this 

extension we tried to check some results and infer what can be improved or not in the algorithm. The 

proposed algorithm integrates two traditional geostatistical history matching and one downscaling 

geostatistical history matching frameworks, with two different spatial scales. 

 

The aim of this algorithm is to optimize even more the fine grid model and try to achieve better results 

than the previous algorithm. 

 

The first steps of MSGHMEA workflow are the same as the MSGHM, the extension is implemented 

after the downscaling and a new traditional geostatistical history matching is incorporated to further 

optimize the fine grid model. In italic are defined the new added steps .To apply MSGHMEA following 

steps should be done: 

1. Collect prior information: well-log data, production data and spatial continuity, from a synthetic 

reservoir model. The production data will be used as a reference in the misfit. 

2. Run a traditional geostatistical history matching in a coarse grid: 

a. Create a set of equiprobable models from a reservoir property with a stochastic DSS 

tool; 
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b. Run a dynamic simulation to obtain the production history for each reservoir model 

simulation – Eclipse® 100; 

c. Compare the production data from this realization with the real production data through 

an objective function. This objective function compares the values of each well at 

different time. The simulation that minimizes this objective function is accepted; 

d. Create a perturbation in the initial model with the information obtained from the objective 

function and repeats all the previous steps until a minimum value to the objective function 

is achieved; 

3. A best coarse grid reservoir model is achieved; 

4. Run a downscaling geostatistical history matching - the best coarse grid model will be refined 

using a Block-DSS to downscale the matched coarse grid: 

a. Compute the block-to-block average, 	CF̅F+, block-to-point average, 	CF̅E, point-to-block 

average, 	CE̅F, and point-to-point, CPP’,  local covariance matrix; 

b. Create a set of equiprobable models from a reservoir property with a stochastic DSS 

tool; 

c. Run a dynamic simulation to obtain the production history for each reservoir model 

simulation – Eclipse® 100; 

d. Compare the production data from this realization with the real production data through 

an objective function. This objective function compares the values of each well at 

different time. The simulation that minimizes this objective function is accepted; 

5. A best fine grid reservoir model from the block-DSS is achieved. 

6. Run a traditional geostatistical history matching in a fine grid: 

a. Create a set of equiprobable models from a reservoir property with a stochastic DSS 

tool; 

b. Run a dynamic simulation to obtain the production history for each reservoir model 

simulation – Eclipse® 100; 

c. Compare the production data from this realization with the real production data through 

an objective function. This objective function compares the values of each well at 

different time. The simulation that minimizes this objective function is accepted; 

d. Create a perturbation in the initial model with the information obtained from the objective 

function and repeats all the previous steps until a minimum value to the objective function 

is achieved; 

7. A best fine grid reservoir model is achieved. 

This proposed methodology is represented in the next following detailed framework (Figure 17). 
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35 

 

Figure 17 – Multiscale Geostatistical History Matching Extended Algorithm Detailed Workflow  

 

3.2 Uncertainty Quantification 

The previous workflow of MSGHM assumes stationarity in the geological parameters but in a true 

case there is a huge lake of information about the parameters and therefore a lot of uncertainty. This 

uncertainty in the geological parameters can be related with the spatial continuity, as variograms, and 

with the properties distributions, as the mean and the standard deviation. 

 

In this work we proposed to quantify the uncertainty in the spatial continuity related with the different 

geostatistical modelling scales of MSGHM, thus we will have uncertainty in the large scale correlation, 

small scale heterogeneity and in the downscaling procedure. This uncertainty quantification would be 

integrated recurring into stochastic adaptive sampling and Bayesian inference in both scale levels: fine 

grid and coarse grid. The algorithm is implemented using the Raven software developed in Uncertainty 

Quantification Group, Institute of Petroleum Engineering, a research centre from Heriot-Watt.  
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Figure 18 – Multiscale Geostatistical History Matching Uncertainty Quantification Framework 

 

The methodology applied in this workflow is the PSO and it aims to find the best particle, represented 

by the set of the 5 parameters that are responsible to define the spatial continuity in the model. The 

spatial continuity is defined by the variograms, the range and the angle, as a result, instead of using a 

fix value for the range and the angle, a uniform distribution is assumed (Figure 19). This change will be 

implanted in the MSGHM and the simulated model will allow the uncertainty quantification in the 

reservoir. 

 

Figure 19 –Variograms Parameters used to Quantify the Uncertainty 

 

The objective function in PSO is commonly the least square misfit and in this workflow we will 

implement a multi-objective function that takes into account different time steps in different variables per 

well. This misfit is dependent on the production wells, the variables: well oil production rate, WOPR, well 

bottom hole pressure, WBHP and the time steps. 

 

The objective function, M, applied in this uncertainty quantification in a multiscale geostatistical 

history matching methodology consist on the minimization of the function: 

 M =	�wells�WOPR,WBHP�time^qNQ-
��, − qNQ-,N�_�
2σNQ�

 (24) 

with, σNQ�  – data variance, qNQ-��, – observed values, qNQ-,N� – simulated values, WOPR – well oil 

production rate, WBHP – well bottom hole pressure. 
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The uncertainty quantification will be implemented only in the MSGHM algorithm and the parameters 

we want to take into account are related with the spatial continuity in the model, i.e., the range in direction 

X, the range in direction Y, the angle and the small scale heterogeneity in the fine grid model represented 

as a new structure in the variogram. 

 

The workflow can be explained and summarize in the following steps: 

1. Define the parameters in which we will consider the uncertainty and define the prior probability 

distribution for each one, Table 2. 

2. Define the methodology implemented, in this case the Particle Swarm Optimization the number 

of particles and the number of simulations; 

3. With the methodology, MSGHM, implemented in the previous section, a set of multiple reservoir 

models is simulated with a population of particles of ninit models placed randomly in the search 

space; 

4. A flow simulation is performed recurring to Eclipse® simulator and the goal is to minimise the 

objective function, Equation 24, between the best fine model from de MSGHM and the reference 

model; 

5. At each iteration the fitness of each particles are evaluated; 

6. At the end of iteration we update the position and values of the uncertainty parameters based on 

the objective function.  

7. Repeat steps 3-6 until a maximum number of iterations is reached 

8. The parameters are optimized and the and uncertainty is assessed ; 

 

Table 2 - Parameterisation and Prior Distribution in Uncertainty Quantification 

Parameter Prior Distribution 

Spatial 

Continuity 

Range XX 
 

Range YY 
 

Angle 
 

  

This proposed methodology is represented in the next framework (Figure 20 e Figure 21). 
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Figure 20 – Particle Swarm Optimization Detailed Workflow 
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The MSGHM workflow integrated in the uncertainty quantification workflow is represented by: 

 

 

Figure 21 – MSGHM Workflow Integrated in the Uncertainty Quantification Workflow 
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Chapter 4.  Case Study – Synthetic application 

 

This novel approach has to be tested and implemented to be confirmed. Therefore to confirm the 

proposed methodology we choose to implement it in a case study of a synthetic reservoir that represents 

a fluvial channel. 

 

In this dissertation two different workflows were defined: 

1. Multiscale Geostatistical History Matching; 

2. Uncertainty Quantification in Multiscale Geostatistical History Matching; 

 

The data set from the synthetic reservoir will be applied independently in each workflow and the 

results will be discussed independently in each workflow. 

 

A previous introduction about the data set is made. 

 

4.1 Data set description 

The 3D synthetic reservoir, Peka Reservoir, was built in CERENA during the internship and was 

updated several times in Heriot-Watt to achieve a “true” geologic model from a fluvial channel system 

with a realistic production strategy. In this process the facies were defined: fluvial channel and shales; 

the petrophysical properties: porosity and permeability, and the dynamic properties as well as the 

production strategy. 

 

The reservoir represents a fluvial system with 1km (North-South), 1km (East-West) and 100m 

thickness dimensions. The fine grid is defined by 160 000 blocks discretized by [100x100x16] cells with 

10mx10mx6.25 each. 

 

Table 3 - Layout Channels Definition 

 Type Drift Min Mean Max 

Orientation Normal 0,2 - 6 15 

Amplitude Triangular 0,2 200 450 1500 

Wavelength Triangular 0,2 600 800 1000 

Width Triangular 0,2 150 450 1000 

Thickness Triangular 0,2 10 15 20 
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Figure 22 – Peka Reservoir Facies Model  

 

Petrophysical Properties 

The geological model comprises fluvial channel with sand bodies and background with shales. The 

porosity and permeability from these bodies are given by the Table 4 and 5. 

 

 

Figure 23 – Porosity Model: a) Peka Reservoir Model, b) Peka Reservoir Histogram 

 

 

Table 4 - Porosity Statistics 

Porosity (PHI) (x100%) Sand Shale 

Mean 0.23 0.05 

Std. 0.08 0.04 

Minimum 0.02 0.01 

Maximum 0.32 0.14 
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Figure 24 – Permeability Model: a) Peka Reservoir Model, b) Peka Reservoir Histogram 

  

The permeability was obtained with co-kriging using porosity as secondary variable and with a 

correlation coefficient of 0.7. 

 

Table 5 - Permeability Statistics 

Permeability (k) (mD) Sand Shale 

Mean 357.0 0.7 

Std. 287.4 1.2 

Minimum 4.3 0.003 

Maximum 1099.0 7.0 

 

Dynamic Properties 

There are two phases in the reservoir: oil and water. This reservoir produced through a combination 

of an aquifer drive and water flood. The injection rate is constant at 11 500.0 stb/day and the aquifer 

inflow rate is 0.0545 stb/day/ft2. 

 

The field has 5 wells, 4 production wells in the corner and 1 injector well in the centre with constant 

injection rate. In the coarse grid the well positions and the controls parameters are identical to the fine 

grid model. The reservoir is controlled by constant liquid production rate and the reservoir will produce 

during 2008 days, 5 ½ years. The pressure support is provided by the aquifer and the water injection 

from the only one injector well. The producers are shut off if the water cut exceeds 90%. 

 

The control data from production wells is given by: 

Injection Well I1 → Flow Rate 11 5000stb/day  

Production Well P2 → Liq. Rate Target 6 000stb/day 

Production Well P3 → Liq. Rate Target 3 000 stb/day 

Production Well P4 → Liq. Rate Target 3 000 stb/day 

Production Well P5 → Liq. Rate Target 6 000stb/day 
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Figure 25 – Reservoir Model Production: a) Day 1, b) Day 2008 

 

 

Figure 26 – Oil Production Rate per Well 

 

 

Figure 27 – Bottom Hole Pressure per Well 
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The reservoir has oil production in the four wells during the 2008 days. In image 27 we can see the 

fluid flow in the day 1 and in the last day, day 2008. We can see how the oil moves and how the water 

occupies those spaces. In image 28 we can see the Well Oil Production Rate per well. The well P3 and 

the well P4 start with a production of 3 000 stb/day and keep that production until day 150, after that the 

number of barrels per day starts to decrease significantly. The well P2 and the well P5 start with a 

production of 6 000stb/day and well P5 keeps that production until day 244 and well P2 keeps the 

production until day 512, after that the number of barrels per day starts to decrease. The bottom hole 

pressure decrease constantly in the four wells during the production time. 

 

Conditional data 

The conditional data in this case study is the well-log data: porosity and permeability; and the 

production data from each well: bottom hole pressure and oil production rate. The production data to be 

mismatched will be the same in the coarse and in the fine grid. 

 

Notice that the well are typical drilled in zones with high porosity sands so usually the statistical of 

the property is underestimated and without much information about zones with less porosity. To try to 

solve this problem we will take into account more wells to run the stochastic simulation. As a result, 15 

well will be considered in the stochastic simulation but only 5 well will be considered to assess the 

matching of the dynamic response. 

 

      

Figure 28 – Wells used to History Matching (left) and Wells used in DSS (right) 

 

The experimental bi-histogram is used in the sequential simulation with joint-distribution, which 

allows the reproduction of the non-linear relationships between properties, in this case porosity and 

permeability. 
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Figure 29 – Bi-Histogram from Hard Data: Porosity and Permeability  

 

The point data, well-logs, obtained from the synthetic reservoir are used in the simulation process. 

In this hard data we have information about 15 wells, the number of well accepted to be used in the 

sequential simulation. The well-log histograms from porosity and from permeability are very similar to 

the histograms from the reference model. 

 

   

Figure 30 – Permeability Models: a) Hard Data, b) Histogram from Hard Data 

 

 

Figure 31 – Porosity Models: a) Hard Data, b) Histogram from Hard Data 
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The production data used to history matching is already represented and explained in Figure 26 and 

27. The matching will be done with the oil production rate per well and with bottom hole pressure per 

well. 

 

Spatial Continuity 

The direction of maximum continuity is along N-S direction and the angle is around 84 degrees. The 

variogram in X direction is defined with only one spherical model structure with range of 280. The 

variogram in Y direction is defined with tree different spherical model structures. The first structure 

represents the small scale heterogeneity and the range is 100, the second structure represents the 

spatial continuity of the model and the range is 520, the third structure represents the zonal anisotropy 

of the model and the range tends to infinite.  

 

   

Figure 32 – Permeability Models: a) Variogram in X Direction, b) Variogram in Y Direction 

 

   

Figure 33 – Porosity Models: a) Variogram in X Direction, b) Variogram in Y Direction  

 

4.2 Multiscale Geostatistical History Matching 

To implement this workflow, two different types of conditional data were available: 15 well-logs and 

production data from 4 wells. 
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The fine grid is defined by 160 000 blocks discretized by [100x100x16] cells with 10mx10mx6.25 

each and the coarse grid is defined by 6 400 blocks discretizes by [20x20x16] with 50mx50mx6.25m 

each. The reduction scale factor for each direction x, y is 5. This reservoir model upscaling and 

downscaling is represented in Figure 34. 

 

In this workflow we run 30 iterations, each one with 10 simulations in the traditional geostatistical 

history matching in coarse grid, 15 iterations with the downscaling geostatistical history matching in the 

fine grid and we run 10 iterations, each one with 5 simulations in the traditional geostatistical history 

matching in the fine grid: 

 

• Simulated model in the coarse grid = 300 models 

• Simulated models with block simulation in the fine grid = 15 models 

• Simulated models in the fine grid = 50 models 

 

 

Figure 34 – Multiscale Dimension Workflow: Fine Scale - Coarse Scale - Fine Scale 

 

4.2.1 Results 

Multiscale Geostatistical History Matching 

The Multiscale Geostatistical History Matching (MSGHM) proposed workflow integrates one 

traditional geostatistical history matching and one downscaling geostatistical history matching 

frameworks, with two different spatial scales: one coarse scale and one fine scale. 
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The information from the reference model used to perform the simulation and the match is 

represented in Figure 35: 

 

 
  

Figure 35 – Permeability Models: a) 3D Synthetic Reservoir, Z=0m, b) Hard Data, c) Histogram from 
Synthetic Model and Hard Data 

 

 

The traditional geostatistical history matching in the coarse grid run 30 iterations with 10 simulations 

each in 1h47m. The first simulations (Figure 36) don’t represent effectively the spatial distribution of the 

reservoir and the misfit has high values, however with the increase of the number of iterations the spatial 

reproduction improves and it is easier to distinguish the two different channels. There is a reduction in 

the misfit value and it is possible to confirm that the production data tend to approach to the values of 

synthetic model (Figure 37).  

 

 

ITERATION 1 

  

ITERATION 30 

  

Figure 36 – Permeability Models Evolution: a) Reservoir Model Iteration 1, b) Histogram from Reservoir 
Model, Iteration 1, c) Best Coarse Model, Iteration 30 (Matched Realization), d) Histogram from Best Coarse 
Model, Iteration 30 
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Figure 37 – History Matching Well P3: Well Oil Production Rate from Synthetic Reservoir, Best Coarse 
Model It 01 (Iteration 01) and Best Coarse Model (Iteration 30) 

 

 

The best-fit inverse model (Figure 38 and 39) was able to reproduce the spatial distribution of the 

main channels without great detail. This model was then used as conditioning data in Block-DSS for the 

history matching at a much finer grid (Figure 40). 

 

 

REFERENCE MODEL 

  

BEST COARSE 

MODEL 

ITERATION 30 

  

Figure 38 – Permeability Models: a) Reference Model b) Histogram from Reference Model, c) Best 
Reservoir Model, Iteration 30 (Matched Realization), d) Histogram from Best Reservoir Model, Iteration 30 
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REFERENCE MODEL 

  

BEST COARSE 

MODEL ITERATION 30 

  

Figure 39 – Porosity Models: a) Reference Model, b) Histogram from Reference Model, c) Best 
Reservoir Model, Iteration 30 (Matched Realization), d) Histogram from Best Reservoir Model, Iteration 30 

 

The downscaling geostatistical history matching runs 15 iterations, in 1h34m. The results from the 

fine grid do not represent the shape of each individual channel but the trend is very well illustrated 

(Figure 41 and Figure 42). 

REFERENCE MODEL 

  

BEST COARSE 

MODEL ITERATION 30 

  

BEST FINE MODEL 

(from Block-DSS) 

ITERATION 07 

  

Figure 40 – Permeability Models: a) Reference Model b) Histogram from Reference Model, c) Best Coarse 
Model, Iteration 30 (Matched Realization), d) Histogram from Best Coarse Model, Iteration 30, e) Best Fine 
Model from Block-DSS, Iteration 7 (Matched Realization), f) Histogram from Best Fine Model from Block-
DSS, Iteration 7 
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Notice that for the fine grid we only need to run 15 iterations to reach a good match. This is a crucial 

improvement when compared with the traditional geostatistical history matching that would need much 

more iterations and consequently more execution time. As in the coarse grid simulation, also in the fine 

grid there is an improvement in the spatial distribution with the increase of the number of iterations. 

 

REFERENCE MODEL 

  

BEST COARSE 

MODEL ITERATION 30 

  

BEST FINE MODEL 

(from Block-DSS) 

ITERATION 07 

  

Figure 41 – Porosity Models: a) Reference Model b) Histogram from Reference Model, c) Best Coarse 
Model, Iteration 30 (Matched Realization), d) Histogram from Best Coarse Model, Iteration 30, e) Best Fine 
Model from Block-DSS, Iteration 7 (Matched Realization), f) Histogram from Best Fine Model from Block-
DSS, Iteration 7 

 

The history matching misfit from the best image of coarse grid has a low value and it is close to the 

misfit from the best image of the fine grid which indicates that there is a good integration of dynamic 

data in the static model. The well bottom hole pressure data and the oil production rate from the coarse 

grid and fine grid are quite close to the synthetic model data. The misfit from the fine model from Block-

DSS increase a little, this is a consequence of the shape of the channels. A small change in the width 

or in the thicknesses could make a huge change in the connectivity of the channels and therefore in the 

production data. 
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Figure 42 – History Matching Well P3: a) Well Oil Production Rate from Synthetic Reservoir, Best 
Coarse Model (Iteration 30) and Best Fine Model from Block-DSS (Iteration 07); b) Well Bottom Hole 
Pressure from Synthetic Reservoir, Best Coarse Model (Iteration 30) and Best Fine Model from Block-DSS 
(Iteration 07) 

 

Multiscale Geostatistical History Matching Extended Algorithm  

The extension of the previous algorithm added a new traditional geostatistical history matching in the 

fine grid with the information from the Block-DSS. With this extension we tried to infer if the algorithm 

can be improved, i.e., if increasing the number of refinements in the model improves the results. 

 

The traditional geostatistical history matching in the fine grid runs 10 iterations with 5 simulations 

each in 11h24m. This best model from the downscaling geostatistical history matching was used as 

conditional data in this history matching. Both models are in the fine scale and this extension is only 

used to try to improve the fine grid reservoir. The best-fit inverse model (Figure 43 and 44) is able to 

reproduce the spatial distribution of the main channels without great detail.  

 

Notice that to improve a little the reservoir in the fine grid we need to run 50 iterations, which takes 

11h24m until reaching a good match. 

 

The history matching misfit from the best image of fine grid from the Block-DSS and the history 

matching misfit from the best image of fine grid from the traditional geostatistical history matching are 

close, but the last one has the low value and is closed to the synthetic data, which indicates that is the 

best integration of dynamic data in the static model. The well bottom hole pressure data and the oil 

production rate from the coarse grid and fine grid are quite close to the synthetic model data. 
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BEST FINE MODEL 

(from Block-DSS) 

ITERATION 07 

  

BEST FINE MODEL 

ITERATION 09 

  

Figure 43 – Permeability Models: a) Best Fine Model from Block-DSS, Iteration 07 (Matched Realization), 
b) Histogram from Best Fine Model from Block-DSS, Iteration 07, c) Best Fine Model, Iteration 09 (Matched 
Realization), d) Histogram from Best Fine Model, Iteration 09 

 

 

 

BEST FINE MODEL 

(from Block-DSS) 

ITERATION 07 

  

BEST FINE MODEL 

ITERATION 09 

  

Figure 44 – Porosity Models: a) Best Fine Model from Block-DSS, Iteration 07 (Matched Realization), b) 
Histogram from Best Fine Model from Block-DSS, Iteration 07, c) Best Fine Model, Iteration 09 (Matched 
Realization), d) Histogram from Best Fine Model, Iteration 09 
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Figure 45 – History Matching Well P3: a) Well Oil Production Rate from Synthetic Reservoir, Best Coarse 
Model (Iteration 30), Best Fine Model from Block-DSS (Iteration 07) and Best Fine Model (Iteration 09); b) 
Well Bottom Hole Pressure from Synthetic Reservoir, Best Coarse Model (Iteration 30), Best Fine Model 
from Block-DSS (Iteration 07) and Best Fine Model (Iteration 09) 

 

4.2.2 Discussion 

This study ensures that simulated models honour the data points and the block data from the 

available experimental data; reproduces the statistics, probability distribution and joint-probability 

distribution, and the spatial continuity pattern imposed by the variograms. In general this workflow is 

very promising since the results from the coarse grid and from the fine grid are consistent with the 

reference model. In the simulated model, the majors patterns are reproduced even though it is difficult 

to represent reservoir models with complex structures, as channels and meanders. The iterative 

optimization assures the match between the dynamic responses from simulated models and historical 

production data. 

 

With the implementation of this methodology we are able to simulate models with high resolution 

conditioned to low resolution models. The solution is a fast algorithm able to model a 3D reservoir in a 

reasonable time. 

 

We studied two different methodologies: MSGHM and MSGHMEA. The MSGHM proposed workflow 

integrates one traditional geostatistical history matching and one downscaling geostatistical history 

matching frameworks, with two different spatial scales. The MSGHMEA proposed algorithm integrates 

two traditional geostatistical history matching and one downscaling geostatistical history matching 

frameworks, with two different spatial scales. 

 

The traditional geostatistical history matching in the coarse grid runs 30 iterations with 10 simulations 

each in 1h47m. The downscaling geostatistical history matching runs 15 iterations in 1h34m. The 

traditional geostatistical history matching in the fine grid runs 10 iterations with 5 simulations each in 

11h24m. Notice that to improve a little the reservoir in the fine grid we need to run 50 iterations, which 

takes 11h24m until reach a good match. 
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Table 6 - Algorithm Time Processing 

Scale Model Number of Simulations Time Processing 

Coarse Grid Model 300 simulations 1h47m 

Fine Grid Model Block-DSS 15 simulations 1h34m 

Fine Grid Model 50 simulations 11h24m 

 

The history matching misfit from the best image of fine grid has the low value and is closed to the 

synthetic data, which indicates that is the best integration of dynamic data in the static model. However 

the time consumed to process this improvement is huge and we can’t see significant improvements 

when compared with the result from the best image of fine grid from Block-DSS. As a result implementing 

the extended algorithm didn’t bring any advantage. We can achieve good result only using a 

downscaling geostatistical history matching. 

 

4.3 Uncertainty Quantification in Multiscale History Matching 

The previous workflow was implemented and tested assuming stationarity in the parameters but in 

a true case there is a huge lake of information about the parameters and therefore a lot of uncertainty. 

To try to quantify this uncertainty, the previous methodology was implemented and tested taking into 

account the uncertainty in the parameters, in this specific case the uncertainty in the spatial continuity 

of the data in the both scale levels: fine grid and coarse grid. 

 

We studied 2 level of uncertainty. In the coarse grid we quantified the uncertainty in the kriging and 

variogram, represented by their angles and ranges. In the fine grid we also quantified the uncertainty in 

the kriging and variogram, represented by their angles and ranges and the error in the downscaling 

kriging step. 

 

Table 7 - Uncertainty Quantification: Parameters and Prior Distributions 

Parameter Prior Distribution Range 

Spatial 

Continuity 

Range XX 
 

[200, 600] 

Range YY 
 

[50, 150] 

 
[400, 1000] 

Angle 
 

[75, 90] 

Downscaling Error 
 

[0.1, 0.5] 
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The methodology applied in this workflow is the PSO and it aims to find the best particle, represented 

by the set of the 5 parameters that are responsible to define the spatial continuity in the model. The 

spatial continuity is defined by the variograms, the range and the angle. As a result, instead of using a 

fix value for the range and a fix value for the angle, a uniform distribution is assumed for each one. This 

change will be implanted in the MSGHM and the simulated models will allow the uncertainty 

quantification in the reservoir. 

 

The parameters and the prior probability distribution for each one are defined in Table 7 and 

represented in Figure 46:. 

 

Figure 46 - Parameters and Prior Distribution for Uncertainty Quantification 

 

This PSO was implemented using the next parameters: 

 

Table 8 - PSO Parameters Case Study 

PSO Parameter Characteristic 

Number of Particles 5 

Group Size 0 

Initial Inertia 0.729 

Initial Decay 1.0 

Cognitive Components 1.494 

Group Component 0.0 

Social Component 1.494 

Minimum Steps 2 

Energy Retention 0.8 

Particle Behaviour Flexible 
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4.3.1 Results 

In the previous section, 4.2, we checked that the implementation of a MSGHMEA didn’t bring any 

advantage, so this case study will be implemented only in the MSGHM models. 

 

 

To quantify the uncertainty in the model spatial continuity we run 150 iterations, simulating 5 models 

of porosity and permeability per iteration. At each iteration we updated the ranges and angles from the 

variogram in X direction and Y direction. The methodology was implemented until day 1000. 

 

The production data from the simulated reservoir models match considerably well the production 

data from the synthetic model. We can see that PSO has modelled a range of models that fit reasonably 

the observed history data.  

 

   

   

Figure 47 – Best History Matching from PSO, from left to right: (top) a) Well Oil Production Rate Well 
P2, b) Well Oil Production Rate Well P3, (bottom) c) Well Oil Production Rate Well P4, d) Well Oil 
Production Rate Well P5 

 

The sampling history of PSO is represented in Figure 48. These figures are 3 plots showing the 

evolution of 3 different parameters: horizontal and vertical range, and angle of the variograms. As the 

number of iterations increase the range of the parameters values tend to reduce. We can see a reduction 

in the angle parameter from the prior distribution of [75.0, 90.0] to a new range of [80.0, 85.0] and with 

more iteration these range should decrease even more. 
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Figure 48 – PSO Sampling history for 3 unknown parameters 

 

The PSO misfit evolution is represented in Figure 49. The figure plots the best misfit obtained in each 

generation of the algorithm versus the generation number. The misfit is showed per Well P2, P4 and 

P5. With only 150 iterations it is very difficult to see a trend and a misfit convergence. 

 

    

 

Figure 49 – PSO Misfit Evolution per Well 

 

The Figure 50 shows the evolution of the space parameter per misfit. This misfit was studied per well 

and in the figure we can see the evolution of the Y direction range parameter in well P3, the evolution 

of the X direction range parameter in well P5 and the evolution of the parameter angle in well P2. As the 
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number of iterations increase the misfit decrease and we start to see a convergence to a value, reducing 

the range of possible parameter values. In well P2 the angle tends to converge to a range angle between 

85.0 and 90.0. 

 

     

 

Figure 50 – Parameter versus Misfit 

 

4.3.2 Discussion 

We implemented a PSO methodology in the MSGHM workflow to quantify the uncertainty in the 

spatial continuity parameters. We searched the space of parameters based on prior beliefs. 

 

The results are not as good as we expected because this methodology has a huge time processing 

and we were not able to run as many iterations as we wanted and needed. However we consider that 

this is a reliable methodology to assess multiscale uncertainty related with geological parameters of the 

reservoir. With this methodology we combined the use of geostatistical history matching methodology 

with an adaptive stochastic sampling and Bayesian inference to assess the uncertainty related with both 

scale levels. 

 

With only 250 iterations it is very difficult to see a trend and a misfit convergence so to take more 

conclusions about this methodology a new implementation should be done with more iterations. 
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Chapter 5.  Conclusions and Future Work 

5.1 Conclusions 

This thesis presents a new methodology of multiscale geostatistical history matching, a novel 

stochastic tool, which allows us to build a high resolution model conditioned to the known data: well-log 

data and historical production data, faster and with accuracy that takes into account the uncertainty on 

it. 

 

The main goal of this study was to provide a new workflow and a software tool that was able to 

optimize the geostatistical history matching procedure and build a fine coarse grid model with a 

significant reduction in the time computational effort and an improvement in the quality of the model 

compared to a traditional history matching directly in the fine scale. In this project we also want to 

account the uncertainty in the parameters of multiscale geostatistical history matching. 

 

We have presented a workflow that incorporates data information from well-logs and production data 

from a synthetic fine scale 3D model and we use this information to constrain the reservoir modelling. 

Coarsens it and modelling it with a geostatistical tool, DSS, and then downscale the coarse model to a 

fine scale and modelling it, also with a geostatistical tool, Block-DSS. The geostatistical downscaling 

methods uses a block kriging. 

 

The presented methodology demonstrated to have high potential. The proposed algorithms are able 

to be implemented in a 3D model, are easy to use and modify and are practical. 

 

The application of this novel multi-scale geostatistical history matching methodology presents the 

following advantages: 

1) Reduces the overparameterization problem in the fluid flow equations; 

2) Faster assimilation of large scale corrections into history matching; 

3) The coarse geological model is retained through the downscaling step, providing a better initial 

model for the final adjustment on the fine scale. 

4) The downscaling allows us to characterize the small scale heterogeneity in the fine grid 

reservoir model and history match it; 
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5) Substantial reduction in the HM CPU time – best coarse reservoir in 300 simulations (1h45) and 

best fine reservoir in 15 simulations (1h34); 

6) Both results from the fine grid and the coarse grid are consistent with the reference model 

geology; 

7) The best-fit model is able to reproduce the spatial distribution of the main channels; 

8) Generation of models with different resolutions but all with good matching history; 

9) The space of uncertainty is reduced and can be assessed, by generating multiple history 

matched models. 

 

The results of this study ensure that simulated models honour the data points and the block data 

from the available experimental data; reproduce the statistics, probability distribution and joint-

probability distribution; and the spatial continuity pattern imposed by the variograms. In general this 

workflow is very promising since the results from the coarse grid and from the fine grid are consistent 

with the reference model. The majors patterns are reproduced, however it is difficult to represent 

reservoir models with complex structures, as channels and meanders. The iterative optimization assures 

the match between the dynamic responses from simulated models and historical production data. 

 

With the implementation of this methodology we are able to simulate models with high resolution 

conditioned with low resolution models. The solution is a fast algorithm able to model a 3D reservoir in 

a reasonable time. 

 

5.2 Future Work 

In general this workflow is very promising since the results from the coarse grid and from the fine 

grid are consistent with the reference model. However it is difficult to represent reservoir models with 

complex structures, as channels and meanders so to achieve good results with this kind of reservoir 

others workflows can be integrated on it. 

 

As a background workflow we can integrate a seismic inversion framework. Seismic is usually used 

to model the static reservoir properties, but reservoirs are dynamic. When we have a small number of 

wells or if these wells are at sparse locations it is very difficult to model with a traditional geostatistical 

history matching because the simulated model start to diverge from the observed model. The 

reproduction of complex spatial patterns, as fluvial channels, is also very difficult with a traditional 

geostatistical history matching because of the non-stationary character and high variability in local scale. 

The implementation of seismic inversion as part of the history matching procedure allows to model a 

reservoir with a few wells or wells at sparse locations and to use the geological information to model the 

complex morphology and the distribution of the petrophysical properties. 
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Figure 51 – Geostatistical History Matching Conditioned to Seismic Inversion Workflow (Proposed by 
Azevedo, 2013) 

 

As a forward workflow the study of the connectivity of the channels can be done. Sometimes in 

reservoir with complex structures, as channels, is difficult to achieve a convergence in the dynamic 

responses because a small change in the shape of the channels, for example in the width or in the 

thicknesses could make a huge change in the connectivity of the channels and therefore in the 

production data. Reservoir heterogeneity and changing the model resolution also impacts the model 

connectivity. To optimize this procedure we can study the connectivity of the channels to try to predict 

paths and patterns and optimize the reservoir modelling. 

 

 

Figure 52 – Connectivity in a 3D Model 

 

In the uncertainty quantification the study was made only to the spatial continuity. It was only taken 

into account the uncertainty in the parameter related to the spatial continuity in both scale levels, but 

there are a lot of different parameters with uncertainty in these workflows that can be quantified. 

Encouraging results with this workflow are obtained and in the future this should be applied in real 

reservoir studies from various different fields 
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Introduction 

In reservoir modelling we try to describe the spatial distribution of the subsurface properties of interest 

by integrating all the available data: well-log data, seismic reflection, production data, geology. The 

more understanding we reached about the reservoir’s properties, the better the modelling and its 

characterization, leading to better decision making. Geostatistics, integrates  data well knowledge and 

takes into account within the same framework, simultaneously all the available data as well the lack of 

information about the reservoir, i.e. the uncertainty about the natural phenomon we are trying to model. 

Generally, the available information is mostly discrete, sparse and with different support volume and 

resolution: core measurement; well logs and seismic surveys.  

 

In a history matching problem, we aim to model the internal reservoirs’ properties, porosity and 

permeability, by perturbing the parameter model space in order to match the available production data. 

Notice that history matching is an ill-posed, very nonlinear and with non-unique solution (Caeiro 2014). 

Reservoir modelling conditioned to history matching consumes a lot of CPU time since we need to solve 

a fluid flow simulator at each iteration step. To optimize this procedure one solution is to modify the 

scale of the reservoir upscaling it. This upscaling reduces the number of grid block and the number of 

unknown parameters allowing for faster fluid flow simulations. 

 

The advantage of implementing multiscales parameterizations techniques is to use fast update of coarse 

models to constrain the history matching models in fine-scale. With this methodology a significantly 

reduction in processing time is obtained so it guarantees a faster and more efficient estimation that 

generates more consistent models. The procedure promotes a good integration of dynamic data in the 

static model and it ensures that the matching is retained through the downscaling step. 

Methodology 

In this work we proposed a new history matching methodology that couples different geological scales 

by recurring to Block Direct Sequential Simulation  (Liu and Journel; Oliveira et al. 2003). In order to 

speed-up the history matching procedure we first optimize the reservoir model at a very coarse grid 

which is then used as an auxiliary model to perform the history matching at a very fine scale. We show 

this novel approach in a challenging synthetic case study based on a fluvial environment. 

 

The proposed geostatistical history matching algorithm comprises a multiscale technique that is 

characterized by physical models on multiple scales, in this case, two different spatial scales. The 

proposed workflow integrates two geostatistical history matching loops (Figure 1)): (i) model a very 

coarse reservoir grid; (ii) model a fine grid taking into account the coarse matched grid by integrating 

block kriging with direct sequential simulation, Block-DSS.  

 

First, we execute the traditional geostatistical history matching in a coarse grid. The coarse grid is 

perturbed in order to match the real production data. The iterative process is looped until a best misfit is 

acheived. Then, the best coarse grid model will be refined using a block direct simulation to downscale 

the matched coarse grid and a new history matching loop is done to match the observed production data 

at a finer scale. The methodology proposed for the upscaling is independent of the method used for the 

downscaling.  

 

Geostaticial History Matching 

Geostatistical history matching methodologies comprises the use of historic production data from 

multiple wells to modelling static reservoirs. In reservoir modelling the production data are normally 

integrated by inverse methods involving the perturbation of porosity and permeability in the fine grid 

until it reaches a match between the synthetic production data and the real production data. It is through 

the implementation of gradual deformation methods that solves the typical issue of inverse problems of 

history matching procedure.   
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Figure 1 Schematic representation of the proposed multiscale geostatistical history matching. 

 

The geostatistical history matching (Mata-Lima et al, 2007) can be summaried in the following sequence 

of steps: 

1. Create a set of equiprobable images from a reservoir property with a stochastic, DSS tool; 

2. Run a dynamic simulation to obtain the production history per well for each realization; 

3. Compare the production data from this realization with the real production data through an objective 

function. This objective function compares the values of each well at different time. The simulation 

that minimizes this objective function is accepted; 

4. Create a regional perturbation in the initial image with the information obtained from the objective 

function; 

5. Repeat all the previous steps until a minimum value to the objective function is achieved. 

With the regional perturbation a best compose image is reached. This best compose imagem is created 

as a patchwork,  patches are defined around each well and the realization with the lowers misfit from 

each patch are merged together. The implemented objective funtion is a multi-well objective function,  

which includes wich well production data: water and oil rate, pressure. With these changes the method 

reaches a faster convergence to the objective function. The misfit applied in this multiscale geostatistical 

history matching methodology consist the minimization of the function: 

 
Where σ2 is the data variance, qobs are the observed values, qsim are the simulated values, Nw is the 

number of wells, Nvar is the number of variables, Nt is the number of time steps. This misfit is dependent 

on the production wells, the variables: well oil production rate, WOPR, well bottom hole pressure, 

WBHP and well water production rate, WWPR, and the time steps. In this paper we used Block DSS 

(Liu and Journel, 2009) for downscaling, which was developed in order to combine the use of block 

kriging with the traditional DSS. This algorithm integrates data with two different volume supports, a 

fine-scale support given by the well log data and the coarse-scale support given by the coarse grid model.  
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Case Study 

We tested and implemented the proposed workflow on a 3D synthetic reservoir model along with a 

realistic production strategy. The reservoir represents a fluvial system with 5km(North-South), 5km 

(East-West) and 100m thickness dimensions. The fine grid is defined by 800 000blocks, 100x100x80 

with 50mx50mx1.25 each and the coarse grid is defined by 6 400blocks, 20x20x16 with 

250mx250mx1.25m each. The reduction scale factor for each direction x,y,z is 5. 

   
Figure 2 Porosity models: a) 3D Synthetic reservoir, Z=0m, b) Histogram from synthetic model and 

hard data, c) Hard data 

 

The coarse grid history matching run with 50 iterations. The first simulations (Figure 3a) don’t represent 

effectively the spatial distribution of the reservoir and the misfit has high values, however with the 

increase of the number of iterations the spatial reproduction improves and is easier to distinguish the 

two different channels. There is a half reduction of the misfit value and is possible to confirm that the 

production data tend to approach to the values of synthetic model (Figure 5).   

 
 

  

Figure 3 Porosity models: a) Best compose image iteration 2, b) Histogram from best compose image 

iteration 2, c) Best compose image iteration 41, d) Histogram from best compose image iteration 41 

 

The best-fit inverse model (Figure 3c) is able to reproduce the spatial distribution of the main channels 

without great detail. This model was then used as condinitioning data in Block DSS for the history 

matching at a much finer grid (Figure 4). The results from the fine grid do not represent the each 

individual channel but the trend is very well illustrated. Notice that for the fine grid we only need to run 

three iterations to reach a good match. This a crucial improvement when compared with the traditional 

geostatistical history matching that would need much more iterations and consequentely execution time. 

As in the coarse grid simulation also in the fine grid there is an improvement in the spatial distribution 

with the increase of the number of iterations. In iteration 2 the channel in the lower left corner is not 

represented but in the iteration 3 the channel begins to be defined. 

    

Figure 4 Porosity model: a) Best compose image iteration 2, b) Histogram from best compose image 

iteration 2, c) Best compose image iteration 3, d) Histogram from best compose image iteration 3 
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The history matching misfit from the best  image of coarse grid has a low value and it is close to the 

misfit from the best image of the fine grid which indicates that there is a good integration of dynamic 

data in the static model. The well bottom hole pressure data and the oil production rate from the coarse 

grid and fine grid are quite close to the synthetic model data. 

  
Figure 5 History matching: a) Well Oil Production Rate from synthetic reservoir, best compose image 

coarse grid (iteration 41) and best compose image fine grid (iteration 3), b) Well Bottom Hole Pressure 

from synthetic reservoir, best compose image coarse grid (iteration 41) and best compose image fine 

grid (iteration 3) 

Conclusions 

The main goal of the current study is the development and the implementation of a new methodology 

of multiscale geostatistical history matching with an application of  Block Direct Sequential Simulation.  

The results of this study honours the data points and the block data and reproduces the statistics and the 

variograms. In general this workflow is very promising since the results from the coarse grid and from 

the fine grid are consistent with the reference model. However it is difficult to reprente reservoir models 

with complex structures, as channels and meanders. Futher step would be the quantification of the 

uncertainty related with the different geostatistical modelling scales represented by correlated structures. 

The uncertainty quantification would be integrated recurring into stochastic adaptive sampling and 

Bayesian inference in the both scale levels, fine grid and coarse grid.  
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Appendix C – Workflow MSGHM and MSGHMEA 

 

 

 

 

 

 

1. Traditional Geostatistical History Matching in the Coarse Grid 

2. Downscaling Geostatistical History Matching 

3. Traditional Geostatistical History Matching in the Fine Grid 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 



 

 
 

 



 

 
 

 


