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Abstract This presentation proposes a way 

to speed-up the history matching and 

integrate the multi-scale character of 

reservoir models into the model update 

loops. The model update loop consist of 

optimization of a reservoir model on a 

coarse grid, and then performing history 

matching on a fine scale based on the large 

scale  properties inferred from the coarse 

model. The proposed novel methodology 

couples different geological scales through 

geostatistical assimilation of the small scale 

geological features using Block Direct 

Sequential Co-Simulation and updating the 

large scale geological properties 

using  Particle Swarm Optimization, in order 

to quantify the uncertainty. The uncertainty 

quantification is integrated in the two 

loops:  (i) model in a very coarse reservoir 

grid; (ii) model in a fine reservoir grid. We 

show this novel approach in a challenging 

synthetic case study based on a fluvial 

environment. 
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Introduction  

The oil and gas industry is a very 

challenging and complex industry. There is 

a huge uncertainty, a lot of different risks 

and considerably amount of money 

involved in the exploration and production 

of oil and gas. Generally, in a oil and gas 

project, the available information is mostly 

discrete, sparse and with different support 

volume and resolution: core measurement; 

well logs and seismic surveys and all of this 

increase the complexity in the financial 

project evaluation. 

In reservoir modelling we try to describe the 

spatial distribution of the subsurface 

properties of interest by integrating all the 

available data: well-log data, seismic 

reflection, production data and geology. 

The geology of the reservoir is defined and 

this geological definition allows the 

characterization of different type of rocks: 

carbonates, shales and sand; different 

types of structural elements: faults, rollover, 

anticlines; the existence of channels and 

other different types of structures. It is also 

defined the petrophysical reservoir 

properties such as porosity, permeability 

and saturation and it is through this 

information that we are able to study and 

predict the fluid flows in the reservoir.  

The more understanding we acquire about 

the reservoir’s properties, the better the 

modelling and its characterization, leading 

to better decision making. It will be easier to 

define the number and the location of new 

wells, define the amount of existing oil and 

predict the economic return generated by 

the same. The reservoir modelling should 

represent, in a reliable way, the reservoir 

characteristics and should be processed 



2 

 

within an acceptable period of time. The 

computers and the software have improved 

and developed deeply in the last years and 

now they allow data processing faster and 

more efficiently, however the amount of 

required and available information remains 

extremely high. The processing time 

reduction keeping the quality of the model 

is one of the industry challenges. 

In a history matching problem, dynamic 

data is incorporated to model a reservoir, 

i.e., we model the geological reservoir 

properties conditioned to the known 

dynamic data. With this methodology we 

aim to model the internal reservoirs’ 

properties, porosity and permeability, by 

perturbing the parameter model space in 

order to match the available production 

data. 

Reservoir modelling conditioned to history 

matching consumes a lot of CPU time since 

we need to solve a fluid flow simulator at 

each iteration step. To optimize this 

procedure one solution is to modify the 

scale of the reservoir, upscaling it. This 

upscaling reduces the number of grid block 

and the number of unknown parameters 

allowing for faster fluid flow simulations but 

this upscaling take out important 

information, in particular, in the small scale 

heterogeneity. As a result, after obtaining 

an optimised coarse grid model is very 

important to refine it, conditioning the fine 

grid model to block and point data. 

Different authors studied this problem and 

proposed some solutions. Lui & Journel 

(2009) developed an extension of the 

traditional DSS that is able to integrate data 

in different supports, Block-DSS and this is 

a reliable form of stochastic downscaling. 

Mata-Lima et al. (2007) developed a new 

inverse modelling methodology that is able 

to integrate dynamic data in a static model 

through the application of a geostatistical 

DSS tool. Aanonsen and Eydinov (2006) 

developed a multiscale technique that is 

characterized by physical models with 

multiple scales, in this case, different spatial 

scales. The matching of these scales is 

made using the data production history 

from each model. 

We will combine all this knowledge to 

develop and implement a new stochastic 

tool, which allows us to build a high 

resolution model conditioned to the known 

data: well-log data and historical production 

data, faster and with accuracy. 

In this project we also want to account the 

uncertainty in the parameters of multiscale 

geostatistical history matching. Through the 

generation of multiple history matched 

models we will be able to quantify the 

uncertainty and the probability of future 

production; we could also know what the 

most likely scenario is and what the 

respective confidence intervals are. 

Different authors studied this problem and 

proposed some solutions. There are 

several stochastic sampling algorithms that 

allow us to quantify this uncertainty: the Ant 

Colony Optimisation (Hajizadeh et al. 

2009), the Particle Swarm Optimisation 

(Mohamed et al., 2009) algorithm and the 

Neighbourhood Algorithm (Christie et al., 

2006) and all these algorithms are based in 

the Bayesian Theorem.  

To sum up, the challenge of this paper is to 

build a 3D high resolution model 

conditioned to the known data: well-log data 

and historical production data, faster and 

with accuracy that takes into account the 

uncertainty on it. 

The goal is to provide a new workflow and a 

software tool that is able to optimize this 

process and answer to this big challenge. 

This paper proposes a new way to speed-

up the history matching and integrates the 

multi-scale character of reservoir models 

into the model update loops. The model 

update loop consists of an optimization of a 

reservoir model on a coarse grid, and then 

performing history matching on a fine scale 

based on the large scale properties inferred 

from the coarse model. The proposed novel 

methodology couples different geological 

scales through geostatistical assimilation of 

the small scale geological features using 

Block Direct Sequential Simulation and 

updating the large scale geological 

properties using Particle Swarm 

Optimization, in order to quantify the 

uncertainty. The uncertainty quantification 

is integrated in the two loops:  (i) model in a 

very coarse reservoir grid; (ii) model in a 

fine reservoir grid. We show this novel 
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approach in a challenging synthetic case 

study based on a fluvial environment. 

With the application of a downscaling 

algorithm we intended to get a fine grid 

model with high resolution and detailed 

information that integrates information from 

the coarse model and information from the 

data from the wells. 

 

Methodology 

 

This paper presents a new methodology for 

geostatistical history matching; multiscale 

geostatistical history matching that takes 

into account the uncertainty at multiple 

scales. We developed and implemented a 

new algorithm to speed-up the history 

matching on multiple-scales and then 

quantify the uncertainty on it.  

The proposed methodology integrates two 

different workflows: 

1. Multiscale Geostatistical History 

Matching, MSGHM – integrates two 

geostatistical history matching 

workflows at different scales; 

 

Figure 1 – Multiscale Geostatistical 
History Matching General Workflow 

2. Uncertainty in Multiscale 

Geostatistical History Matching – 

integrates uncertainty quantification 

in both scale levels. 

 

Figure 2 – Uncertainty in Multiscale 
Geostatistical History Matching General 

Workflow 

The first workflow comprises a multiscale 

technique that is characterized by physical 

models on multiple scales, in this case, two 

different spatial scales. The proposed 

workflow integrates two geostatistical 

history matching loops: (i) model a very 

coarse reservoir grid; (ii) model a fine grid 

taking into account the coarse matched grid 

by integrating block kriging with direct 

sequential simulation, Block-DSS.  

The second workflow integrates uncertainty 

quantification related with the geological 

parameters in the previous workflow. In this 

work we proposed to quantify the 

uncertainty in the spatial continuity related 

with the different geostatistical modelling 

scales of multiscale geostatistical history 

matching. This uncertainty quantification 

would be integrated recurring into 

stochastic adaptive sampling and Bayesian 

inference in both scale levels: fine grid and 

coarse grid.  

 

Mutilscale Geostatistical History Matching 

The aim of the multiscale modelling is to 

obtain an efficient and accurate 

approximation to the solution in the fine 

scale, high resolution model. The 

advantage of implementing multiscales 

parameterizations techniques is to use fast 

update of coarse models to constrain the 

history matching models in fine-scale. With 

this methodology a significantly reduction in 

processing time is obtained so it 

guarantees a faster and more efficient 

estimation that generates more consistent 

models. The procedure promotes a good 

integration of dynamic data in the static 

model and it ensures that the matching is 

retained through the downscaling step. The 

proposed geostatistical history matching 

algorithm comprises a multiscale technique 

that is characterized by physical models on 

multiple scales, in this case, two different 

spatial scales. 

To apply MSGHM the following steps 

should be done: 

1. Collect prior information: well-log data, 

production data and spatial continuity, 

from a synthetic reservoir model. The 

production data will be used as a 

reference in the misfit. 

2. Run a traditional geostatistical history 

matching: 

a. Create a set of equiprobable 

images from a reservoir property 

with a stochastic DSS tool; 
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b. Run a dynamic simulation to 

obtain the production history for 

each reservoir model simulation – 

Eclipse® 100; 

c. Compare the production data 

from this realization with the real 

production data through an 

objective function. This objective 

function compares the values of 

each well at different time. The 

simulation that minimizes this 

objective function is accepted; 

d. Create a perturbation in the initial 

image with the information 

obtained from the objective 

function and repeats all the 

previous steps until a minimum 

value to the objective function is 

achieved; 

3. A best coarse grid reservoir model is 

achieved; 

4. Run a downscaling geostatistical 

history matching - the best coarse grid 

model will be refined using a Block-

DSS to downscale the matched coarse 

grid: 

a. Compute the block-to-block 

average,	�̅���, block-to-point 

average,	�̅��, point-to-block 

average,	�̅��, and point-to-point, 

CPP’,  local covariance matrix; 

b. Create a set of equiprobable 

images from a reservoir property 

with a stochastic DSS tool; 

c. Run a dynamic simulation to 

obtain the production history for 

each reservoir model simulation – 

Eclipse® 100; 

d. Compare the production data 

from this realization with the real 

production data through an 

objective function. This objective 

function compares the values of 

each well at different time. The 

simulation that minimizes this 

objective function is accepted; 

5. A best fine grid reservoir model is 

achieved. 

This proposed methodology is represented 

in the previous detailed framework (Figure 

3). 

 

 

 

Figure 3 – Multiscale Geostatistical 
History Matching Detailed Workflow 

 

Uncertainty Quantification 

The previous workflow of MSGHM assumes 

stationarity in the geological parameters but 

in a true case there is a huge lake of 

information about the parameters and 

therefore a lot of uncertainty. This 

uncertainty in the geological parameters 

can be related with the spatial continuity, as 

variograms, and with the properties 

distributions, as the mean and the standard 

deviation. 

In this work we proposed to quantify the 

uncertainty in the spatial continuity related 

with the different geostatistical modelling 

scales of MSGHM, thus we will have 

uncertainty in the large scale correlation, 

small scale heterogeneity and in the 

downscaling procedure. This uncertainty 

quantification would be integrated recurring 

into stochastic adaptive sampling and 

Bayesian inference in both scale levels: fine 

grid and coarse grid. 

The methodology applied in this workflow is 

the PSO and it aims to find the best 

particle, represented by the set of the 5 

parameters that are responsible to define 

the spatial continuity in the model. The 
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spatial continuity is defined by the 

variograms, the range and the angle, as a 

result, instead of using a fix value for the 

range and the angle, a uniform distribution 

is assumed. This change will be implanted 

in the MSGHM and the simulated model will 

allow the uncertainty quantification in the 

reservoir. 

 

Figure 4 – Multiscale Geostatistical 
History Matching Uncertainty Quantification 

Framework 

 

Case Study 

 

The 3D synthetic reservoir represents a 

fluvial system with 1km (North-South), 1km 

(East-West) and 100m thickness 

dimensions. The fine grid is defined by 

160 000 blocks discretized by [100x100x16] 

cells with 10mx10mx6.25 each. 

 

Mutilscale Geostatistical History Matching 

The traditional geostatistical history 

matching in the coarse grid run 30 iterations 

with 10 simulations each in 1h47m. The 

best-fit inverse model (Figure 40 and 41) 

was able to reproduce the spatial 

distribution of the main channels without 

great detail. This model was then used as 

conditioning data in Block-DSS for the 

history matching at a much finer grid 

(Figure 42). 

The downscaling geostatistical history 

matching runs 15 iterations, in 1h34m. The 

results from the fine grid do not represent 

the shape of each individual channel but 

the trend is very well illustrated (Figure 43). 

Notice that for the fine grid we only need to 

run 15 iterations to reach a good match. 

This is a crucial improvement when 

compared with the traditional geostatistical 

history matching that would need much 

more iterations and consequently more 

execution time. As in the coarse grid 

simulation, also in the fine grid there is an 

improvement in the spatial distribution with 

the increase of the number of iterations. 

  

  

  

Figure 5 – Permeability Models (from left 
to right, top to down): a) Reference Model b) 
Histogram from Reference Model, c) Best 
Coarse Model, Iteration 30 (Matched 
Realization), d) Histogram from Best Coarse 
Model, Iteration 30, e) Best Fine Model from 
Block-DSS, Iteration 7 (Matched Realization), 
f) Histogram from Best Fine Model from 
Block-DSS, Iteration 7 

  

  

 
 

Figure 6 – Porosity Models (from left to 
right, top to down):: a) Reference Model b) 
Histogram from Reference Model, c) Best 
Coarse Model, Iteration 30 (Matched 
Realization), d) Histogram from Best Coarse 
Model, Iteration 30, e) Best Fine Model from 
Block-DSS, Iteration 7 (Matched Realization), 
f) Histogram from Best Fine Model from 
Block-DSS, Iteration 7 
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Uncertainty Quantification 

The previous workflow was implemented 

and tested assuming stationarity in the 

parameters but in a true case there is a 

huge lake of information about the 

parameters and therefore a lot of 

uncertainty. To try to quantify this 

uncertainty, the previous methodology was 

implemented and tested taking into account 

the uncertainty in the parameters, in this 

specific case the uncertainty in the spatial 

continuity of the data in the both scale 

levels: fine grid and coarse grid. 

We studied 2 level of uncertainty. In the 

coarse grid we quantified the uncertainty in 

the kriging and variogram, represented by 

their angles and ranges. In the fine grid we 

also quantified the uncertainty in the kriging 

and variogram, represented by their angles 

and ranges and the error in the 

downscaling kriging step. 

 

Table 1 - Uncertainty Quantification: 
Parameters and Prior Distributions 

Parameter 
Prior 

Distribution 

Range 

Spatial 

Continuity 

Range 

XX 
 

[75, 90] 

Range 

YY 

 

[50, 150] 

 
[400, 100] 

Angle 
 

[200, 600] 

Downscaling Error 
 

[0.1, 0.5] 

 

To quantify the uncertainty in the model 

spatial continuity we run 150 iterations, 

simulating 5 models of porosity and 

permeability per iteration. At each iteration 

we updated the ranges and angles from the 

variogram in X direction and Y direction. 

The methodology was implemented until 

day 1000. 

The production data from the simulated 

reservoir models match considerably well 

the production data from the synthetic 

model. We can see that PSO has modelled 

a range of models that fit reasonably the 

observed history data.  

  

 

Figure 7 – Best History Matching from 
PSO: a) Well Oil Production Rate Well P2, b) 
Well Oil Production Rate Well P3 

The figure plots the best misfit obtained in 

each generation of the algorithm versus the 

generation number. The misfit is showed 

per Well P2, P4 and P5. With only 150 

iterations it is very difficult to see a trend 

and a misfit convergence. 
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Figure 8 – PSO Misfit Evolution per Well 

 

The Figure 9 shows the evolution of the 

space parameter per misfit. This misfit was 

studied per well and in the figure we can 

see the evolution of the Y direction range 

parameter in well P3, the evolution of the X 

direction range parameter in well P5 and 

the evolution of the parameter angle in well 

P2. As the number of iterations increase the 

misfit decrease and we start to see a 

convergence to a value, reducing the range 

of possible parameter values. In well P2 the 

angle tends to converge to a range angle 

between 85.0 and 90.0. 

 

     

 

Figure 9 – Parameter versus Misfit 

 

 

 

 

Conclusions 

 

The presented methodology demonstrated 

to have high potential. The proposed 

algorithms are able to be implemented in a 

3D model, are easy to use and modify and 

are practical. 

The application of this novel multi-scale 

geostatistical history matching methodology 

presents the following advantages: 

• Reduces the overparameterization 

problem in the fluid flow equations; 

• Faster assimilation of large scale 

corrections into history matching; 

• The coarse geological model is 

retained through the downscaling 

step, providing a better initial model 

for the final adjustment on the fine 

scale. 

• The downscaling allows us to 

characterize the small scale 

heterogeneity in the fine grid 

reservoir model and history match 

it; 

• Substantial reduction in the HM CPU 

time – best coarse reservoir in 

1500 simulations (11h) and best 

fine reservoir in 55 simulations 

(15h); 

• Both results from the fine grid and the 

coarse grid are consistent with the 

reference model geology; 

• The best-fit model is able to 

reproduce the spatial distribution of 

the main channels; 

• Generation of models with different 

resolutions but all with good 

matching history; 

• The space of uncertainty is reduced 

and can be assessed, by 

generating multiple history matched 

models 

The results of this study ensure that 

simulated models honour the data points 

and the block data from the available 

experimental data; reproduce the statistics, 

probability distribution and joint-probability 

distribution; and the spatial continuity 

pattern imposed by the variograms. In 

general this workflow is very promising 

since the results from the coarse grid and 

from the fine grid are consistent with the 
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reference model. The majors patterns are 

reproduced, however it is difficult to 

represent reservoir models with complex 

structures, as channels and meanders. The 

iterative optimization assures the match 

between the dynamic responses from 

simulated models and historical production 

data. 

With the implementation of this 

methodology we are able to simulate 

models with high resolution conditioned 

with low resolution models. The solution is 

a fast algorithm able to model a 3D 

reservoir in a reasonable time. 

 

It is difficult to represent reservoir models 

with complex structures, as channels and 

meanders so to achieve good results with 

this kind of reservoir others workflows can 

be integrated on it. 

As a background workflow we can integrate 

a seismic inversion framework. The 

implementation of seismic inversion as part 

of the history matching procedure allows to 

model a reservoir with a few wells or wells 

at sparse locations and to use the 

geological information to model the 

complex morphology and the distribution of 

the petrophysical properties. 

As a forward workflow the study of the 

connectivity of the channels can be done. 

Sometimes in reservoir with complex 

structures, as channels, is difficult to 

achieve a convergence in the dynamic 

responses because a small change in the 

shape of the channels, for example in the 

width or in the thicknesses could make a 

huge change in the connectivity of the 

channels and therefore in the production 

data. To optimize this procedure we can 

study the connectivity of the channels to try 

to predict paths and patterns and optimize 

the reservoir modelling. 

In the uncertainty quantification the study 

was made only to the spatial continuity. It 

was only taken into account the uncertainty 

in the parameter related to the spatial 

continuity in both scale levels, but there are 

a lot of different parameters with uncertainty 

in these workflows that can be quantified. 

Encouraging results with this workflow are 

obtained and in the future this should be 

applied in real reservoir studies from 

various different fields 
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