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ABSTRACT 

The dynamic performance of the roller bearings used in railway vehicles is the fundamental 

objective of project MAXBE, which motivates the work presented here. The monitoring of the bearings 

performance via monitoring systems uses the vibration information to infer the health of their 

mechanical components. The vibration output of the axleboxes is a measurable outcome of the bearing 

dynamic response, under operating conditions, that is characterized in this work. The main goal of this 

work is to develop a dynamic analysis tool, referred to as BearDyn, in MATLAB®, able to handle 

models representative of actual railway axle bearings, by using a multibody formulation to describe the 

mechanical elements of the bearing and their interactions. Realistic bearing geometric data is obtained 

by precise measurements of spherical and tapered bearings, with the support of FEUP. The interactions 

between the elements are described by continuous contact force models based on the Hertz elastic 

contact theory and modified according to experimental evidence. Tribological lubrication models are 

applied to describe the tangential forces in the presence of lubricant. Finally, BearDyn is tested for 

realistic railway conditions, where the inner raceway has an initial angular velocity and load applied to 

its center, while the outer raceway is fixed. In different conditions, the bearing dynamic response is 

obtained in terms of forces, kinematic quantities and different interaction measures, in the time domain 

as well as Fast Fourier Transforms in the frequency domain, which can be ultimately used for direct 

correlation with the outcome of the monitoring stations. 
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RESUMO 

A resposta dinâmica de rolamentos usados em veículos ferroviários é o objetivo principal do 

projeto MAXBE, que motiva o trabalho aqui apresentado. A monitorização de rolamentos via sistemas 

adequados usam a informação em termos de vibração para avaliar a condição dos seus componentes 

mecânicos. O objetivo principal deste trabalho é desenvolver uma ferramenta de análise dinâmica, 

referida como BearDyn, em MATLAB®, capaz de avaliar modelos representativos de rolamentos 

usados em aplicações ferroviárias, através de uma formulação multi-corpo para descrever os elementos 

mecânicos do rolamento e as suas interações. Dados geométricos realísticos de rolamentos são obtidos 

através de medições precisas de rolamentos de rolos esféricos e cónicos, com o suporte da FEUP. As 

interações entre rolos, gaiola e caminhos são descritas por modelos de força de contacto baseadas na 

teoria de contacto elástico de Hertz e modificados de acordo com evidências experimentais. Modelos 

tribológicos de lubrificação são aplicados para descrever as forças tangenciais na presença de 

lubrificante. Finalmente, BearDyn é testado para condições ferroviárias realísticas, em quais o caminho 

interior é providenciado com uma velocidade angular inicial e uma carga elevada é aplicada no seu 

centro, enquanto o caminho exterior é fixo. Em diferentes condições, a resposta dinâmica do rolamento 

é obtida em termos de forças, quantidades cinemáticas e diferentes medidas de interações, tanto no 

domínio do tempo como no domínio da frequência, através de Transformadas de Fourier, que podem ser 

utilizadas posteriormente para correlações diretas com os resultados de estações de monitorização. 
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0  Lubricant viscosity at reference conditions 

  Lubricant viscosity 

  Angular position of a contact point on a circle of the roller, for contact detection 

2  Angular position of a contact point on a surface of revolution, for contact detection 

, , ,  Constants for the calculation of the contact stiffness, for point contact  

  Vector of Lagrange multipliers 

  Lubricant film parameter 
  Equivalent friction coefficient 

bd
 Boundary mode equivalent friction coefficient 

 fm  Full-film mode equivalent friction coefficient 

*  Viscosity of the lubricant for the calculation of the full-film equivalent friction coefficient 

  Poisson’s ratio; Kinematic viscosity 

, 1 2
 Roughness of contacting surfaces 

 avg  Mean normal stress 

max  Maximum stress 

 p  Constant for the calculation of the contact patch dimensions, for line contact 

iso
 Dimensionless shear velocity of the lubricant 

0  Lubricant characteristic stress 

  Angular position of a contact point on a raceway of the spherical bearing, for contact detection 

S  Starvation factor 

T  Thermal reduction factor 

  Angular position of a contact point on a spherical cap 

  Vector of kinematic position constraints 
  Modified factor for side-leakage 
  Parameter for the calculation of the full-film equivalent friction coefficient 
  Angular velocity 
  Angular velocity vector 

  Angular acceleration vector 
* * *

0

1 2 3

1 2 3
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  
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Experimental constants for the calculation of the full-film equivalent friction coefficient 

, ,    Local, or body-fixed, reference frame 
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BearDyn Bearing Dynamic Analysis Program 
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1. INTRODUCTION 

Railway systems are, nowadays, a highly preferred mean of transportation by passengers, due to their 

comfort, speed and safety, which have further advanced technologically over the past years. The increase 

in competitiveness led to a constant need to guarantee their reliability and to improve their performance, 

justifying research and development of the condition monitoring of these systems. Among the vehicle 

subsystems, the axle bearing has a direct impact in the safety and economics of railway systems. This 

subsystem has been the object of study of a collaborative project between several European 

organizations, which uses the acronym MAXBE – Interoperable Monitoring, Diagnosis and 

Maintenance Strategies for Axle Bearings. This project appears with the objective to provide concepts 

and strategies for the interoperable monitoring and diagnosis of axle bearings. The work now presented 

is developed as part of this project, of which the dynamic performance of the roller bearings used in 

railway vehicles is the fundamental object.  

A bearing is a machine element that allows one part to support another by constraining relative 

motion between the parts to a rotational or a translation about given axis while allowing for a reduced 

friction between moving parts. Bearings can be classified in different ways, being one of the broadest 

division in: contact bearings, which have mechanical contact between the elements, including sliding 

and rolling bearings, represented in Figure 1; and non-contact bearings, which include externally 

pressurized and hydrodynamic fluid-film and magnetic bearings, as in Figure 2. In the case of bearings 

specifically used to ensure motion of a shaft and housing, the direction of force that acts on the bearing 

can also be a differentiator, dividing bearings into radial and thrust bearings, as shown in Figure 3. Radial 

bearings support the load in a direction perpendicular to the axis of the shaft and the bearing, while 

thrust bearings support the load that acts along the axis of the shaft and the bearing. [1] [2] 

Rolling contact bearings carry a load by placing rolling elements between two bearing rings, as 

seen in Figure 1(b). A bearing also usually comprises a cage, which maintains the spacing between the 

rolling elements and prevents contact between them. The rolling elements roll with a low rolling 

resistance and sliding, due to the relative motion of the bearing rings. These rolling elements can be 

balls or rollers, where rollers can have different geometries. Some of the most common roller bearings 

use cylindrical, spherical, tapered or needle rollers, as represented in Figure 4. 

 

(a) (b) 
 

Figure 1: Representation of contact bearings (a) Sliding contact bearing; (b) Rolling contact bearing 

Shaft 
Inner raceway 

Rolling element 

Outer raceway 

Shaft 
Lubricating oil 

Bush 

Outer raceway 
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(a) (b) 
Figure 2: Representation of non-contact bearings; (a) Externally pressurized and hydrodynamic fluid film bearing; (b) 

Magnetic bearing. 

 

(a) (b) 
Figure 3: (a) Radial bearing; (b) Thrust bearing. 

 

(a) (b) (c) (d) (e) 
Figure 4: Types of rolling bearings (Figures from reference [3]). (a) Ball; (b) Cylindrical; (c) Spherical; (d) Tapered; (e) 

Needle. 

Ball bearings are either used to sustain radial, axial or both loads, depending on the 

configuration of the balls between the raceways and the geometry of the raceways, themselves. This 

type of bearing has low torque, being appropriate for applications where high speed and low power loss 

are required. Ball bearings have lower load capacity than bearings with rollers, due to the smaller contact 

area between the balls and races. Cylindrical and needle roller bearings are very similar, being the main 

difference the ratio between length and diameter of the rollers, where needle roller bearings contain 

slender rollers with a length 3 to 10 times their diameter. These bearings withstand high radial loads and 

are suitable for high speeds. Spherical roller bearings have barrel-shaped rollers which are known for 

their capability for self-alignment. The spherical roller bearings have excellent radial load-carrying 

capacity and are suitable to be used where heavy or impact loads occur. Tapered roller bearings are 

capable of sustaining not only high radial loads but also axial loads. [3] [4] [5] 

In the railway industry, there is a big focus on the selection, understanding and maintenance of 

bearings, resulting from their direct impact on train safety and inactivity periods for maintenance. 
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Bearings which are part of the wheelset of a train are given special attention. The essential design 

concept for railway wheels has remained unchanged throughout their existence, where the assembly of 

two railway wheels and an axle, the wheelset, has a free relative rotation and it is supported by bearings 

housed in an axlebox. Axleboxes are the linking element between the rotating wheelset and the frame 

of the boggie via the primary suspension of a railway vehicle. All forces acting between the axleboxes 

are transmitted via springs, dampers and guiding elements i.e., the primary suspension, to the boggie 

frame. An image of an axlebox mounted on a train is shown in Figure 5(a) while Figure 5(b) shows an 

internal arrangement of another axlebox. 

The axlebox is an assembly normally comprising the axlebox housing, rolling bearings, sealing 

solution and proper lubricant. An example of an axlebox is seen in Figure 5(b), where a double row 

tapered roller bearing is visible in the interior of the axlebox. The bearings predominantly used in these 

applications are spherical and tapered bearings [6]. Due to the integration of the work now presented in 

the MAXBE project, only bearings with spherical and tapered rollers, presented in Figure 6, are 

considered here. 

 

(a) (b) 
Figure 5: Axleboxes for railway application. (a) Image of a mounted axlebox; (b) Axlebox representation (Figure adapted 

from [7]). 

 

   (a) (b) 
Figure 6: Axlebox roller bearings of different vehicles used in MAXBE Project. (a) Spherical bearing; (b) Tapered bearing. 

Failure of a bearing often leads to total shutdown of the machine of which it is part and, 

therefore, it often requires long inactivity periods for its maintenance. Statistics show that industrial 

bearings are considered as critical mechanical components which represent between 40% and 50% of 

the malfunctions in rotating machinery [8]. As the failure of components in the rolling element bearing 

support system is one of the most significant factors in the ever-increasing mechanical safety incidents 

and the cost of maintenance programs, faults occurring in the bearings must be detected as early as 

Tapered Roller Bearings Partner: EMEF 
Roller: BT2 - 7088 (SKF) 
Dimensions: 130x230x160 

Partner: COMSA 
Roller: HM 133436 - 90952 (TIMKEN) 
Dimensions: 150x250x160 

Spherical Roller Bearings Partner: DL 
Roller: 22219 - S - MB - F2 - C3 (FAG) 
Dimensions: 95x170x43 

Partner: EMEF 
Roller: 22330 CCK C3 W33 (SKF) 
Dimensions: 150x320x108 
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possible [9]. Failure of the bearing can occur for a variety of reasons, most of them avoidable. However, 

there is no discussion about the difficulty in identifying the causes of premature failure. Several studies 

are focused in identifying the most common sources of these problems, usually by experimental analysis 

and comparison of repeated occurrences. The existence of localized defects on a bearing are usually the 

most critical reason for it to fail, although there are other aspects which can also be responsible for the 

failure. An image of typical defects identified on an outer raceway of a tapered bearing is shown in 

Figure 7. Dhameliya [10] recently studied the causes of failure in railway bogies, concluding that proper 

bearing lubrication is one of the most important aspects to avoid accidental damage. In the process, 

Dhameliya [10] also concludes that the spherical roller bearings are preferred to cylindrical roller 

bearings, due to their self-aligning geometry. Fatigue failure is also one of the main causes for bearing 

failure, usually beginning with small cracks which gradually propagate to the surface of the bearing 

generating detectable vibrations. This situation can result from poor design of the bearing or simply 

from continued stressing, which is unavoidable. While these are common reasons for failure in rolling-

element bearings, there are other conditions which reduce bearing life, such as external sources including 

contamination, corrosion, improper installation or brinelling, which is the formation of indentations in 

the raceways caused by static overloading or by exposition to vibrations while being stationary [11] [12] 

 

Figure 7: Typical defects on a bearing outer raceway. 

Bearings with defects can also lead to problems in other components of axleboxes, since they 

can cause overheating of the axle when combined with insufficient high-temperature strength of the 

material [13]. Also, fatigue fractures of the inner rings of the bearings can lead to failures in axles, after 

the dynamic strength of the bearings is exceeded, causing the rings to widen [14]. Different experimental 

methods have been proposed for detection and diagnosis of bearing defects which may be broadly 

classified such as vibration and acoustic measurements, temperature measurements, defect signatures, 

wear debris and lubricant analysis. Vibration measurements are the most widely used [8] [15]. Faults 

which typically occur in rolling element bearings caused by localized defects generate a series of impact 

vibrations every time a running roller passes over the surfaces of the defects. These vibrations occur at 

Bearing Characteristic Frequencies (BCF), which are estimated based on the running speed of the shaft, 

the geometry of the bearing and the location of the defect. Theoretically, the Fast Fourier Transforms 

spectra of BCF can be generated and observed by the machine operator to analyse the change of vibration 
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amplitude and detect the existence of faults.  There are, however, difficulties in this process, since the 

impact vibration is usually overwhelmed by noise and vibrations generated from other components, such 

as the rail-wheel contact [16]. 

Due to the difficulties that arise from using data from experimental methods, to predict the life 

of a bearing, theoretical methods are seen as an advantageous alternative. The performance limitations 

of a mechanical system can often be determined by the dynamic response of its subsystems. In the cases 

of systems that include roller bearings, it is necessary to predict bearing dynamic performance as an 

integral part of machine design analysis, which can be done by studying the dynamic response of a 

bearing under load and speed [17]. Several numerical studies have been carried and published in order 

to allow the study of dynamic analysis of roller bearings for different geometries and applications. It is 

the case of Ghalamchi et al. [18], who created a simple dynamic model of a spherical roller bearing, 

which takes into account the influences of roller angular position on bearing contact forces to predict 

the transient dynamic behaviour of a rotor-spherical bearing system. Qian W. [19] carried a dynamic 

simulation of a cylindrical roller bearing, in the multibody code SIMPACK. Li-xin et al. [20] modelled 

and analysed planar multibody systems containing deep groove ball bearings with clearance, where the 

bearing joint is modelled by introducing a nonlinear constraint force system. From this study, the 

simulations of the normal contact forces on each ball element can be used for the strength checking and 

fatigue life prediction of the joint with deep groove ball bearing.  

With the progress of computer technology, Computer Aided Engineering (CAE) becomes 

popular and essential to design better bearings to match user requirements with optimized performance. 

In this context, some dynamic bearing analysis programs were created, such as ADORE, which is a 

commercially available software package that allows its users to analyse the performance of roller and 

ball bearings by using multibody formulation to describe the elements of the bearing and their 

interactions [21] [22]. IBDAS [23], BRAIN [21] and BEAST [24]  are some other examples of similar 

tools that also use this approach but that are proprietary of roller bearing manufacturers. These software 

allow the user to develop theoretically almost any type of roller bearing. However, in some cases, 

specific studies are needed to be performed which require specifications or geometries different from 

the ones allowed by the commercial programs enumerated. Here, simulations can be performed with 

commercial Finite Element Analysis (FEA) programs, where the roller bearing is easily modelled. 

Sakaguchi et al. developed a code based on ADAMS that can simulate real-time behaviour of a 

cylindrical roller bearing, as well as an optimized code which allowed analysis of a high-load capacity 

tapered roller bearing [25] [26]. However, even though these programs allow short simulation times and 

lower costs, the use of FEA commercial computational tools usually does not allow such a precise 

analysis of the roller bearings, since several simplifications are implied in the simulation, mainly relative 

to contact and friction models.  

The approach used here includes the development of a dynamic analysis tool, referred to as 

BearDyn which serves as the acronym for Bearing Dynamic Analysis Program, able to handle bearing 
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models representative of the actual bearings used in railway operations, developed in MATLAB®. This 

code uses a multibody formulation to describe the elements of the bearing and their interactions. The 

interactions between the rollers, cage, and raceways are described by continuous contact force models 

based on the Hertz elastic contact theory [27] and modified according to experimental evidence. 

Tribological lubrication models are applied to describe the tangential forces in the presence of lubricant 

[28] [29]. This work constitutes the description of the dynamic analysis tool, BearDyn, its fundamental 

formulations and its application to realistic models of spherical and tapered roller bearings. 

1.1. Work description 

The objectives of this work require the understanding of the performance of the axle bearings in actual 

operation conditions and include the development of a dynamic analysis tool able to handle bearing 

models representative of the actual bearings used in railway operations. The final goal of the work 

described in this document is to obtain a dynamic analysis tool BearDyn which is able to perform a 

study on different types of roller bearings, whose models are described by data in dedicated files. The 

dynamic response of the forces is to be post-processed to obtain the Frequency Response Functions 

(FRF), which serve as the basis for the evaluation of the bearing health. The development of the 

necessary methods for the dynamic analysis of the bearings is presented, being the methods for contact 

between elements and tribology contact models also included. The demonstration of the developed 

program is done by performing dynamic analysis of realistic models. 

In order to allow realistic simulations and prepare the program for the purpose intended, the 

inputs and models used for the formulation and functioning of BearDyn must be as accurate as possible, 

preferably by being compatible with methods and models used by other partners of project MAXBE. In 

this sense, the work now presented includes not only the developments by the author but also 

background knowledge made accessible. The structure of the models and theoretical knowledge, in 

which the body of the work is done, is available in the work by Ambrósio [30] delivered to project 

MAXBE. This reference presents most of the models and methods to be implemented in BearDyn, 

namely the dynamic analysis and methods of solving equations of motion. The computer implementation 

of the methods in reference [30] required modification, devised and clarified by the author of this work. 

The chapter concerning geometric characterization of the bearings, and the kinematic initialization of 

its components such as positions, orientations and velocities of each body of the system, was revised by 

the author and described in Chapter 3. Chapter 4 describes the general formulations for rolling contact 

detection, based on the work reported in reference [30]. The implementation of the methods initially 

proposed by Ambrósio are further enhanced and the algorithms are debugged and revised in this chapter. 

The evaluation of the normal and tangential forces, when applied to roller bearing mechanical 

components, have several accurate models available in the literature, which are found in references by 

other authors who describe the forces developed in rolling bodies when accounting for high loads and 
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specific geometries. The necessary study and gathering of these models carried in reference [30] was 

further enhanced and corrected in some aspects in this work and described in Chapter 5. 

The dynamic analysis of realistic models requires accurate data. The geometries of the bearing 

mechanical elements, which are inputs of BearDyn, had to be identified as precisely as possible, 

otherwise the coherence and representability of results could be compromised. Due to the lack of 

availability of the full necessary geometrical data of common roller bearings, or even of roller bearings 

used for other studies of project MAXBE, physical measurements were made to obtain the detailed 

geometries. A campaign of measurements of the spherical and tapered roller bearing components 

geometry was carried at the Faculty of Engineering of University of Porto (FEUP) with the support and 

involvement of the research group in tribology. The author of this work identified the geometrical 

features to be measured while the actual measurements were carried by members of the tribology 

research group of FEUP. The data obtained is included in Chapter 3 and Appendix A - Input Data for 

Bearing Model. 

The computational methods used to create BearDyn and to verify its performance are detailed 

in Chapter 6. The preliminary results of the dynamic analysis program BearDyn in a realistic 

operational scenario are presented in Chapter 7. The numerical results are complemented by sequences 

of time frames from computer animations of the roller bearings that help the reader to visualize the roller 

bearing kinematics. Finally a set of conclusions is highlighted in Chapter 8 and a list of 

recommendations for future work is presented.  

  



8 

 

2. DYNAMIC ANALYSIS  

This chapter presents the formulation of the general equations of motion to the spatial dynamic analysis 

of multibody systems. In this work only the formulations related to roller bearings are described. Note 

that in a more general implementation the roller bearings can be included as sub-systems of more general 

multibody systems. The methodology presented can be implemented in any general purpose multibody 

code, being implemented in particular in the computer program BearDyn.  

2.1. Kinematics of a rigid body 

Due to its simplicity and computational easiness, Cartesian coordinates and Newton-Euler’s method are 

used to formulate the equations of motion of the spatial multibody systems [31]. 

 

Figure 8: Cartesian coordinates for a rigid body 

Let Figure 8 represent a rigid body i to which a body-fixed coordinate system ()i is attached 

at its centre of mass. When Cartesian coordinates are used, the position and orientation of the rigid body 

must be defined by a set of translational and rotational coordinates. The position of the body with respect 

to global coordinate system XYZ is defined by the coordinate vector [ ]
T

i i
x y zr  that represents the 

location of the local reference frame ()i. The orientation of the body is described by the rotational 

coordinate’s vector 
0 1 2 3

[ ]
T

i i
e e e ep , which is built with the Euler parameters for the rigid body 

[31]. Therefore, the vector of coordinates that describes completely the rigid body i is,  

 [ ] T T T

i i i iq r p  (2.1) 

A spatial multibody system with nb bodies is described by a set of coordinates q  in the form, 

 1 2[ , ,..., ] T T T T

nbq q q q   (2.2) 

The location of point P on body i can be defined by position vector P

i
s  with respect to the body-

fixed reference frame ()i and by the global position vector 
ir , that is, 

    P P P

i i i i i ir r s r A s   (2.3) 

where iA  is the transformation matrix for body i that defines the orientation of the referential ()i 

with respect to the referential frame XYZ. The transformation matrix is expressed as function of the four 

Euler parameters as [31], 

 
 

(i) 
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Notice that the vector P

is  is expressed in global coordinates whereas the vector P
is  is defined in the body 

i fixed coordinate system.  

The velocities and accelerations of body i use the angular velocities 
iω  and accelerations 

iω

instead of the time derivatives of the Euler parameters, which simplifies the mathematical formulation 

and do not require the use of a mathematical constraint for Euler parameters. This is, the relation between 

the Euler parameters 
0 1 2 3 0   e e e e  is implied in the angular velocity and, therefore, does not be used 

explicitly [32]. When Euler parameters are employed as rotational coordinates, the relation between 

their time derivatives and the angular velocities is expressed by [31], 

 
T1

2
i ip L ω   (2.5) 

where the auxiliary 3×4 matrix L is function of Euler parameters, 

 
1 0 3 2

2 3 0 1

3 2 1 0

  
 

  
 
   

i

i

e e e e

e e e e

e e e e

L   (2.6) 

The velocities and accelerations of body i are given by vectors, 

 
[ ]

[ ]





T T T

i i i i

T T T

i i i i

q r ω

q r ω
  (2.7) 

The knowledge of the system response includes the evaluation of the position, orientation, velocity and 

acceleration of all the components of the system.  For this purpose, the equations of motion of the system 

must be established and their solution evaluated and integrated in time. 

2.2. Dynamics of a multibody system 

In terms of Cartesian coordinates, the equations of motion of an unconstrained multibody mechanical 

system are written as, 

 Mq g  (2.8) 

where M  is the global mass matrix, containing the mass and moment of inertia of all bodies and g  is a 

force vector that contains the external and internal forces acting on the bodies of the system.  

For a constrained multibody system, the kinematical joints are described by a set of holonomic 

algebraic constraints denoted as, 

 ( , ) tΦ q 0  (2.9) 

Using the Lagrange multipliers technique the constraints are added to the equations of motion. 

These are written together with the second time derivative of the constraint equations. Thus, the set of 

equations that describe the motion of the multibody system is,  
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T

q

q

M Φ q g

Φ 0 λ γ
 (2.10) 

where  is the vector of Lagrange multipliers and  is the vector that groups all the terms of the 

acceleration constraint equations that depend on the velocities only, that is, 

 ( ) 2   tt tq q q
γ Φ q q Φ Φ q  (2.11) 

The Lagrange multipliers, associated with the kinematic constraints, are physically related to the 

reaction forces and moments generated between the bodies interconnected by kinematic joints. This 

system of equations is solved for q  and  . Then, in each integration time step, the accelerations vector,

q , together with velocities vector, q , are integrated in order to obtain the system velocities and 

positions for the next time step.  

In the computational tool BearDyn developed for this project, kinematic constraints were not 

introduced as its range of application includes isolated roller bearings only. Consequently, the system is 

defined as a system of unconstrained bodies, where the equations of motion are used in a simplified 

form to avoid calculations with matrices with an unnecessary number of null entries. In a system of 

unconstrained bodies, as represented in Figure 9(a), it is assumed that there are nb bodies connected by 

various force elements. All bodies are considered as unconstrained, where their motion is confined by 

contact and by fixation of the outer raceway in space. A free-body diagram representative of a generic 

body from the system is shown in Figure 9(b).  

        

(a) (b) 
Figure 9: (a) Representation of a system of unconstrained bodies (figure adapted from [31]); (b) Free-body diagram of an 

unconstrained body. 

The equations of motion of the ith unconstrained body can then be expressed as [31], 

 i i iM q g   (2.12) 

where, 

 ; ;
N 0 r f

M q g
0 J m

     
              

i i i

i i i


  (2.13) 

in which the sum of all forces acting on the body is if , the sum of all moments denoted by m
i , 

iJ  the 

inertia tensor for the body, and iN  is, 
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  diag , ,i i
m m mN   (2.14) 

where m is the mass of the body.  

In summary, at each time step it is necessary to evaluate the vector of forces g , which is used 

to obtain the system accelerations q , by solving Eq.(2.8) by applying any method suitable for the 

solution of linear algebraic equations. The system accelerations, q , together with the velocities *
q , are 

integrated to obtain the new velocities q  and positions q  for the next time step. This process is repeated 

until the complete description of the system motion is obtained for a selected time interval. It is important 

to note that, in vector *
q , the angular velocities are substituted by the time derivatives of the Euler 

parameters using Eq.(2.5). 

2.3. External and internal forces 

Of particular interest in the application of the multibody dynamics formulation to the representation and 

solution of railway vehicle and bearing rolling element dynamics is the construction of the force vector  

g . Realistically, this vector includes all the external and internal applied forces in the system, namely, 

the springs, dampers and actuator forces, the gravitational forces, the wheel-rail contact forces, the 

normal, hydrodynamic, elastohydrodynamic and friction forces between bearing rolling elements and 

the gyroscopic forces of the rigid bodies. Among these, the wheel-rail contact forces and the internal 

roller bearing forces are of importance for this work and are introduced in force vector g . At each 

integration time step it is calculated by, 

    gravitational contact gyroscopic loadg f f f f   (2.15) 

where gravitationalf  is the vector of gravitational forces acting on the system, constant over each integration; 

gravitational forces are applied in each body’s centre of gravity, which coincides with its geometrical 

centre, in the negative vertical direction with a magnitude of 9.81 times the body’s mass. 
contactf  is a 

vector containing the forces resulting from contact between bearing rolling elements, including normal, 

elastohydrodynamic and friction forces; the calculation of these forces is detailed in Section 5. The 

gyroscopic forces of the rigid bodies are introduced in vector gyroscopicf  and are calculated at each time 

step by [31], 

    gyroscopic i i if ω J ω   (2.16) 

where 
iJ  is the moment of inertia matrix of the correspondent body. The wheel-rail contact forces are 

not evaluated by BearDyn in the present stage of this work. The BearDyn code is, yet, prepared to 

receive a table of forces resulting from wheel-rail contact over time and apply them in the correspondent 

body with proper magnitude and direction in each time step due to interpolation of the given table. The 

given forces are introduced in vector loadf . 
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2.4. Direct integration method of the equations of motion 

In this section, the main numerical aspects related to the standard integration of the equations of motion 

of a multibody system are reviewed. The standard integration of the equations of motion, here called 

Direct Integration Method (DIM), converts the nc second-order differential equations of motion into 2nc 

first-order differential equations. Then, a numerical scheme, such as the Runge-Kutta method, is 

employed to solve the initial-value problem [33].  

The 2nc differential equations of motion are solved, without considering integration numerical 

errors that can occur and, consequently, during the simulation the propagation of these kinds of errors 

results in constraint violations, if kinematic constraints are used in the multibody model. The two error 

sources that lead to constraint violations for any numerical integration step are truncation and round-off 

errors. Truncation or discretization errors are caused by the nature of the techniques employed to 

approximate values of a function, y . Round-off errors are due to the limited numbers of significant 

digits that can be retained by a computer. The commonly used numerical integration algorithms are 

useful in solving first-order differential equations that take the form [33], 

 ( , ) f ty y  (2.17) 

Thus, if there are nc second-order differential equations, they are converted to 2nc first-order 

equations by defining the y  and y  vectors, which contains, respectively, the system positions and 

velocities and the system velocities and accelerations, as follows,  

 
 

  
 
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y

q
     and     

 
  
 

q
y

q
 (2.18) 

The reason for introducing the new vectors y and y is that most numerical integration algorithms deal 

with first-order differential equations [34]. The following diagram can interpret the process of numerical 

integration at instant of time t, 

 ( )ty  Integration  ( )t ty  (2.19) 

In other words, velocities and accelerations at instant t, after integration process, yield positions and 

velocities at next time step, t=t+t.  

Figure 10 presents a flowchart that shows the algorithm of Direct Integration Method of the 

Eqs. of motion for the methodology approached in this work. At t=t0, the initial conditions on 0
q  and 

0
q  are required to start the integration process. The direct integration algorithm shown in Figure 10 can 

be summarized by the following steps, 

1. Start at time t0 with given initial conditions for positions 0
q  and velocities 0

q . 

2. Assemble the global mass matrix M  and calculate the force vector g . 

3. Solve the linear equation (2.8) in order to obtain the accelerations q  at time t. 

4. Assemble the vector y  containing the generalized velocities q  and accelerations q  for 

instant of time t. 
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5. Integrate numerically the q  and q  for time step t+t and obtain the new positions and 

velocities. 

6. Update the time variable, go to step 2 and proceed with the process for a new time step, 

until the final time of analysis is reached. 

 

 

Figure 10: Flowchart of computational procedure for dynamic analysis followed in BearDyn. 
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3. INITIALIZATION OF THE BEARING ROLLING ELEMENTS   

The dynamic analysis of the roller bearings, or of the systems containing the roller bearings, requires 

that the positions and velocities of each component of the bearing is known and properly initialized. 

Typically each bearing includes an outer raceway, an inner raceway, a cage and a defined number of 

rollers. An example of a 2 row tapered bearing model is illustrated in Figure 11. Due to the precision 

with which the bearings are mounted, with tight tolerances, and the complexity of the geometries it is 

necessary to build a pre-processor that, based on a limited set of data is able to evaluate the position, 

orientation and the velocities of all rolling elements of the bearing.  

  

(a) (b) 
Figure 11: Typical tapered rolling bearing elements. (a) Assembled roller bearing, with a semi-transparent outer raceway; (b) 

Individual elements of the rolling bearing, from left to right: outer raceway, cages, rollers and inner raceway. 

Common to all bearings possible to be modelled and analysed in the bearing analysis program, 

the data listed in Table 1 is required. 

Bearing type reference 
1 Spherical 

2 Tapered 

Number of rollers in the bearing nb  
Outer diameter of the bearing do  
Inner diameter of the bearing di  
Pitch diameter of the bearing dm  
Bearing width L  

Table 1: Information required for the general dimensioning of a roller bearing 

The dimensions listed in Table 1 are described for the geometrical features shown in Figure 12. The data 

necessary is provided to BearDyn by the user as an input text file with a defined format. For more 

information on this data, refer to the BearDyn user manual, presented here in Appendix A - Input Data 

for Bearing Model. 

Because the roller bearings used in the axleboxes considered in the project are spherical and 

tapered roller bearings, only the initialization of these types of bearings is considered in this work. At 

this point it is assumed that the bearings are in full functional conditions and that they have no defects. 

At a later stage of the project, not considered in this work, a selected number and type of defects in the 

roller bearings must be considered and models for such defected bearings developed. At that point, the 

program BearDyn can be upgraded to allow the simulation of bearings with defects. 
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(a) (b) (c) 
Figure 12: General information on the geometry of roller bearings. (a) Cylindrical roller bearing; (b) Spherical roller bearing; 

(c) Tapered roller bearing. 

3.1. Spherical roller bearing elements initialization 

The geometric details required for the construction of the multibody model of the spherical roller bearing 

includes the information contained in Table 2. Notice that the data is structured equally in the case of 

single and double row bearings. 

Roller diameter Db 

Roller lenght Lb 

Roller crown radius Rcr 

Roller corner radius on the left side RcoL 

Roller corner radius on the right side RcoR 

Inner race radius Rir 

Outer race radius Ror 

Race clearance tc 

Inner race lenght Lil 

Tilt 
Table 2: Information required for the general dimensioning of a spherical roller bearing 

The geometry of the spherical roller bearing is depicted in Figure 13 where the description of 

the data necessary to the geometric features of the bearing are identified. Based only on the information 

contained in Table 2 it is possible to define the complete initialization of the position of the rolling 

elements in the spherical roller bearing. The body fixed coordinate systems of the outer and inner 

raceways and the cage of the spherical bearing are assumed to be initially coincident with the inertia 

frame being all the axis equally oriented, i.e., the frames (,,)i ≡ (X,Y,Z). The initial positions and 

orientations of the elements of the spherical bearing, with the exception of the rollers are, 
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(a) (b) (c) 
Figure 13: Geometry of the spherical bearing elements. (a) Spherical roller bearing representation; (b) Geometry of the cross-

section of the roller bearing; (c) Geometry of the roller. 

The positions and orientations of the rollers are dependent on the bearing having one or two 

rows. The tilt angle  is used to define the existence of a second row of rollers, in case it is not null. In 

any case, the rollers are positioned on the pitch circle as implied in Figure 14. The rollers are numbered 

as b=1,2,…,nb, starting with the first roller positioned on the intersection between the pitch circle and 

the Y axis. 

 

(a) (b) 
Figure 14: Position of the rollers in the pitch circle: (a) Orientation of the rollers in the cross-section of the bearing; (b) 

Position of each roller in the pitch circle. 

The pitch angle m and the length of vector kr , shown in Figure 14, are obtained from the pitch 

diameter and tilt angle by, 
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For a single row spherical bearing, =0 and the positions and orientations of the rollers are straight 

forward, 
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in which rm=½dm is the pitch radius. The orientation of the rollers is such that the body fixed referential 

(,,)b associated to each one of them remains parallel to the inertia frame (X,Y,Z). For a roller bearing 

with two rows, the development of the positions and orientations of the rollers is detailed in Appendix 

B – Two Row Spherical Bearing Initializations. 

Besides the initial position and orientations of the rolling elements it is also necessary to define 

the initial velocities of the elements in order to establish the initial conditions for the dynamic analysis. 

It is assumed that the roller bearing has all its elements rotating about its local ξ. For a spherical roller 

with one row all the elements of the roller bearing are always in the plane YZ, as depicted in Figure 15. 

For a two row spherical bearing and for tapered bearings, presented in the next chapter, the rollers rotate 

in a different plane. Note that at a later stage when assembling the bearing to the shaft of the wheelset 

and to the axel box the positioning and initial velocities have to be transformed from the initial ones. 

Such transformation will be addressed in the framework of the complete multibody system. 

 

Figure 15: Angular and translation velocity of the bearing rolling elements. 
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With reference to Figure 15, it is assumed that initially there is no roller or cage slip, meaning 

that all components are rotating with consistent angular velocities with neglecting clearances. Based on 

the kinematics of the bodies and knowing that the velocity of a general point can be given as, 

 
'P P

ii iv s   (3.7) 

the roller velocities are calculated as functions of the inner and outer raceways angular velocities and 

shown as, 
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where the angular velocities of the inner and outer raceways about their local  axis are shown as ´inner 

and ´outer. It is important to note that the variables are measures in the plane YZ, where Ri and Ro are 

the radius of circumferences passing by the points of contact between the rollers and the inner and outer 

raceways, respectively. For a spherical bearing with one row, 1

2
 i m bR r D  and 1

2
 o m bR r D . For a two 

row spherical roller bearing, the tilt of the rollers has to be accounted for, becoming 1

2
cos i m bR r D  

and 1

2
cos o m bR r D . 

The angular velocity of the cage is such that the velocity of its pockets equals, in average, the 

rollers velocity. Assuming that the points of contact between cage and rollers are close to the pitch radius, 

the angular velocity of the cage is, 
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Therefore, the initial velocities of the bodies in the spherical bearing are described by, 
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Note that the initial conditions derived in this section ensure that the analysis starts with 

consistent velocities between all rolling elements and that there is no interference between the bodies at 

the start of the analysis. It is only during the evolution of the system that contact may develop and, 

eventually, sliding between elements. 
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3.2. Tapered roller bearing elements initialization 

The geometric details required for the construction of the multibody model of the tapered roller bearing 

includes the information contained in Table 3. As in the case of spherical bearings, the data is structured 

equally in the case of single and double row bearings. 

Roller diameter in the large end Dl 

Roller diameter in the small end Ds 

Roller lenght Lb 

Roller land lenght Lc 

Roller crown radius Rcr 

Roller end radius in the large end RerR 

Roller end radius in the small end RerL 

Outer race semi-cone angle o 

Inner race semi-cone angle i 

Outer race land lenght lo 

Inner race land lenght li 

Outer race width Lo 

Inner race width Li 

Inner race land start ei 

Endplay ep 

Number of rows Nrow 

Inter race spacing Si 

Table 3: Information required for the general dimensioning of a tapered roller bearing 

The geometry of the tapered roller bearing is depicted in Figure 16 where the description of the 

data necessary to the geometric characterization of the bearing is presented. Based on the information 

contained in Table 3 it is possible to define the complete initialization of the position of the rolling 

elements in the roller bearing. 

 

(a) (b) (c)  
Figure 16: Geometry of the tapered bearing elements. (a) Tapered bearing representation; (b) Geometry of the cross-section 

of the roller bearing; (c) Geometry of the tapered roller. 

The tapered roller bearing characterization generally uses a terminology different from that of 

other roller bearings. In particular, the outer raceway is designated by cup and the inner raceway by the 
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cone [35]. Here, this terminology is not used, hence inner and outer raceways are used to be similar to 

the terms used for spherical bearing. Another particular characteristic of the tapered bearing is that the 

projection lines of the raceways and of the ξ axis of each roller meet at a common point on the bearing 

axis to provide true rolling and low friction [36]. 

In order to position the rolling elements of the tapered roller bearing, with a single row of rollers, 

let the center of each roller be defined as the point of their ξ axis that lays on its cross-section coincident 

with its average diameter Db, as depicted in Figure 17. Furthermore, it is assumed that the rollers central 

cross-section seats in the inner raceway halfway in the surface width li, seen in Figure 16. It is also 

assumed that the locations of the centers of mass of each raceway are coincident with their central cross-

section, i.e., Li/2 for the inner raceway and Lo/2 for the outer raceway. The pitch diameter, dm=2rm, 

locates the position of the rollers average radius, as seen in Figure 16 and Figure 17. 

 

Figure 17: Basic dimensions defining the roller geometry and position. 

With reference to Figure 17 let the basic dimensions of the bearing required to position the 

raceways and rollers at the start of the analysis be defined as, 
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in which Db is the roller average diameter, k is the roller axis semi-cone angle, L is the position of the 

apex of the roller cone in the X axis, xin is the position of the inner raceway inner axis with respect to Y 

and 1

2
b bR D . The position and orientation of the inner raceway are, 
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The initial position and orientation of the outer raceway are obtained as, 
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To establish the initial position and orientation of the cage it is assumed that, if guided, it is guided by 

the inner raceway and that its average diameter is similar, not necessarily equal, to the pitch diameter. 

Under these conditions the cage initial position and orientation are, 
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The position and orientation of the rollers in the tapered roller bearing follows the same 

procedure used for the spherical rollers, and depicted by Figure 14, except for the orientation of the 

rollers, which follows the same procedure as for the orientation of the rollers in a two row spherical 

bearing, detailed in Appendix B – Two Row Spherical Bearing Initializations. Therefore these initial 

positions and orientations are rewritten here as, 
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Another particular characteristic of the tapered bearing is that it can be mounted with endplay 

or with some preloading. Tapered bearings are more commonly assembled in pairs, i.e., as double row 

bearings, as shown in Figure 18. In this case they can be mounted back to back, also known as double 

cup assembly, or face to face, alternatively defined as double cone assemblies [37]. For double row 

tapered roller bearings the initial position and orientation of the bodies are presented in Appendix C – 

Two Row Tapered Bearing Initializations. 
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(a) (b) (c) 
Figure 18: Tapered roller bearing with two rows: (a) Back to back (double cup assembly) mounting with play; (b) Back to 

back (double cup assembly) mounting with preloading; (c) Front to front (double cone assembly) mounting. 

The initialization of the tapered roller bearings requires that the initial velocities of all rolling 

elements are defined. The initial velocities for this type of bearing are directly analogous to those of the 

spherical bearing, by Equations (3.11) to (3.14), with the difference that the tilt angle from the spherical 

bearings,  , is here replaced by the semi-cone angle of the tapered roller, k
. 

3.3. Model identification 

When constructing the computational tool, the requirement for a realistic identification of the bearing 

geometric characteristics, to be given as input, is of fundamental importance. Even though some roller 

bearing manufacturers offer several catalogues with different roller bearing dimensions and 

characteristics, the necessary data required for the construction of the multibody models detailed in 

sections 3.1 and 3.2, is not publicly available. The acquisition of the necessary information to fulfil the 

input data tables relative to spherical and roller bearings, was achieved by the tribology group at FEUP, 

also partner in the MAXBE project. Since the partners from University of Porto were responsible for 

laboratory testing, to measure the properties of lubricants used with also spherical and tapered roller 

bearings, bearing prototypes were available. The geometric data was obtained by using a Surface 

Roughness Tester, available to the identification of geometries and roughness with maximum definition. 

For the largest dimensions, such as some raceway and cage dimensions, a calliper rule was used. It is 

important to notice that, since the roller bearings were already used in railway applications, some parts 

used for measurements had imperfections and signs of wear. This feature eventually led to dimensional 

deviations from that of new roller bearings. However, since the data requested to manufacturers was not 

made available for new bearings, the acquired dimensional features constitute the best approach. 

The geometric data, acquired experimentally, was further post-processed for consistency. 

Among other geometric features it was noticed that the values obtained from the physical measurements 

for the raceway angles α0 and αi of the tapered bearing were not adequate since it is required that both 

are centered at the same point. For this reason, the raceway angles were calculated analytically based on 

the measured geometry of the roller, by knowing the internal angle formed by its sides. The resulting 

data for both spherical and tapered bearing models, obtained by physical testing, is presented in 

Appendix A - Input Data for Bearing Model. 

ep

LiLi Si LiLi Si Li LiSi
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4. GENERAL FORMULATION OF THE ROLLER CONTACT DETECTION   

The formulation of the contact between the bearing rollers and the raceway and cage is structured as a 

two stage problem. In the first stage the positions and geometries of the roller, raceways and cage are 

evaluated to identify the points of proximity and the eventual existence of contact. The second stage 

consists in the evaluation of the contact forces that develop between the surfaces in actual contact and 

in the calculation of the friction and other shear forces that develop, eventually involving lubrication. In 

the first evaluation stage only the kinematics of the bearing mechanical components and their geometry 

play a role while in the second stage the constitutive equations, relating the interference between 

components with contact forces, are used. The evaluation of the forces that act over each mechanical 

element of the bearing sets the ground for the formulation of the equilibrium equations of each body, 

which have to be solved, being the resulting accelerations integrated afterwards. Here the only focus is 

on the calculation of the forces that act over each component of the bearing. In this chapter the first stage 

i.e., the contact detection, is described by detailing the necessary equations and procedures to be 

followed to evaluate the existence of contact. 

4.1. Roller bearing contacts 

When observing a functioning roller bearing it is visible that over time several different contacts develop 

over each of its bodies. In order to create a realistic model of a roller bearing, all of these contacts should 

be considered, otherwise the behaviour of the bearing becomes inaccurate. The most important roller 

contacts, in any type of roller bearing, take place between each roller side and the raceway or flange 

surfaces and between rollers and cage pockets. Other areas of contact can also be found in a roller 

bearing, depending on its geometry and characteristics, such as contact between the back parts of each 

cage, when the bearing has two separate cages, between the cage guidance and raceways or even 

between a ring and the back of each inner or outer raceways, in the case where the bearing has two rows 

with one of its raceways divided in two and spaced by a ring that fills the inter race spacing. Particular 

cases of breakage of the cage can also be considered, where contact between rollers can occur. In this 

work, these other contacts are not considered, since they are likely to happen only in exceptional 

occasions and in the event of defects or failure. Therefore, in this work, only the most common and 

important roller contacts are considered, reason why contact is studied only between the rollers and each 

of the bodies directly surrounding them and not between rollers or between cage and raceways.  

 The contacts considered in this work, illustrated as in Figure 19, are mainly listed as: 

 Contact between roller and raceways; 

o Contact between roller and inner raceway (Inner); 

o Contact between roller and outer raceway (Outer); 

 Contact between roller and flanges; 

o Contact between roller and right flange (FR); 

o Contact between roller and left flange (FL); 
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 Contact between roller and cage; 

o Contact between roller and cage pocket tops (C2.1, C2.2, C4.1, C4.2); 

o Contact between roller and cage pocket sides (C3.1, C3.2). 

 

(a) (b) 
Figure 19: Contacts considered on the roller bearing. (a) Contacts on roller with raceways and flanges; (b) Contacts between 

roller and cage. 

4.2. Contact search 

When evaluating existence of contact, it is necessary to study every pair of contact points individually, 

since the value of force developed in each point can be different depending on the geometry and 

kinematics of the body. Also, the mechanical system is studied over time and these points can, and 

usually do, develop in different positions. With this in mind, every contact point has a persistent method 

which is solved to calculate its position in each body. This method consists in finding the two closest 

points between each body in a certain area where contact is prone to develop and identifying the pseudo-

interference, or local deformation, between the contacting surfaces. 

4.2.1. Search of contact between two generic surfaces 

Let it be assumed that a body in motion approaches another. These bodies can be described as generic 

surfaces, which can be numerically represented, as shown in Figure 20. When these bodies are in motion, 

there are always two points which are closest to each other and where contact is more likely to occur 

when their trajectory leads them to approach enough. Over time the position of each point may change, 

but its local position for any instance can be evaluated when the geometry of each surface is known. The 

search for contact between the two surfaces requires the identification of two parameters of each surface, 

associated to the location of the points that are either in contact or in closer proximity. This is illustrated 

in Figure 20, in which the points in closer proximity are depicted as P and Q, each belonging to a generic 

surface on body i and j, respectively. Furthermore, the surfaces are defined in the referentials ()i and 

()j fixed to the centres of mass of bodies i and j, respectively. Vector d  represents the distance 

between them, given by  P Qd r r . 
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Figure 20: Candidates to contact points between two parametric surfaces. Point P belongs to a surface on body i and point Q 

to a surface on body j. 

With reference to Figure 20, the position of point P on body i is defined by the sum of vectors 

ir , which is the position of the roller center of mass with respect to the inertial frame (XYZ), and vector 

sP
 representing the position of point P with respect to the body i fixed frame. The position of point Q is 

analogous to point P. Points P and Q positions can be written as, 
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r r A s

r r A s
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P i i P

Q j j Q

  (4.1) 

where 
iA  and jA  are the transformation matrices from the local referential attached to bodies i and j, 

respectively. The coordinates of points P and Q, expressed in body i and j reference frames and defined 

as 
Ps  and 

Qs , respectively, depend on the parametric description of each surface, reason why such 

procedures are described individually in further topics.  

Still with reference to Figure 20, on point P in body i the vector normal to the surface is 
Pn

while 
Pt  and 

Pb  are the tangent and binormal vectors to the surface, respectively, forming an orthogonal 

basis. The same theory applies to Qn , Qt  and Qb , which are the vectors on point Q. The relation between 

the components of the different vectors defined in each body and the parameters used to define the 

surface depends on the specific geometry of the contacting surface. Such relations are also developed in 

detail in forthcoming sections. At this point, it is assumed that these expressions exist in close forms.  

The conditions for minimal distance between the two surfaces are that points P and Q are 

generically described by, 
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which means that not only the normal to each surface must be collinear with the vector that connects the 

two points in closer proximity but also perpendicular to the tangent and binormal vectors on each point. 

Effective contact occurs if, besides the fulfilment of Eq.(4.2), penetration also exists, which is expressed 

by, 

 0  T

Qd n   (4.3) 

otherwise, the points are of close proximity, but not in contact. 

4.2.2. Search of contact between circle and surface 

When applying the procedure outlined in Section 4.2.1 to the case of a roller approaching a generic 

surface, as represented in Figure 21(a), let it be assumed that in the course of its motion the roller actually 

contacts the surface. The situation is numerically perceived as contact and is illustrated in Figure 21(b), 

being the shaded volume a representation of the penetration of the roller in the surface, i.e., the 

interference between the two bodies. Note that in penalty contact force models, foreseen for application 

in this work, the contact force is related with the quantification of the interference, designated hereafter 

as penetration.  

  
(a) (b) 

Figure 21: Contact between a roller and a surface. (a) Approach phase in which the minimum distance is calculated; (b) 

Contact phase in which the actual penetration, shaded volume, is evaluated. 

The shape of the rollers in standard bearings is not perfectly cylindrical or conical, in the case 

of tapered rollers. They also include a crowned region and a corner radius in order to avoid edge loading, 

thus reducing fatigue on the contacting elements. Furthermore, the geometry of the surfaces of the 

raceways may not be cylindrical or conical and/or the axis of the rollers may be misaligned with the axis 

of the raceways resulting in skewing between the two rolling elements. Any of the conditions mentioned 

lead to a penetration depth between the roller and the contacting surface that varies along the roller axis. 

Consequently, instead of defining a common penetration depth for the complete roller, the penetration 

can only be defined for each particular cross-section of the roller. 

Let a roller with the shape represented in Figure 22(a) represent any generic roller, i.e., 

cylindrical, spherical, toroidal, tapered or spherical tapered roller. Consider now that the roller is divided 

in a user defined Nsl number of strips, i.e., cylindrical segments, which act as rigid bodies without any 

relative motion between them, as perceived in Figure 22(b). Now the contact problem of the complete 

roller can be described as Nsl independent contact problems of thin cylinders, being one of those 
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highlighted in Figure 22(c), in which the contacting penetration depth is constant throughout the slice, 

or strip [38]. Therefore, each one of the contact problems, required to represent the roller to surface 

contact, is described by the contact of the central cross-section of the slice, as represented in Figure 23. 

                         
(a) (b) (c) 

Figure 22: Geometry of a generic roller. (a) Three-dimensional geometry; (b) Division in a defined number of slices, or strips; 

(c) Individual strip with the representation of its central cross-section. 

            
(a) (b) 

Figure 23: Interaction between a circle and a surface. (a) Approach between the geometric figures; (b) Contact with the 

interference represented as a shaded area. 

As a result of the approach followed here, the search for contact of the rollers with any potential 

contacting surface is reduced to the identification of the minimum distance between the central cross-

section of each slice and the surface. By identifying the proper interaction conditions it is possible to 

verify if such distance corresponds to separation or to effective contact. In what follows the central 

cross-section of the slice is designated by circular cross-section or simply by circle. The representation 

of the two contacting points between a circle of the roller and a surface can be seen in Figure 24. 

 

Figure 24: Geometric relations between a point P in a circumference and a point Q in a generic surface. 

 i 

    

 

 j 

 j  j 

 i 
 i 

ri

sP

rj

X

Y
Z

sQ

Q

P

nP

tP nQ tQ

bQ

d



28 

 

Due to the fact that only one parameter is required to define a circle, one of the required 

parameters used in Eq. (4.2) to find the point of contact on the roller is now a constant. So, only one 

parameter is needed to identify the point of contact on the roller circle and two parameters continue to 

be required for the surface. This results in one of the equations of Eq. (4.2) to be no longer needed, so 

the conditions for minimal distance between the circle and a surface are now described by, 
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  (4.4) 

Effective contact occurs between the circle and the surface if both Eq. (4.4) and Eq. (4.3) are fulfilled.  

4.2.3. Search of contact between circle and line 

In some cases of contact in a roller bearing, such as the contact between a roller and one of the cage’s 

pocket tops for example, the surface that the roller contacts has a small height-length ratio, meaning that 

the surface can be approximated to a line in order to simplify the contact detection. The representation 

of the two contacting points between a circle of the roller and a line can be seen in Figure 25. 

 

Figure 25: Geometric relations between a point P in a circumference and a point Q in a generic line. 

The number of parameters that need to be identified decreases to two: one parameter for the point on 

the circle and other for the point on the line. In this case, the equations to be fulfilled in order to find the 

closest points for contact are given as, 
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Effective contact occurs between the circle and the line if both Eq. (4.5) and Eq. (4.3) are satisfied.  

4.3. Roller contacts 

The contact point on a roller, for each pair of contacting points considered in this work, enumerated in 

Section 4.1, always belongs to a circumference representing the central cross-section of a slice. The 

point on the roller is indicated as point P, whose position in the inertial frame (XYZ) is already expressed 
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in Eq. (4.1). Since point P always belongs to a circumference, the description of the surface is simplified 

to the description of a circumference, so the point only depends on one parameter to be described. In 

this case, the parameter is an angle, defined as  With reference to Figure 24 and Figure 25, the 

coordinates of point P, belonging to the circumference, and the normal and tangent vectors to the circle, 

are expressed in the body i reference frame as, 
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in which angle  is measured in a plane ()* parallel to plane (), Rs is the radius of the circumference 

and P is the circumference’s  coordinate. It should be noted that the relation between the body fixed 

and inertial coordinates of the vectors that define the tangent to the contact surfaces is written as, 
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  (4.7) 

The transformation matrix 
iA  is that of the body in which the geometrical feature, circle, is defined. 

4.4. Surface contacts 

All contacts between each slice of the roller and the raceways or with the flanges are approached as 

contacts between a circle and a surface, as presented in Section 4.2.2. In this section, the necessary 

vectors are defined for each surface to be used in Eq. (4.4) to calculate the points of closer proximity. 

This means that the position of the surface points, Qr , and the normal, tangential and binormal vectors, 

Qn , Qt   and Qb , to the contacting point of the surface, for the surfaces encountered in typical raceways 

and flanges of roller bearings, are identified here.  

All bearing raceways are surfaces of revolution, i.e., they are obtained by sweeping a plane line 

about an axis of revolution, as illustrated in Figure 26. Therefore, the coordinates of any point in the 

surface can be expressed in terms of the parameters that define the planar line and the sweep angle. For 

instance, in Figure 26 the line is described as a function of j, defined as R(j) and the sweep angle is 2. 

                 
(a) (b) 

Figure 26: Axisymmetric surface obtained as the sweep of a line about an axis: (a) Parametric representation of the line and 

its tangential and normal vectors in point Q; (b) Surface of revolution, with the sweep angle  and the surface defining 

vectors at point Q. 
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In the ()j plane the position of point Q is a function of a single parameter, which in the case 

illustrated in Figure 26 is the coordinate Q, and is written as, 
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The normal and tangent vectors to point Q in the line, shown in Figure 26(a), have components that are 

also functions of the parameter defining the line. These vectors are expressed as, 
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The surface of revolution is obtained by sweeping the line around the axis of revolution, i.e., around j. 

This operation can be represented as a transformation of coordinates in which any point on the line, with 

coordinates given by Eq.(4.8), and any vector associated to such point, such as the normal and binormal 

vectors described in Eq.(4.9), are rotated as, 
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in which the rotation matrix A is obtained by, 
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By substituting Eqs.(4.8), (4.9) and (4.11) into Eq.(4.10), and rearranging, the components of the 

position, normal and tangent vector to the surface, in point Q, are, 
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in which R=R(Q) and the components of 
* * ( )Q Q Qn n  and 

* * ( )Q Q Qb b  continue to be function of the 

parameter defining the sweep line, generically defined as Q.  

The relation between the body fixed and inertial coordinates of the vectors that define the normal 

and binormal to the contact surfaces is written as, 
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The tangent to the surface on point Q, tQ, is perpendicular to both nQ and bQ, and is calculated by the 

cross product between both vectors. The problem is now reduced to finding the parametric definitions 

of the lines that define the contour of the raceways in spherical and tapered bearings.  
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4.4.1. Raceway contacts 

4.4.1.1. Tapered bearing raceway contact 

Raceways of tapered bearings are, typically, conical geometries with which the rollers contact, as 

implied in Figure 27. In the inner raceway the contact takes place with an external conical surface while 

for the outer raceway the contact is with an internal conical surface. 

 
Figure 27: Typical tapered roller bearing with a highlighted cross section (note that the details of the roller geometry, namely 

its crowning and the end radius, as well as the flanges of the raceways are not detailed). 

As in Figure 28(a), the  coordinate of point Q in the sweep line is related with the apex position 

L and r is the raceway angle. The  coordinate of a point in the sweep line is a function of j given 

by, 

     r j rR L tg   (4.14) 

At point Q, the position of a point in the sweep line that defines the contact cross-section of the conical 

surface and the normal and tangent vectors, in the body fixed coordinate system, are written as, 
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The definition of the normal vector is for the inner raceway, named as cone in standard bearing 

terminology. For the outer raceway, defined as cup, the contact is interior to the conical surface and the 

negative of the normal vector must be used. No limits are defined here for the axial coordinate of the 

bearing not only because tapered bearings are usually mounted in pairs but also because, depending in 

specific designs, one or more of the raceways have flanges that limit the relative travel of the rollers. 

 
(a) (b) (c) 

Figure 28: Contact point Q and surface normal and tangent vectors in a conical surface for: (a) Contact point in the body 

fixed  plane; (b) External contact, as in the inner raceway; (c) Internal contact, as in the outer raceway. 
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4.4.1.2. Spherical bearing raceway contact 

Raceways of spherical bearings are, typically, toroidal geometries which the rollers contact, as implied 

in Figure 29. In the inner raceway the contact takes place with an external inverted toroidal surface while 

for the outer one the contact is with an internal toroidal surface.  

 

Figure 29: Typical spherical roller bearing with a highlighted cross section (note that the details of the roller geometry, 

namely its end radius and the flanges of the raceways, are not detailed). 

Most of the spherical bearings have two rows of rollers with the inner raceway geometry a more 

complex geometric description than the outer raceway geometry. As a result the description of the sweep 

line for the outer raceway is different from that used for the inner raceway. With reference to Figure 

30(a), the coordinates of the center of the arc of circumference that defines the left side of the inner 

raceway is, 
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where the inner and outer raceway radius are depicted by Rir and Ror, respectively, Rb is the roller radius 

and tc the clearance between the roller and raceway. Angle  is defined in Figure 29. The position of any 

point in the sweep line of the left inner raceway is obtained as a function of an angle  about the ζj axis, 

as shown in Figure 30.  
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The normal and tangent vectors to the sweep line, at point Q, in the body fixed coordinate system, are 

written as, 
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For the right side of the inner raceway, of a double row spherical bearing, according to Figure 30(b), the 

position of the center of the sweep line is, 
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With reference to Figure 30(b), the position of any point in the sweep circle and the coordinates of the 

normal and tangent vectors are written as, 
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in which angle , for the right side of the inner raceway is taken as positive when measured as in Figure 

30(b). 

The outer raceway sweeping curve is an arc of circle with a radius Ror centered in the negative 

j axis, as depicted by Figure 31(a). The roller contact takes place in the interior of the surface of 

revolution resulting from the revolution of the arc circle about the j axis. 

 

(a) (b) (c) 
Figure 30: Geometry of an inner raceway of a spherical roller bearing: (a) Contact point in the body fixed  plane in the left 

side; (b) Contact point in the body fixed  plane in the right side; (c) Spatial representation. 

   
(a) (b) 

Figure 31: Geometry of an outer raceway of a spherical roller bearing: (a) Contact point in the body fixed  plane; (b) 

Contact point and surface vectors in the inner raceway. 

Still with reference to Figure 31, the arc of circle that constitutes the sweep line of the outer raceway is 

centered in the origin of the body fixed coordinate frame, which in turn seats in the axis or rotation of 

the raceway. Using the angle , positive in the counter-clockwise direction, the position of a point Q in 

the arc of circle and the coordinates of the normal and tangent vectors are, 
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The position of point Q with respect to the body fixed coordinate frame and the normal, tangent and 

binormal vectors associated to the surface tangent to the point are depicted in Figure 31(b). 

4.4.2. Flange contacts 

In bearings the normal dynamics of the rollers leads to occasional contacts between the roller tops and 

the flanges that limit the land length of the roller. Due to the roller end diameters, in the case of the small 

end of a tapered roller, the contact with the flange is achieved with the circular landmark that limits the 

roller, as seen in Figure 32(a). Due to its spherical shape, at least the large end but eventually the small 

end also, in the case of the tapered roller the contact with the flange is between a spherical surface and 

a conical solid, as depicted by Figure 32(b). However, since the radius of the spherical surface is of such 

a high value (larger than 1 meter), the geometry of the large top of the roller is considered flat. The 

curvature of the surface is neglected and the contact search between the large top and the flange, as well 

as with the top of the cage, is achieved by considering the large top of the roller as a circle, just as the 

small top. The contact with flanges on a spherical roller bearing follows the same procedure as described 

here.  

    
(a) (b) 

Figure 32: Contact geometry between rollers and flanges. Point Q refers to the contact point for a tapered roller. 

The detailed geometry of the tapered roller bearing inner raceways, with flanges, is represented 

in Figure 33. The raceway land geometry is provided by the user, together with the flange angles and 

heights, while all other features are obtained from the rollers and general bearing user data. Note that in 

the case of tapered roller bearings the outer raceways have no flanges. However, in the case of any 

particular bearing design, for which flanges in the outer races would be used, their geometric definition 

would follow the basic steps outlined in what follows, with the corresponding adjustments. 

 
Figure 33: Detailed geometry of the flanges for tapered roller bearings inner raceway 
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The flanges contact surface results from sweeping a line segment about the axis of the roller. In 

order to characterize such segment let the radius of the raceway flanges shown in Figure 33 be defined 

as, 

  
1
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 i m b kR d D   (4.22) 

being the remaining geometrical features defined in Figure 17. The flange angles, in the definition of 

the sweeping surface obtained from the revolution of the line segments about the axis of the raceway, 

are referred to the orientation of j. The intermediate angles necessary to define such flanges are, 

 ;        R iR i L iL i
  (4.23) 

By the same token the intermediate radius necessary to define the tapered roller bearing inner flanges 

are, 
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For the right inner flange, the point of contact position and the vectors are written as, 
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Here, contact can only occur for a parametrical range  
iR j oR

R R . For the left inner flange the position 

of the contact point and the normal and tangent vectors are defined as, 
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Just as for the right flange, also for the left inner raceway flange the contact can only occur for a 

parametrical range  
iL j oL

R R . 

4.5. Cage contacts 

4.5.1. Tapered cage contacts 

In the tapered bearing model considered here, the contacts between each slice of the roller and the sides 

of the cage or between the tops of the roller and the tops of the cage, are approached as contacts between 

a circle and a line, as presented in Section 4.2.3. In all that follows, the relation between the body fixed 

and inertial coordinates of the vector that defines the binormal vector to the contact surfaces is written 

as, 

 Q j Qb A b   (4.28) 

where vector 
Qb  defines a vector tangent to the contact surface in body fixed coordinates. 
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4.5.1.1. Pocket top contact 

Contacts between roller tops and lines, or very narrow rectangular patches, describe well the contact 

between the tops of tapered rollers and the roller pocket of the cage, as depicted in Figure 34. In what 

follows it is assumed that the thickness of the cage is small enough to assume that the pocket shapes at 

the cage mid-thickness are lines that represent well the potential contact surfaces. The top of the roller 

is assumed as flat, reason why its contact can be detected as between a circle and a line, with the 

circumference located at each end of the roller. Each end of the roller can contact each top of the cage 

pocket either in one point or in a line along the end as shown in Figure 34 (a) and (c). Therefore, the 

possibility of having two points of contact by the roller flat end(s) has to be accounted for.  

 

(a) (b) (c) 
Figure 34: Different contacts between roller top and cage pocket top that can develop. (a) Contact between roller large top 

and cage pocket top; (b) Tops where contact can develop; (c) Contact between roller small top and cage pocket top. 

The potential contact configuration between the tapered roller large flat end and the top of the 

cage pocket is depicted in Figure 35, where the circle corresponding to the end section of the roller 

approaches the line representing the mid-thickness of the top of the pocket. Two potential points of 

contact, Q1 and Q2, may develop. In order to develop the cage pocket configuration it is assumed that 

the center of mass of the cage, to which the body fixed coordinate frame ()c is attached, is located in 

its geometrical center. With reference to Figure 35, 0c is half of the pocket long side dimension, Rc is 

the mid-thickness radius at the level of the pocket top and Q1 and Q2 are the angular positions of the 

contact points on the pocket top, Q1 and Q2 respectively, with respect to the body fixed direction c. 

In order to define the contact conditions, the positions of the potential contact points in the line 

that defines the pocket top and the tangent vectors at such points are written as, 
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Figure 35: Contact detection between a circle and a line, representing the contact of the roller large flat end with the top of 

the cage pocket. 

The contact situation between the roller small flat end and the top of the pocket is shown in Figure 36. 

The situation is similar to the contact with the large top of the roller.  

 
Figure 36:  Contact detection between a circle and a line, representing the contact of the roller small flat end with the bottom 

side of the cage pocket. 

The coordinates and tangent vectors of the points of contact with the cage in this situation are obtained 

by expressions similar to those of contact with the large end of the roller, with the required modifications. 

These expressions are given by, 
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where radius Rcb is opposite to Rc in Figure 35, i.e., the radius of the pocket top mid-thickness that 

corresponds to the small end of the tapered roller. In the evaluation of Eqs.(4.31) and (4.32) the 

parameters that define the position of the points in the top circle of the roller must be kept inside the 

ranges +90º<P1≤+270º and -90º<P2≤+90º in order to guarantee their separation. Contact is detected for 

each or for both pairs of contact between the roller small flat end and bottom of the cage pocket and/or 

between the roller large flat end and the top of the cage pocket. 

4.5.1.2. Pocket side contact 

The circle to line contact evaluation is required when checking for the collisions between the roller, 

represented by slices as described in Figure 22, and the side of the cage pocket. In this case, the circle, 

representing the slice, contacts with the pocket long side, which is represented by the line of its mid-

thickness. The situation is illustrated in Figure 37 for a tapered roller cage and roller, being the 

orientation and position of the pocket in the cage described as in Section 4.5.1.1. 

                      

Figure 37: Contact between circle and a line, as in the contact between the roller and the side of the pocket of the cage. 

The contact situation between the roller and the side of the pocket is depicted in Figure 38, 

where the circle corresponding to the central section of the roller slice approaches the line representing 

the mid-thickness of the side pocket. Note that in Figure 38 only the pair of contact between the right 

side of the cage pocket and the roller is fully represented.  

  
Figure 38: Contact detection between a circle and a line, representing the contact of the roller with the right side of the cage 

pocket. 
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With reference to the quantities depicted in Figure 38, the position of the contact point along 

the line that represents the left side of the cage pocket and its tangent vector are given as a function of 

the parameter c, which is also the coordinate of the point in the body fixed coordinate frame, 
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where the quantities Rc, Wi, c and c are either given as features of the roller bearing cage or calculated 

during the initialization of the problem.  

The contact detection with the right side of the cage pocket is similar to that described by Eq. 

(4.33), being only the angle c substituted by c+p , which includes the angle of the pocket itself. 

Therefore, the position of a point in the line of the right side of the pocket is, 

    

   

 

 

1

2

1

2

cos

tg cos ; sin cos

tg sin sin sin

s b

 

      

      

   
   
   

           
   
           

c c

Qr c i c c c p Qr c c p

c i c c c p c c p

R W

R W

  (4.34) 

Effective contact occurs if both Eq.(4.5) and Eq.(4.3) are fulfilled. The contacts with the left and right 

side of the cage pocket must be checked independently. In any case, if a particular roller slice is in 

contact with one side of the cage it is unlikely that it also contacts with the other side, unless the width 

of the pocket is smaller than the roller diameter and the whole cage position is shifted such a way that it 

is ‘compressing’ the roller. 

4.5.2. Spherical cage contacts 

The necessary equations to detect contact with the spherical cage have not been formulated in the 

development reported in this work. However, due to the geometry of the spherical roller bearing cage, 

the contact with the rollers is closer to circle to surface contact than that of the tapered roller bearing 

cage. 

4.6. Other contacts 

4.6.1. Contact between spherical cap and conical surface 

Over the description of contact detection between the tapered roller top and flanges or cage tops, it has 

been assumed that the top of the roller is flat, reducing the identification of the proximity point on its 

surface to the search on a circle. However, the tapered roller large end is, in fact, a spherical surface, 

with a small curvature. The first approach to detect contact between the large end of the roller and the 

cage top requires the solution of the correspondent system of nonlinear equations, which has shown to 

be prone to convergence errors due to the large value of the curvature radius of the roller large top. In 

future developments this aspect must be considered to obtain more accurate results with the dynamic 

analysis tool, provided that further investigation is done to identify solutions for the convergence errors. 
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A convenient parameterization of the spherical cap geometry, with reference to the data used to define 

the tapered roller, is proposed here. The contact between the tapered roller large end, with, as an 

example, the inner raceway flange, is represented as a contact between a spherical cap and a conical 

surface, as depicted by Figure 39. The parameterized conical geometry is described in Section 4.4.2.  

 
Figure 39: Typical contact between spherical cap and conical surface, as in the contact between the tapered roller large end 

top and the flange of the inner raceway. 

The geometry of the spherical cap is obtained as the surface resulting from sweeping the arc of 

circumference, depicted in Figure 40, about the roller axis. In this case the surface of the spherical cap 

is defined by two parameters, the angle , represented in Figure 40, and the angle 2.  

           
(a) (b) 

Figure 40: Contact point, surface normal and tangent vectors for the spherical cap of the tapered roller bearing end: (a) 

Contact point in the local plane: (b) Spatial geometry of the spherical cap. 

The position of any point in the arc of circle, and the corresponding normal and tangent vectors, 

are written as, 

 

0

* * *

cos cos sin

sin ; sin ; cos

0 0 0

   

  

     
     

        
     
     

er

Q er Q Q

R

Rs n b   (4.35) 

Contact can only occur for a parametrical range of 
max0    , where max is fixed by the definition of 

the roller geometry. 

4.7. Solution of the nonlinear system of equations 

It has been seen that the identification of the closest points between the geometrical features of two 

bodies must fulfil several conditions, namely Equations (4.2), (4.4) or (4.5) depending on the case in 

study. These equations define sets of equations that involve the inner product between vectors that 

depend on the geometry and kinematics of each interacting body. These vectors involve the distance 

vector between the two points candidate to contact and other vectors that are either the normal or tangent 

2
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to the surface or line. Over time, the location of the nearest points can change, reason why the location 

and normal and tangent vectors in each point of the potential contact pair depend on specific parameters. 

The parameters are usually linear dimensions or angles. The challenge, in each time step and each 

contact pair, consists in the identification of two points whose coordinates satisfy the specific equations 

for minimum distance, which is achieved by solving a system of nonlinear equations for each pair of 

contact. 

4.7.1.1. Newton-Raphson’s method 

In order to solve the equations for minimum distance, a numerical method for finding roots of functions 

is the most appropriate, since it needs to be incorporated into the computational program and should be 

fast and accurate. When studying the available methods, the Newton-Raphson method appears as the 

most appealing, for its simplicity, computational easiness and for being a powerful method that generally 

has a quadratic convergence, resulting in fast and accurate results. Newton’s method uses an initial 

estimation of the parameters to progress with an iterative procedure until the values of these parameters 

that satisfy the given equations are identified. The initial estimation values are calculated by the 

BearDyn code before calling the integration method and are based on the geometry data provided by 

the user. These values are delivered to the integration method to be used in the contact detection in the 

beginning of the analysis and are updated for every successful time-step with the values calculated in 

the previous time step. The Newton’s method is formulated as, 
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where the counter n refers to the iteration number, x is a vector containing the desired variables, ( )nf x  

is the function to be evaluated, either based on Equation (4.2), Equation (4.4) or Equation (4.5) for each 

contact pair, and ( )
nf x  is the Jacobian matrix. Newton’s method is solved for each pair of contact 

points, until a solution is found, i.e., when the fraction between the function vector and the Jacobian is 

smaller than a tolerance specified by the user.  

4.7.1.2. “fsolve” solver 

The Newton-Raphson’s method does not ensure universal convergence, being the lack of convergence 

characterized by reading the maximum number of iterations specified by the user. In order to avoid 

problems that can arise from using different values or to avoid the extra computational effort resulting 

from the use of an extremely high maximum number of iterations, another method for the solution of a 

nonlinear system of equations is used when the Newton Raphson method fails. The MATLAB® solver 

fsolve is chosen and implemented to calculate the potential contact points for the case of failure of 

convergence from Newton’s method. fsolve is used to solve systems of nonlinear equations based on 

given initial values, using an algorithm based on a trust-region dogleg method, which is specially 

designed to solve nonlinear equations. Although fsolve is slower that the Newton-Raphson’s method, it 
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does not require that the Jacobian matrix is provided. To understand the trust-region approach, consider 

the unconstrained minimization problem, min f(x), where the function takes vector arguments and 

returns scalars. Supposing a starting point x in n-space, it is required to move to a point that leads to a 

lower function value. The basic idea is to approximate f with a simpler function q, which reasonably 

reflects the behaviour of function f in a neighbourhood N around the point x. This neighbourhood is the 

trust region. A trial step s is computed by minimizing, or approximately minimizing, over N. For 

additional understanding on this method, the reader is directed to references [39] [40]. 

The use of fsolve has shown to solve the problem with the lack of convergence of solutions, 

since this solver has more stopping criteria than the implemented Newton-Raphson method, which 

simply assumes convergence when the error between consequent results is smaller than a specified 

tolerance. fsolve here accepts a result as correct when the different possibilities, specified in Table 4, 

occur. 

Function converged to a solution x. 

Change in x was smaller than the specified tolerance. 

Change in the residual was smaller than the specified tolerance. 

Magnitude of search direction was smaller than the specified tolerance. 
Table 4: Possible reasons for convergence of the fsolve method 

This solution procedure solves the problem of convergence, but introduces a slight increase in 

the total computational effort required by the dynamic analysis tool when these cases occur. However, 

this increase in integration time caused by the use of fsolve is necessary to obtain the required accuracy 

in results. 
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5. FORMULATION OF CONTACT FORCES   

During the contact detection it is possible to identify the location of the points in contact with the 

surfaces of the rolling elements, the relative indentation and orientation between the contacting surfaces. 

These are the kinematic variables required by the models of the normal contact forces and the friction 

and hydrodynamic forces. These last also use the relative velocities which are introduced here. The 

loading of the rollers, raceways and cage is evaluated in two stages: first, the normal contact forces are 

evaluated using Hertzian contact models; second, the tangential contact forces are evaluated using 

friction and tribological models, recognizing the lubrication mode present in each contact. 

Once contact is detected using the methodology presented in Chapter 4, the contact forces are 

applied in each pair of contacting points P and Q. The contact force vectors, applied in bodies i and j, 

are related to each correspondent normal vectors by, 
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where fn is the normal contact force developed during contact, which is a value proportional to the 

indentation developed between the two bodies, , calculated by Eq.(4.3).  

Besides the normal forces that develop during contact, also tangential forces due to friction or 

to the lubrication fluid develop between the contacting bodies. The tangential forces are also applied in 

each pair of contacting points P and Q and their value is proportional to the normal force developed 

during contact. For the evaluation of tangential, or creep, forces it is necessary to calculate the relative 

velocity between the bodies, namely its projection on the surface tangent to the contacting bodies on the 

points of contact. The velocities of the contact points P and Q are obtained by taking the time derivative 

of the position vectors, Pr  and Qr , written as, 
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where 
ir  and jr  are the velocities of the origin of the body fixed referential and 

i  and 
j  the skew-

symmetric matrices associated to the angular velocities of body i and j , respectively, expressed in the 

body fixed coordinate systems. The relative velocity between bodies i and j in the point of contact is 

obtained as, 

 r r r PQ P Q   (5.3) 

The sliding velocity of the bodies in the contact point is just the projection of the relative 

velocity vector PQr  in the tangent plane to the contacting surfaces in the contact point, as, 

    T

PQ PQ Q Qu r r n n  (5.4) 

Figure 41 illustrates the plane tangent to the contacting surface and circumference that passes by the 

contact point, as well as the sliding velocity calculated by Eq. (5.2).  
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Figure 41: Tangent plane, to both surface and circumference, passing by the contact point and sliding velocity vector. 

In all normal contact force, friction force or lubrication force models used for the contact of the 

rolling elements in the bearings the kinematic quantities required, i.e., contact point positions, 

penetrations, normal vectors to the surfaces and relative sliding velocities are calculated using the 

equations introduced from Chapter 4 up until this point. 

5.1. Normal contact forces 

The normal contact forces developed during the contact between the rolling elements, although large, 

are distributed over a small area when compared with the dimensions of the contacting surfaces. Typical 

examples of contact between rolling elements are described in Figure 42 for cases of wheel-rail contact 

and rolling bearings. 

 
 

(a) 

 

(b) 

  
(c) (d) 

Figure 42: Contact patches for cases of Hertzian contact force models: (a) Elliptical contact; (b) Point contact; (c) Elliptical 

contact; (d) Line contact. 
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The stress distribution over the contact area, or contact patch, is described by Hertz elastic 

contact theory if some conditions are met [27]. In order for the Hertz elastic contact theory to be valid 

it is required that: 

 All deformations must be within the linear elastic limits, i.e., the strains are small and the body 

stresses can be described by a linear elastic constitutive relation; 

 All shear stresses are neglected, i.e., the loading is assumed normal to the contacting surfaces 

and, therefore, the contact is frictionless; 

 The dimensions of the contact patch are small when compared to the dimensions of the surfaces 

in contact, i.e., the contact area is much smaller than the characteristic radii that define the 

surfaces curvatures, implying in turn that the surfaces are continuous and non-conforming. 

Typically point contacts, described by elliptical contact patches as those described in Figure 43, 

and line contacts, described by the rectangular contact patch shown in Figure 44, are of importance in 

the contact of rolling elements, and are used extensively in the rolling bearing dynamics. It is not the 

objective of this work to provide thorough presentation of the Hertz elastic contact theory but simply to 

register its main findings that are of importance to the representation of the normal contact forces 

between rolling elements of bearings. 

5.1.1. Point contact 

The point contact between two solids leads to elliptical contact patches with the geometry depicted in 

Figure 43, in which it is assumed that the rolling direction is along the X axis. In roller bearings the 

contact between the rollers ends and the raceway flanges or the cage tops are characterized as point 

contacts. 

 

(a) (b) 
Figure 43: Elliptical contact: (a) Geometric definitions; (b) Stress distribution and contact patch geometry. 

Let the interference, or compression, between two surfaces be described by , which is found 

using Eq.(4.3). The normal contact force, in the case of point contact is, 
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3

2n ptf K   (5.5) 

where proportionality factor Kpt, or contact stiffness, is given by [41], 
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being the characteristic radii of the contacting surfaces described in Figure 43, =a/b, with a and b being 

the semi-axis of the contact ellipse and ,  are complete elliptical integrals of first and second kind 

[42]. Using a least-square relation, Brew and Hamrock [43] find an approximate expression for the 

elliptical integrals and for  as, 
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where, 
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and, 
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The equivalent modulus E  is given as, 
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where E1, 1 and E2, 2 are the Young’s modulus and Poisson’s ratio of the material of each body in 

contact, respectively.  

The evaluation of the maximum stress developed during contact is also of interest since it is 

used in the evaluation of tangential forces caused by lubricated rolling contact. For a point contact the 

maximum stress in the contact patch, shown in Figure 43, is written as [44], 
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with the dimensions of the semi-axis of the elliptical contact patch found as [41], 
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where a is referred to as the semimajor and b the semiminor axes of the contact ellipse developed.  
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5.1.2. Line contact 

The ideal line contact, illustrated in Figure 44, can be understood simply as a case in which the ratio 

→∞ due to the fact that a>>b. However, the relation between indentation and normal force becomes, 

in this case, a nonlinear relation that requires an iterative procedure to obtain the normal force when the 

indentation is known. Several elastic contact models for cylinders with parallel axis based on the Hertz 

elastic contact theory have been proposed. The Johnson model, used by the ESDU-78035 Tribology 

Series [45], is given by, 
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where Lef represents the effective contact length, generally equal to the length of the shorter cylinder and 

where the composite modulus E* and the characteristic radii R are given by, 
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(a) (b) 
Figure 44: Line contact: (a) Geometric definitions; (b) Stress distribution and contact patch geometry 

Different other solutions for the relation between the indentation and the normal force on the 

contact between cylinders with parallel axis have been proposed in the literature. In formulas for stress 

and strain, by Roark [46], the expression first proposed by Radzimovsky [47] is presented as, 
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where the parameter b is, 
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with ( / ) ax bxR r r R , being R given by Eq. (5.14). In Eq. (5.16) it is assumed that the materials used 

in the contacting surfaces have identical material properties. By substituting the relations of Eq. (5.16) 

into Eq. (5.15) leads to, 
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Another cylindrical contact model has been proposed by Goldsmith and expressed as [48], 
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When used in the framework of computational dynamics, in which the normal contact force needs to be 

calculated based on a known indentation, resulting for the known positions of the contacting bodies, the 

line contact models considered so far are computationally inefficient. The iterative procedure required 

to calculate the contact force for a given indentation, required by the use of Eqs. (5.13), (5.17) or (5.18) 

not only is costly when a very large number of contacts have to be calculated, as in the case of roller 

bearing dynamics, but is also prone to convergence difficulties. Furthermore, the different line contact 

models discussed so far have limitations in their range of applications, as discussed by Pereira et al. [49] 

To overcome the numerical difficulties and the physical limitations on the use of the Hertz based 

contact models by Johnson, Radzimovsky or Goldsmith, Pereira et al. proposed a cylindrical contact 

model that does not require an iterative procedure to calculate the normal contact force [49], written as, 
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in which, 
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In Eq. (5.22) the constant Y reflects the fact that for internal contact it is not possible to find a single 

expression to obtain a fit with good correlation between the Johnson and exponential fit function for the 

complete range of clearances R. The best fit is obtained with the constant Y given by, 
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This cylindrical contact model matches in precision Johnson model in its range of validity and extends 

the range of application of current models due to the extensive use of finite element models for 

cylindrical contact, which are not prone to the Hertz elastic contact limitations. 
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For any of the normal contact force models presented, the maximum contact stress in the 

rectangular patch is given by, 
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with the dimensions of the dimension b of the contact patch found as, 
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where, 
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All cylindrical contact models presented assume ideal line contact, i.e., the geometry of the 

cylinders is perfect and contact takes place in the full extension of the shorter cylinder. In roller bearings 

the rollers are crowned and the contact models presented do not represent correctly the relation between 

indentation and normal force. Based on laboratory testing, Palmgren [50] developed a relation, which is 

the basis of current contact models in roller bearing line contact, written as, 
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which rearranged and having the normal force written as a function of the indentation, or relative elastic 

approach, is, 
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In order to apply the normal contact force model for line contact to the roller contact with the inner and 

outer raceways and with the sides of the cage pocket, the roller is discretized in Nsl strips, as implied by 

Figure 22. 

The contact search for each strip is evaluated using the procedure described in section 4 and for 

the contact force is evaluated based on the strip indentation. The normal contact force of a strip of the 

roller is given by Palmgren’s simplified equation [25], 
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where the counter s refers to the number of the slice in each of the rollers.  

5.2. Tangential contact forces 

Surfaces in rolling contact, subjected to normal contact loads are also subject to tangential forces due to 

friction, in the case of dry contact such as for rail-wheel interaction, or due to the lubricant, in the case 

of lubricated contact as in normal roller bearing applications. Regardless of the type of contact, the 

relation between the tangential forces and the normal contact forces is given by, 

 t nf f   (5.30) 
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where  is the equivalent friction coefficient. For the sake of brevity the subscripts t and n are used 

instead of ts and ns used in Eq.(5.29). Note also that the tangential force is applied in the opposite 

direction of the relative velocity between the contacting surfaces, obtained by Eq. (5.4).  

The simple form of Eq. (5.30) hides the complexity of the calculation of  for many important 

tangential forces, as in the case of lubricated contact. In the case of lubrication between the contacting 

surfaces, depending on the lubricant film thickness and on the roughness of the contacting surfaces the 

type of contact is different and the equivalent friction coefficient has to be evaluated differently. Figure 

45 shows the different contact modes, from dry contact through full fluid film lubricated mode. 

   
(a) (b) 

   
(c) (d) 

Figure 45: Types of contact (  Boundary lubricant layer,  Lubricant): (a) Dry contact; (b) Boundary mode; (c) 

Mixed mode; (d) Full fluid mode. 

For lubricated contact, the relation between the fluid film thickness and the roughness of the 

contacting surfaces defines the type of contact mode that is taking place. Let the lubricant film parameter 

be defined as, 
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where hc is the lubricant film central thickness and 
1  and 

2  the roughness of the contacting surfaces. 

Assuming for each lubrication mode a different equivalent friction coefficient, the relation between , 

in Eq. (5.30), such lubrication mode equivalent friction coefficients is written as [38], 

 

 
 

6

6



 
 




  

 
        

 


  

bd bd

bd fm

fm fm bd fm

bd fm

fm fm

  (5.32) 

The typical values for the lubricant film parameter used to define he transitions between the different 

lubrication modes are bd=0.01 and fm=1.5 [38]. The evaluation of the equivalent friction coefficient 

required the prior evaluation of the lubricant film parameter, which in turn imply the calculation of the 

lubricant film thickness, and the equivalent friction coefficients for each mode of lubrication, bd and 

fm.  



51 

 

A sequence of the steps to be taken to theoretically calculate the equivalent friction coefficient 

can be resumed as: 

1. Calculate lubricant film thickness, hc 

a. Calculate adimensional parameters H, U, W and G; 

b. Calculate isothermal central lubricant fluid thickness, hiso; 

c. Calculate thermal reduction factor, 𝜙𝑇; 

d. Calculate starvation factor, 𝜙𝑆. 

2. Calculate equivalent friction coefficients 

a. Calculate boundary mode equivalent friction coefficient, µbd; 

b. Calculate full-film mode equivalent friction coefficient, µfm. 

The prominence of each step and the determination of the enumerated parameters is described 

in Appendix D – Equivalent Friction Coefficient Calculation. These are not introduced in this chapter, 

since the theoretical calculation of the full-film mode equivalent coefficient of friction is described as a 

complex procedure and its applicability was not required for the conditions tested by the dynamic 

analysis tool developed. In any case, the values resulting from its calculation are not in the range 

0<μfm<μbd, while the calculation of the boundary mode equivalent friction coefficient has been 

confirmed, as well as the former models used to calculate the lubricant film thickness. In order to avoid 

the use of incorrect values as the full-film mode equivalent friction coefficient, two solutions are 

identified in order to still allow the simulation of roller bearings in the computational tool BearDyn 

considering lubrication: 

1. The use of experimental values for μfm and μbd. In the context of this work, the partners of 

MAXBE at FEUP will, in the future, measure the values of the equivalent coefficient values 

for the lubricants used in project MAXBE.  

2. The use of a constant, pre-defined, value for the equivalent friction coefficient, . This is 

the ultimate adequate solution in order to allow performing dynamic analysis with 

BearDyn for chosen roller bearings, while considering the application of tangential forces. 

A constant value of =0.1 was chosen, which corresponds to the maximum possible value 

of the equivalent friction coefficient. 

In the future, additional studies must be done in this area in order to allow the numerical 

calculation of the full film mode equivalent coefficient and, then, of the friction coefficient to be used 

to calculate the forces resulting from tangential contact.  
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6. COMPUTATIONAL IMPLEMENTATION   

The initialization of the positions and velocities of each body of the roller bearing system and the 

evaluation of all forces acting on the bodies are possible to be computed and the general knowledge 

about the dynamics of a multibody system is described in the previous chapters. With this information, 

the dynamic analysis tool is created to allow the description of each element and their interactions over 

time, with the acronym BearDyn. The computational tool BearDyn, entirely developed in 

MATLAB®, includes the implementation of all functions used except for the time integrators and fsolve, 

for the solution of the nonlinear system of equations. The program was developed by steps, where each 

problem was only approached after the previous was resolved; for example, contact detection with the 

cage was only implemented after contact with raceways was functioning properly. As mentioned earlier, 

the integrator used was an ordinary differential equation solver from MATLAB® library of functions, 

which code was not modified. Its behaviour was, yet, controlled resorting to an integration argument 

called options, as detailed in Section 6.2.  

The BearDyn program is quite complex due to the number of functions involved in the 

detection of contacts at each time step, but in a general way follows a fairly simple structure. The core 

of the program is the integration process, which evaluates a number of functions to obtain the vector y

to be integrated at each time step, as described in Chapter 2. A scheme of the program’s main structure 

can be seen in Figure 46, where the functions are presented in boxes highlighted with a double outline, 

with their original names.  

 

Figure 46: Scheme of BearDyn code main structure. 

The program BearDyn uses text files as inputs, referred to as “Entry files” in Figure 46, which 

give information about the geometry of the bearing, integration parameters, material properties, 

lubricant parameters, as well as the forces resulting from wheel-rail contact to be applied on the inner 

raceway over time. The necessary entry files to be used in program BearDyn are detailed in Appendix 

E – BearDyn User Manual. With the information given, the initial conditions are settled, such as the 
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initial positions, orientations and velocities of the bodies, the initial estimations of contacting points, the 

initial mass matrix, as well as other values, vectors and matrices needed for various aspects of the code. 

These initializations are used as the starting conditions for the integration, which calls function 

Funceval, shown in Figure 46, successively over each time step of the total integration time defined. 

Funceval is the core of the program, where the necessary functions are called to obtain the y vector, 

which is then integrated by the time integrator, delivering the resulting vector y . This vector is then used 

to define the positions and velocities of the bodies on the next integration step, by calling Funceval 

again, and the process is repeated for each time step.  

At each time step, the process which requires most computational effort is the calculation of the 

force vector, particularly the vector resulting from contact forces. This is explained by the significant 

number of contacts considered on each body, which need to be detected independently, by solving large 

number of systems of nonlinear equations. This procedure is done in a function with the name 

Contact_Detection, as shown in Figure 47. In Figure 47 is a diagram representing the structure of the 

functions which allow calculation of the force vector.  

 

Figure 47: Force_Vector function structure. 

With reference to Figure 47, if effective contact is detected, the resulting normal and tangential forces 

are calculated and applied into the force vector. 

6.1. Time integration method  

The time integration method used to solve the equations of motions over time of the multibody system 

in BearDyn is selected among the ordinary differential equation solvers available in MATLAB®. The 

time integration method used from MATLAB® was an ordinary differential equation solver known as 

ODE45, which is recognized for self-adjusting the integration time-steps over time and realizing several 

integration searches to obtain successful results. This means that, even though the user can define the 

time-steps from which to select results, it does not mean that the integrator will exclusively calculate 
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results in those points. The integrator proceeds to calculate results for different time steps, first, and 

afterwards those are selected from which seem the most accurate, as having the smallest error compared 

to the previous result, for example. This results in having time steps which are calculated and so-called 

not successful, opposed to those which are selected from the integrator and called successful time steps. 

6.2. Integration parameters 

The integration method ODE45 was not modified in its coding, but controlled resorting to an optional 

integration argument called options. The options argument is created with the function odeset, which is 

a specific function that allows to adjust the integration parameters of ODE solvers. One of the most 

important adjustments made to allow the integrator to update the Init struct only when a successful time 

step existed. This is achieved by setting a solver output property with odeset, given as OutputFcn. This 

property controls the output that the solver generates, as a function handle which is called after every 

successful integration steps only. In this form, a handle function is created to retrieve the Init struct from 

Funceval when the integration step is successful and ignores its update when the contrary occurs.  

 One of the most struggling problems that was taken into account when coding the program was 

the time each simulation took to be performed. So, since the beginning, methods to achieve 

computational efficiency were preferred, which included reducing the time the integration itself 

consumed, without losing its accuracy. Understanding the methodology of an integrator with a variable 

time step, it is known that the time step adjusts itself to the frequency contents of the system time 

response. This means that, if the integrator finds successive similar results for a certain time span, it will 

increase its time step accordingly until a variation is found. In this problem, since forces are proportional 

to the penetration between two bodies, it can happen that the difference between two time steps is large 

enough to detect a penetration at a time where it is extremely high. This situation causes the integrator 

to try a higher number of time steps in order to find the solution, sometimes leading to excessively high 

total integration times. This situation can be avoided by defining a maximum permitted time step, so 

contact is detected at its early phase, allowing only for small penetrations. This value is also set in 

ODE45’s options, usually with the value of 10-5s.  

6.3. Init struct 

When detecting contact, an iterative process is used to solve the nonlinear equations needed to find the 

values of certain variables which define the position of the closest points between bodies. The iterative 

processes used are both the Newton-Raphson’s method and fsolve, a method from MATLAB®, as 

mentioned in Section 4.7. Both methods require initial values to be used as start values to the iteration. 

The closest these are to the final result, the faster the search method is and the smaller is the number of 

iterations needed. In BearDyn, these initial values are all introduced in a single struct and organized 

according to the type of contact of a particular pair. In each time step all the proximity points are 

calculated and new variables are found. The initializations struct to be used in the next time step includes 
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as initial values the values obtained in the previous time step. Note, however, that the update only occurs 

when a time step succeeds. Otherwise, the update of the initial values for contact detection does not 

occur.  

6.4. Verification methods 

When creating a computational tool like BearDyn, there are very few ways to verify if the results are 

correct, since there are no other available similar enough programs or studies which can be used to 

compare results and experimental procedures are not possible. Several methods were, then, used in this 

case to validate results during the construction of the computational code.  

The most helpful and adequate method encountered to help verify the veracity of results was a 

dynamic visualization tool named SAGA, which stands for System Animation for Graphical Analysis 

[51]. SAGA is a tool which uses .str files with information on position and orientation of each body of 

a system over several steps of time for the display of geometric models created in SolidWorks®, or in an 

equivalent program. For this purpose, both spherical and tapered roller bearing models were modelled 

in SolidWorks® using their real geometric properties, presented in Appendix A - Input Data for Bearing 

Model. The spherical and tapered models created for SAGA are shown in Figure 48 by exploded views 

of the complete roller bearings. 

The program SAGA uses the geometric files to display each body in its respective position and 

orientation, being also possible to visualize an animation of a simulation when the results are given for 

more than one time step. The corresponding visualizations with SAGA, for each model, are shown in 

Figure 49, where it should be noticed that the axial position of each body does not correspond to reality, 

but is used for better show of each body, and for this purpose only. Also in Figure 49, two rollers are 

represented with red and blue colours in the spherical bearing and one blue roller in the tapered bearing, 

which is merely a representation necessary for posterior analysis in Chapter 7.  

 

Figure 48: SolidWorks® models of Spherical (left) and Tapered (right) bearings. 

          
Figure 49: Spherical (left) and Tapered (right) models as visualized with SAGA. 
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A display example of the tapered bearing model obtained with SAGA at a specific time is shown in 

Figure 50, with the bodies in their correct position. SAGA is a helpful tool to verify the results 

qualitatively, since it is possible to see if the bodies shift according to what is expected from reality and 

if contacts occur at the expected areas where these are detected. With this method, a solid understanding 

of the bearing behaviour and of the conditions applied to the system is obtained, as well as a good critical 

capacity to interpret results, identify problems and to make decisions about corrections and 

modifications.  

 

Figure 50: Tapered bearing displayed by SAGA. 

Complementary, an approach used to verify the different implementation steps is by interpreting 

results over different time steps directly with the MATLAB® interface. When constructing the program, 

the code was regularly ran and evaluated critically step by step, using debugging methods, where it was 

possible to analyse different values resulting from calculations or numerical methods. These values were 

studied and compared to expected results, since usually their gross values are possible to predict. The 

coordinates obtained in the y  vector resulting from each integration step are possible to verify 

qualitatively for each body, since the initial conditions are known and events such as occurring contacts 

are detectable, so it is possible, to a certain degree, to predict the trajectory of each body, and thus its 

location.  
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7. RESULTS AND DISCUSSION   

The BearDyn program results from the implementation of the methodology proposed and developed 

in this work. Although all methods are implemented and it is able to perform a dynamic analysis, its 

results are not reliable to allow for a realistic evaluation of the roller bearing dynamics. The main 

obstacle consists in the extremely long time for each analysis resulting from poor computational 

effectiveness of BearDyn and on limited computational resources. Future work must give priority to 

ensure a reliable performance by BearDyn and, consequently, allow developing the remaining tasks 

for project MAXBE.  

Even though program BearDyn is not fully functional at this time, it is still possible to obtain 

results for different cases and with the results to illustrate problems which ultimately help understanding 

the difficulties. For this purpose the dynamic analysis of a spherical and a tapered bearing are carried 

here with BearDyn, being results discussed. 

7.1. Railway operation scenario and considerations 

When running simulations in BearDyn, in the real working conditions of a roller bearing, it is important 

to understand the operating scenario in which it is included. This allows to adjust parameters and 

understand the program shortcomings. As introduced in Chapter 1, axleboxes are the linking element 

between the rotating wheelset and the quasi-static frame of the boggie of a railway vehicle. In a railway 

operation scenario, the primary function of an axlebox is to transfer loads from the inner raceway of the 

roller bearing, fixed to the wheel shaft, to the outer raceway fixed to the axlebox. The loads acting on a 

bearing can be calculated if the external forces, such as axleload, weight of the wheelset and payload 

are known or can be calculated. In the development of this project, information on loads applied on the 

bearings is not available thus far. However, in a first approximation, the loads from wheel-rail contact, 

evaluated with a railway dynamics multibody code, can be transported to the inner raceway and allow 

for the roller bearing loading. 

The load resulting from forces external to the roller bearing considered here is caused by the 

weight of the train car, since other loading cases are not available. Knowing that each carriage is 

supported mainly by two boggie, which distribute the carriage weight over its components, the resulting 

load is considered as being applied equally and directly over the axles. The inner raceways of the roller 

bearings are rigidly fixed to the shaft of the wheelsets, so in this project it is assumed that the proper 

fraction of load resulting from the weight of the train is applied directly to the center of mass of the 

roller bearing inner raceway. Considering a common passenger train car, weighing approximately 40 

tons, and that each car holds 8 axle bearings, 2 per each axle, a corresponding force of 50 kN is 

continuously applied downwards in the vertical direction, Z, in the inner raceway of the bearing. 

At a later stage of development of the project, it is planned to include in the code the possibility 

to model and study the dynamic behaviour of the complete boggie, including wheel-rail contact forces. 

At the present stage, these forces are possible to be introduced as a result of external calculations, being 
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delivered to the program in the form of an entry table, with information on load value, direction and 

point of application at different time steps, detailed in Appendix E – BearDyn User Manual. No wheel-

rail contact forces were, however, introduced for the simulations shown in this chapter.  

Since in railway applications the inner raceway of the roller bearing is fixed to the wheel shaft, 

while the outer raceway to the axlebox, a constant angular velocity is applied to the inner raceway and 

the outer raceway is fixed to the inertia frame. As the main purpose of MAXBE project is to monitor 

roller bearings in actual operating conditions of the railway vehicle, a travel velocity of approximately 

50 km/h of a passenger train is considered as the operating condition. As the wheel shaft is part of the 

wheelset and considering this as a rigid body where the wheel has a mean radius of 0.45 meters, the 

inner raceway angular velocity is initialized with an angular speed of 30 rad/s.  

In BearDyn, besides introducing the geometrical features of the models in an entry text file, as 

well as forces resulting from wheel-rail contact forces, other parameters are required to perform 

simulations. These include the initial velocities of the inner and outer raceways and the material and 

lubricant properties. The material properties are given for a regular steel for every component of the 

bearing, except for the cage, which are for a polyamide. These parameters are presented in Appendix E 

– BearDyn User Manual, where the structure of each entry file is detailed. 

7.2. Simulations with spherical roller bearings 

BearDyn is prepared to perform a dynamic analysis of either tapered or spherical roller bearings. In 

this version not all cases of contact are implemented in the case of a spherical roller bearing, particularly 

contacts with the cage are still missing in the computer code implementation. The only situations for 

which contact detection is implemented and tested in the program are between raceways and rollers. 

When simulating the behaviour of a spherical roller bearing while only considering contacts with 

raceways, it is expected for the rollers to travel in the space between the raceways.  

A simulation of 0.05 seconds is performed with the geometry of the spherical bearing presented 

in Chapter 3.1 and Appendix A - Input Data for Bearing Model with two rows of rollers, using integrator 

ODE45 to check for the correct contact detection and application of the contact forces. The simulation 

does not progress any further, since at the end of 0.05 seconds of simulation the rollers are already in 

contact with each other at the bottom of the bearing which is not only not representative of a realistic 

situation but can also lead to numerical errors caused by the overlap of contacting points from different 

rollers. In this simulation, the load of the train is not considered, since some contacts are still not 

implemented to allow the necessary equilibrium of the system. Two rollers are selected to obtain the 

dynamic response. Their initial positions in coordinates of the global reference frame are presented in 

Table 5. The total forces and moments applied over time are presented in Figure 51 for a roller located 

in the top part of the bearing, referred here to index Body 12. Figure 52 presents the forces and moments 

applied on a roller located near the bottom of the bearing, which is index Body 25.  
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Body index X coordinate (m) Y coordinate (m) Z coordinate (m) 

12 -0.0125 0.0000 0.0667 

25 0.0125 -0.0594 -0.0303 
Table 5: Initial positions of bodies 12 and 25 of the spherical bearing 

 

Figure 51: Forces and moments applied on the roller referred to as Body 12 resulting from simulation of a spherical roller 

bearing. 

 

Figure 52: Forces and moments applied on the roller referred to as Body 25 resulting from simulation of a spherical roller 

bearing. 

The contact forces applied on rollers presented in Figure 51 and Figure 52 are not suitable to 

draw any conclusions regarding the roller bearing dynamics since these are not representative of working 

conditions of the roller bearing. However, the forces are helpful to understand if contact is being properly 

detected, which can be positively validated. When running the simulation results with the computer 

animation program SAGA, it is possible to confirm that the contacts are applied as expected, with the 

rollers remaining in between the raceways through the whole simulation time. Figure 53 shows three 

frames from the simulation animation, to help visualize this statement. In this figure, roller identified as 

Body 12 is shown as a red roller, while Body 25 is identified with the colour blue.  
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Figure 53: Frames from simulation of a spherical roller bearing with SAGA. 

The current limitations of the implemented procedures are: the lack of contact with raceway flanges and 

with cages. Furthermore, the implementation of the contact models must be further revised to eliminate 

potential implementation errors. 

7.3. Simulations with tapered roller bearings 

Tapered roller bearings are modelled in BearDyn and all types of contact described in Chapter 4 are 

implemented and tested. The integration solver ODE45 is used for the dynamic analysis of a two row 

tapered bearing with the geometry presented in Appendix A - Input Data for Bearing Model.  

In order to show some results from each simulation, a roller was selected to extract all 

interaction forces and kinematic quantities. This roller has the index Body 27 and is located in the lower 

part of the bearing. Its initial position, using coordinates of the global reference frame, is presented in 

Table 6 and it is represented as a roller with the colour blue in Figure 54.  

Body index X coordinate (m) Y coordinate (m) Z coordinate (m) 

27 0.0471 -0.0744 -0.0507 

Table 6: Initial position of Body 27 of the tapered bearing 

 

Figure 54: Representation of the tapered bearing with SAGA, with the reference roller shown in blue. 

It should be noted that as all rollers have the same geometry, the selected roller is representative 

of the behaviour of any other roller. In this sense no other roller is single sided in this work. 

7.3.1. Analysis of reliability of the contact detection 

As a first approach, a simulation of the tapered bearing, without the application of the external load or 

tangential forces, is shown. This simulation helps to recognize that the full detection of each type of 
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contact is successfully implemented. The analysis is performed for a total integration time of 0.05 

seconds, in which the roller progressed about 1/10 of the complete pitch circle, requiring 70 hours of 

computational time. The position of the reference roller over the time for which the simulation is 

performed is represented in Figure 55, where the dotted line represents the pitch radius of the bearing, 

while the full line shows the coordinates of the different locations of the center of the roller during the 

analysis period. 

 

Figure 55: Trajectory of Body 27 over time of the simulation of a tapered roller bearing with complete contact detection. Line 
…... refers to the pitch circle while line ___ refers to the actual roller trajectory. 

The total forces and moments acting on the reference roller, Body 27, are shown in Figure 56, 

where it is possible to observe that punctual forces are mostly applied due to contact in the vertical 

direction. This statement is sustained by the location of the body in study, since the peak values of force 

are expected to result from contact with the inner and outer raceways, resulting in forces with larger 

values than those in the Y and Z directions. The normal contact forces in the X direction result from the 

raceways and cage angles and from contact with cage tops and flanges.  

 

Figure 56: Forces and moments applied on Body 27 resulting from the simulation of a tapered roller bearing with complete 

contact detection. 

The total forces and moments acting on the inner raceway are shown in Figure 57, where it is 

possible to observe that the action of gravity causes bodies to travel in the negative Z direction, besides 
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rolling, resulting in a loss of symmetry of the bearing. This effect causes the inner raceway to contact 

mostly with the rollers located underneath it, resulting in higher magnitudes for the force applied in the 

Z direction. The response to these forces causes contact with rollers on the opposite side, which justifies 

the negative values of force applied on the inner raceway in the Z direction.  

 

Figure 57: Forces and moments applied on the inner raceway resulting from the simulation of a tapered roller bearing with 

complete contact detection.  

Still with reference to Figure 57, the fact that there are no relevant moments around the X axis of the 

inner raceway means that most forces resulting from contact between the rollers and the inner raceway 

are vectors which intersect the X axis. This is in agreement with the fact that contact between these 

bodies occurs at a point located with an angle approximately equal to the pitch angle of each roller and 

in the direction of the raceway surface’s normal vector. So, moments caused by contact forces are applied 

mostly in the Y and Z directions. 

7.3.2. Simulation with complete contact detection and train load applied 

When testing the application of the load of the train on the inner raceway of the roller bearing model 

over time, it was perceived that the integration process required extremely high computational resources. 

This is seen as a consequence of the existence of high frequency contents in the interaction of the 

contacting bodies, which causes the integration process to reduce the time step and, thus, requiring a 

much higher number of time steps to obtain successful results. The fact that a variable time step solver 

is used to perform the integration, results in the need for time steps lower than 10-7 seconds, causing the 

total time necessary to perform the simulation to increase drastically. Here are presented results from a 

simulation with the tapered bearing while applying the high load on its inner raceway center of mass. 

The dynamic analysis is performed for 72 hours only to obtain results for a total integration time of 

0.014 seconds. Figure 58 shows the resulting trajectory of the center of Body 27 over this period. Figure 

59 shows the total forces and moments applied on Body 27 over time, where it is visible that the 

corresponding magnitude achieves values approximately 100 times higher than those of a case where 

no external load is applied on the inner raceway, as seen in Figure 56.  
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Figure 58: Trajectory of Body 27 over time of the simulation of a tapered roller bearing with complete contact detection and 

train load applied. Line …... refers to the pitch circle while line ___ refers to the actual roller trajectory. 

 

Figure 59: Forces and moments applied on Body 27 resulting from the simulation of a tapered roller bearing with complete 

contact detection and train load applied. 

The problems that appear in the situation presented can be interpreted as resulting from the fact 

that no energy is dissipated from the system, since no tangential forces are considered.  

7.3.3. Simulation with complete contact detection, train load and tangential forces 

applied 

The problems that appear in the previous simulation, in Section 7.3.2, can result from the fact that 

tangential forces are not considered. Here, a simulation where both train load and tangential forces are 

applied is performed. In this case, the time steps required by the solver are even smaller and the 

consequences are visible as the total integration time achieved after 44 hours of computational effort is 

of merely 4.2x10-4 seconds. The trajectory of the center of the roller after this short simulation time is 

shown in Figure 60, where it is evident that its position does not change much from its initial state. 
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Figure 60: Trajectory of Body 27 over time of the simulation of a tapered roller bearing with complete contact detection, train 

load applied and tangential forces. Line …... refers to the pitch circle while line ___ refers to the actual roller trajectory. 

The resulting total forces and moments applied on Body 27 and the inner raceway are shown in 

Figure 61 and Figure 62, respectively. The analysis of these figures does not allow any conclusions to 

be drawn, due to the short time span of the integration. However, the effect of the increase in the number 

of time steps calculated by the integrator after a certain period is visible after approximately 2x10-4 

seconds, where the number of points plotted becomes higher. This difference is justified by the use of a 

variable time-step solver to perform the integration, which adjusts the steps to be calculated according 

to the results obtained for different periods of time. It is important to notice that the points plotted in the 

figures correspond to the results obtained for each successful time step calculated by the solver. The fact 

that this simulation was not able to be performed successfully, can be caused by the inappropriate use 

of the solver and its parameters or by a flawed implementation of the contact force models, so the use 

of a different solver can be the solution.  

 

Figure 61: Forces and moments applied on Body 27 resulting from the simulation of a tapered roller bearing with complete 

contact detection, train load and tangential forces applied. 
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Figure 62: Forces and moments applied on the inner raceway resulting from the simulation of a tapered roller bearing with 

complete contact detection, train load and tangential forces applied. 

7.3.4. Possible solutions for errors found 

In order to solve the problems found when performing analysis of a tapered bearing in different 

conditions, some alternatives are studied. As a first approach, the possibility of the problem being stiff 

is considered. A stiff problem is hard to define precisely; however an ordinary differential equation 

problem can be defined as stiff if the solution being sought is varying slowly, but there are nearby 

solutions that vary rapidly, causing the numerical method to take small steps to obtain satisfactory results 

[52]. From the analysis done to Figure 61 and Figure 62 in Section 7.3.3, it is perceptible that this is a 

possibility. MATLAB® offers specific integrators to deal with stiff problems, such as ODE15s and 

ODE23s. In order to test if the problem could be solved more efficiently with a stiff solver, these solvers 

were tested for the same conditions as ODE45. When running both simulations, the stiff solvers resulted 

in being much slower than ODE45, with simulation times more than double as ODE45, as supported by 

Table 7. In this table is presented a comparison of the necessary computational effort for different 

ordinary differential equation solvers used to perform a simulation in same conditions as the analysis 

presented in Section 7.3.3, by showing the necessary analysis time, in hours, for each solver to achieve 

a certain period of time of the integration. ODE15s is a solver used for stiff problems, with low to 

medium order of accuracy. ODE23s is also a solver for stiff problems, with low accuracy. ODE23t is 

used to solve moderately stiff problems, with low order of accuracy. 

 Solver  ODE45 ODE15s ODE23s ODE23t 

Time consumed 

(hours) 

 Integration time 

(s) 

Integration time 

(s) 

Integration time 

(s) 

Integration time 

(s) 

0.5  2.5x10-4 1.8x10-4 1.0x10-6 1.8x10-4 

1  3.0x10-4 1.9x10-4 1.6x10-6 1.8x10-4 

10  4.0x10-4 3.7x10-4 1.6x10-5 1.8x10-4 

24  4.1x10-4 3.9x10-4 2.8x10-5 1.8x10-4 

48  4.2x10-4 3.9x10-4 5.9x10-5 1.8x10-4 

Table 7: Computational effort compared for 4 different ordinary differential equation solvers, to evaluate the need for a stiff 

solver. 



66 

 

The cases where extremely small time steps are calculated by the computational solver, could 

be avoided by fixing a minimum time step to be used. Unfortunately, it is not possible to define a 

minimum time step for the ordinary differential equation solvers currently available in MATLAB® such 

as ODE45, since that compromises the purpose of a variable time-step solver. There are only indirect 

ways to do so, such as changing the tolerance values or the time span for the integration. However, there 

is no understanding about the direct relation that exists with the minimum time step used, so this 

approach is ignored. Another solution to avoid undesired time steps in an integration process is to use a 

fixed time step solver. A solver of this type is implemented, which solves differential equations with a 

non-adaptive method of order 3, the Bogacki-Shampine Runge-Kutta method [53], which is referred to 

from this point on as ODE30. With this integrator, a longer dynamic analysis is performed for a tapered 

bearing with the application of tangential forces and the external loads. Using ODE30, a simulation 

using the same conditions as in Section 7.3.3 delivered results after 40 minutes, opposed to the 44 hours 

with ODE45. This simulation was performed for a total integration time of 0.1 seconds, which required 

7 days to conclude. The performance time of the simulation is not ideal, since it is not enough for the 

rollers to complete one revolution around the bearing center and is extremely expensive in computational 

terms. However, this simulation allows the broadest results possible to be obtained for the conditions 

enunciated. The analysis that follows shows some different results from this simulation.  

Figure 63 shows the trajectory of the roller, Body 27, for 0.1 seconds of simulation. It actually 

shows that about 1/6 of the complete revolution is concluded. During this period Figure 64 shows the 

total forces acting in the reference roller. 

 

Figure 63: Trajectory of Body 27 over time of the simulation of a tapered roller bearing with complete contact detection, train 

load and tangential forces applied, using ODE30. Line …... refers to the pitch circle while line ___ refers to the roller trajectory. 
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Figure 64: Total forces and moments applied on Body 27 resulting from the simulation of a tapered roller bearing with 

complete contact detection, train load and tangential forces applied, using ODE30. 

It is clear from Figure 64 that the first 0.01 seconds of the analysis correspond to the transient 

period in which the dynamics of the system has to be disregarded. During this period the system is 

achieving equilibrium being its response polluted by numeric artefacts. 

The total forces and moments that act on the inner raceway over time are represented in Figure 

65. In this figure are visible the initial high magnitudes of forces applied in the Z direction, which result 

from the application of the train load on its center. It is visible that, after approximately 0.01 seconds, 

these forces do not achieve such high values, which is consistent with the transient period that must be 

disregarded. The forces applied on the inner raceway after this time are shown in Figure 66, where  it 

can be understood that a near state of equilibrium between the raceway and the rollers is obtained and 

the total forces are sustained by all bodies. It is important to notice that the forces in the Z direction 

include the load of the train, i.e., a value of -50kN is added to the Z component of the forces. From 

observation of both figures it is also visible that the moments resulting from these forces are 

predominantly applied around the X axis, which is a result of the existence of tangential forces.  

 

Figure 65: Total forces and moments applied on the inner raceway resulting from simulation of a tapered roller bearing with 

complete contact detection, train load and tangential forces applied, using ODE30. 
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Figure 66: Total forces and moments applied on the inner raceway resulting from simulation of a tapered roller bearing with 

complete contact detection, train load and tangential forces applied, using ODE30, from t = 0.01s. 

Figure 67 shows the total forces acting in the left cage, located in the negative side of the X 

global axis, while Figure 68 presents the total forces acting upon the right cage, located in the positive 

side of the X axis. By comparison of both, it is possible to detect a certain symmetricity in the application 

of forces, which is according to what is expected. It should be noted that the results relative to the first 

0.01 seconds of the simulation are ignored and not represented in these figures. 

 

Figure 67: Total forces and moments applied on the left cage resulting from the simulation of a tapered roller bearing with 

complete contact detection, train load and tangential forces applied, using ODE30, from t = 0.01s. 

 

Figure 68: Total forces and moments applied on the right cage resulting from the simulation of a tapered roller bearing with 

complete contact detection, train load and tangential forces applied, using ODE30, from t = 0.01s. 
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The trajectory of each cage in the YZ geometric plane can be seen in Figure 69, where the 

coordinates of their center are shown for each instant in time. When studying these figures, it is possible 

to see that the cage shifts in the negative Z coordinate due to gravity and suffers some oscillations caused 

by contact with different rollers. These oscillations are justified by the fact that some clearances exist 

between the rollers and the cage pockets, being the effect magnified by the approximation of its 

geometry to lines when contact detection is considered. It is important to notice that these results are 

obtained for a period of the analysis when the system has not achieved a stable condition, existing several 

adjustments in the position of the bodies. The results shown are relative to the period after the first 0.01 

seconds of the simulation. 

  

(a) (b) 
Figure 69: Trajectory of each cage of the tapered bearing resulting from the simulation with complete contact detection, train 

load and tangential forces applied, using ODE30, from t=0.01s. (a) Trajectory of left cage; (b) Trajectory of right cage. 

In order to help the verification of results, the angular velocity of the reference roller is plotted 

in Figure 70, where the results relative to the first 0.01 seconds of the simulation are ignored and not 

represented. It is seen that it remains approximately constant after about 0.03 seconds thus showing that 

the basic dynamic behaviour seems to be obtained.  

 

Figure 70: Angular velocity of Body 27 resulting from the simulation of a tapered roller bearing with complete contact 

detection, train load and tangential forces applied, using ODE30, from t=0.01s. 
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To obtain the frequency response of the system, the total forces actuating on the inner raceway 

over time are converted into a function of amplitude and frequency, using a Fast-Fourier Transform 

algorithm, where the results relative to the first 0.01 seconds of the simulation are ignored. The resulting 

graphic is presented in Figure 71. Since most frequencies of the results respective to the inner raceway 

have values below 50 kHz, an approximation to Figure 71 is shown in Figure 72.  

 
Figure 71: Frequency response of total forces acting on the inner raceway over time, resulting from the simulation of a 

tapered roller bearing with complete contact detection, train load and tangential forces applied, using ODE30, from t=0.01s. 

 
Figure 72: Approximation of Figure 71. 

The expected frequencies for the tapered roller bearing studied are calculated according to the 

procedure reported in references [54] and [55]. The expected working frequencies of the inner raceway, 

BPFI, are calculated as, 
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where NR is the number of rollers in the system and Fs the inner raceway rotational frequency. For the 

conditions considered in the simulation shown in Figure 71, the working frequencies of the inner 

raceway are expected to have the value 112.96 Hz. According to Li [55], a bearing with no defects can 

have a response with this frequency value and its harmonics, with a small and even frequency, where no 

frequency stands out. This does not correspond to the case presented in Figure 71 and Figure 72, since 

it should be noted that only with the dynamic response obtained for several complete revolutions of the 

roller bearing are the FFT reliable for the frequency analysis. Due to the computational cost of the 

current implementation of the methodology, the data obtained is not sufficient for any reliable study.  
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8. CONCLUSION 

The work presented here, part of the international project MAXBE, addresses the development of 

methods and implementation of an efficient bearing dynamic analysis tool. The computational tool 

allows the analysis of bearings with different geometries, provided that at this stage, they are either 

spherical or tapered. The methodologies implemented here solve the problem of defining the basic steps 

for the general purpose modelling of roller bearings, i.e., first a structure is defined for the data setup of 

spherical and tapered roller bearings; secondly, the initial position, orientation and velocities of each 

roller bearing components, i.e., rollers, cages, inner and outer raceways, are defined ensuring kinematic 

consistency; thirdly the contact of problems for a wide number of geometries are addressed to evaluate 

the normal and tangential forces caused by contact and lubrication; fourthly, a dynamic analysis 

procedure is devised and implemented. The formulation of contact between each body is structured as a 

two way process, the first being the contact detection, based on the kinematics and geometry of each 

body, while the second consists in the evaluation of the normal and tangential forces developed. In what 

the contact detection is concerned, the challenge in creating a generalized methodology to create the 

parametrization of the roller surface lies in the fact that rollers have very specific geometries, which can 

include crowned regions and corner radius. This is addressed by the use of a slice method, which 

considers contact between several circles on the roller, allowing these the possibility to have different 

radius. The development and implementation of contact detection methods revealed to be the most 

challenging, time-consuming and demanding problem. The contact detection problem requires the 

solution of a nonlinear system of equations for each potential contact point. It must be noted that the 

formulation of each one of these systems depends on the types of geometries of the contact pairs. All 

contact force models are developed and implemented successfully for each contact type. Due to the 

complex geometry of the cage of the spherical bearing, the necessary models to characterize contact 

between its rollers and the cage must be developed at a later stage. In any case, contact forces are 

detected and applied between the raceways and the rollers. All contacts between rollers and the 

raceways, flanges and cage of the tapered bearing were developed and validated, creating a full 

description of contact forces acting on each mechanical component of this type of bearing. The necessary 

models to calculate the tangential forces caused by lubrication have been explored, being the foundations 

of the methodologies to explore them developed. However, the calculation of the equivalent friction 

coefficient is not properly validated due to the numerical difficulties in validating the normal contact 

force models, which provide the background information for the tangent force models.  

Based on geometrical measurements performed in real roller bearings with the support of FEUP, 

realistic bearing models were able to be obtained in order to be tested with BearDyn. When performing 

dynamic simulations of these models with BearDyn considering approximate railway conditions, some 

problems are identified relatively to the necessity of an extremely high computational effort. This 

difficulty clearly identifies the need for the development of robust and efficient computational 
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algorithms, eventually based on the use of parallel computation strategies. The second challenge is the 

identification of integration algorithms suitable to the solution of the type of dynamic problems. Initial 

alternatives to obtain models for which faster solutions can be obtained were developed in order to revise 

the computational implementations, such as considering a smaller number of rollers on the bearing or a 

bearing with a single row of rollers. However, when testing such reduced bearing, in railway operational 

conditions such as the load of the train, this resulted in a loss of stability of the system and, consequently, 

in errors during the calculation of contact, due to the insufficient number of rollers to sustain the forces 

applied. In order to allow results to be obtained with BearDyn for a tapered roller bearing in complete 

working conditions, a constant time-step solver was used to integrate the equations of motion of the 

system over time. With this solver, the models used in BearDyn are able to be verified, even for a short 

integration span, since the interactions between bodies are perceived as occurring as expected, by using 

verification methods based on the analysis of the dynamic response and visualization tools. In any case, 

the length of the time responses obtained are not enough to draw conclusions about the general dynamic 

performance of the roller bearing models, but are enough to verify the proper functioning of the dynamic 

analysis tool. With this, the development of the necessary models to perform a dynamic analysis of a 

roller bearing with a computational tool can be concluded as successfully achieved, serving as a 

consistent basis for the completion and validation of BearDyn with future research and development.  

8.1. Future work 

While working for project MAXBE, the final goal of creating a computational tool that allows obtaining 

the full dynamic performance of a spherical or tapered roller bearing in working railway conditions was 

partially achieved. As described in this work, all theoretical models necessary to conclude the program 

are available. In order to achieve the final state of the dynamic analysis computational tool, extra time 

and effort should be spent in its creation. To do so, the BearDyn program should be submitted to some 

more testing and development, as well as code optimization to reduce the computational effort and allow 

results to be obtained more effectively. Optimizing the code should first focus in computation efficiency, 

eventually using parallel computational strategies. The other aspect that needs to be explored is the 

search for numerical methods well adjusted to the type of mechanical system. 

The first approach to code optimization should be on code parallelization. By allowing parallel 

computing, the MATLAB® code runs in parallel in several processors of the computer, which can 

improve the code performance by allowing executions to run faster. Notice that at each time step, for 

the type of roller bearings used in railway axleboxes, these are about 1000 contact detection problems 

to be solved simultaneously, and independently.  

Another option that should be considered to improve the code is creating a numerical integrator 

in its entirety instead of using MATLAB®’s integrator ODE45 or the constant time step solver, called 

ODE30. By doing so, it is possible to control every aspect of the integrator and optimize its performance 

to avoid problems similar to those identified in this study related to the integrator. 
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In order to reduce the time spent in contact detection, also more accurate initial values can be 

calculated and delivered to the search method at each time step. While testing the implementation of 

contact detection in BearDyn, some cases were identified where the closest points were detected in 

opposite sides of the bearing, due to its symmetric geometry. This problem was solved by using the last 

correct results when this occurred, but it is not guaranteed to be the best solution. In order to avoid these 

problems, a more accurate way of predicting the location of two closest points at each time step can be 

developed. This can be done by, for example, predicting the location of the contact point on each time 

step by foreseeing the trajectory of each body instead of using the last successful values as initial 

guesses.  

When the code performance is optimized, future developments of the dynamic analysis tool 

BearDyn are necessary in order to reach the main goals intended by project MAXBE. Firstly, the 

calculation of tangential forces should be reviewed and optimized in order to allow its correct numerical 

calculation throughout the analysis. When this is approached, it is relevant to know that the specific 

properties of the lubricant to be used in the case of project MAXBE should be relative to oil Total 

CARTER EP 220, which is used for lubricating the roller bearings in consideration. The user may have 

the need to test a model using a different oil. In this case, BearDyn has the advantage of allowing the 

introduction of other properties, as long as properly introduced, according to Appendix E – BearDyn 

User Manual. 

To complete the code, also forces resulting from wheel-rail contact should be correctly 

introduced into the calculation of force vector, either by resorting to a known timely response and the 

external forces entry table introduced in Appendix E – BearDyn User Manual; or by full detection and 

calculation implemented in the dynamic analysis tool code.  

When BearDyn is functioning properly with these modifications, its code should be adjusted 

to also allow simulations of spherical roller bearings. Some of the necessary implementations are already 

present in BearDyn’s code, except for the detection and application of contact between its rollers and 

cages and between its rollers and flanges. The necessary equations for contact detection between these 

bodies were not developed up until this stage and are also an important development of the code in the 

future.  

When these full modifications are added, BearDyn should be prepared to run simulations for 

enough time to obtain realistic results, for a certain period of time after stabilization of the system. The 

system needs about 2 or 3 complete revolutions of the rollers around the center of the bearing to allow 

for its dynamic performance evaluation.  

In order to allow the monitoring of the bearings performance in railway operating conditions, 

as the final goal desired for project MAXBE, the dynamic response of the bearing should be converted 

to a vibration response using post-processing tools in order to be used as a basis for comparison with 

the dynamic response of bearings with defects. A final approach requires typical defects on bearings to 
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be modelled in the code of the dynamic analysis tool. When this is achieved, the main goal of this project 

is reached, where the collection of vibration response data obtained with BearDyn for different 

bearings with or without defects can be used to infer the health of axle bearings, by comparison with the 

responses of bearings obtained via wayside or on-board monitoring systems.   
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APPENDIX A - INPUT DATA FOR BEARING MODEL 

The present appendix presents the geometric data to be delivered to BearDyn by the user, in 

the format of a text file with a defined number of records. The structure to be followed is described for 

the necessary data for each type of roller bearing, defined by the properties detailed in the figures. 

A.1. General bearing data 

 Spherical Tapered Units 

Bearing.Type  BType 1 2  

Bearing.NumberRollers  BNumbRoller 40 42  

Bearing.OuterDiameter do BOuterDiameter 0.1700 0.2300 [m] 

Bearing.InnerDiameter di BInnerDiameter 0.0950 0.1300 [m] 

Bearing.PitchDiameter dm BPitchDiameter 0.1333 0.1800 [m] 

Bearing.Width L BWidth 0.0430 0.1600 [m] 

 

 
(a) (b) 

Figure 73: Bearing general dimensions: (a) Spherical; (b) Tapered. 

Record 1 of the input deck: 
Type; NumberRollers; OuterDiameter; InnerDiameter; PitchDiameter; Width 

A.2. Spherical bearing geometry, surface and mass data 

 Units 

Spherical.RollerDiameter Dd 0.0185 [m] 

Spherical.RollerLenght Lb 0.0155 [m] 

Spherical.RollerCrownRadius Rcr 0.0840 [m] 

Spherical.RollerCornerRadiusLeft RcoL 0.0014 [m] 

Spherical.RollerCornerRadiusRight RcoR 0.0014 [m] 

Spherical.InnerRaceRadius Rir 0.0760 [m] 

Spherical.OuterRaceRadius Ror 0.0780 [m] 

Spherical.RaceClearance tc 0.0005 [m] 

Spherical.InnerRaceLenght Lil 0.0430 [m] 

Spherical.Tilt  0.1852 [m] 

Spherical.RollerMass mb 0.0311 [kg] 

Spherical.RollerInertia Ib, Ib, Ib [1.7000E-7; 1.6000E-7; 1.6000E-7] [kg m2] 

Spherical.RollerSurfaceRoughness sb 0.2100 [µm] 

Spherical.InnerRaceMass mi 1.1915 [kg] 

do

Lo

di

Li

dm

j

j

dm



di do

L
j

j
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Spherical.InnerRaceInertia Ii, Ii, Ii [4.5000E-4; 2.5000E-4; 2.5000E-4] [kg m2] 

Spherical.InnerRaceSurfaceRoughness si 0.3200 [µm] 

Spherical.OuterRaceMass mo 1.4331 [kg] 

Spherical.OuterRaceInertia Io, Io, Io [1.7700E-3; 9.3000E-4; 9.3000E-4] [kg m2] 

Spherical.OuterRaceSurfaceRoughness so 0.1900 [µm] 

 

 
(a) (b) (c) 

Figure 74: Spherical roller bearing: (a) Perspective view; (b) Bearing dimensions; (c) Roller dimensions. 

Record 2a of the input deck: 
RollerDiameter; RollerLenght; RollerCrownRadius; RollerCornerRadiusLeft; RollerCornerRadiusRight 

Record 3a of the input deck: 
InnerRaceRadius; OuterRaceRadius; RaceClearance; InnerRaceLenght; Tilt 

Record 4a of the input deck: 
RollerMass; RollerInertia; RollerSurfaceRoughness; InnerRaceMass; InnerRaceInertia; 

InnerRaceSurfaceRoughness; OuterRaceMass; OuterRaceInertia; OuterRaceSurfaceRoughness 

A.3. Tapered bearing geometry, surface and mass data 

 Units 

Tapered.RollerDiameterLargeEnd Dl 0.0238 [m] 

Tapered.RollerDiameterSmallEnd Ds 0.0222 [m] 

Tapered.RollerLenght Lb 0.0456 [m] 

Tapered.RollerLandLenght Lc 0.0432 [m] 

Tapered.RollerCrownRadius Rcr 0.0024 [m] 

Tapered.RollerEndRadiusLargeEnd RerR 1.4200 [m] 

Tapered.RollerEndRadiusSmallEnd RerL Inf [m] 

Tapered.OuterRaceSemiConeAngle o 0.1541 [rad] 

Tapered.InnerRaceSemiConeAngle i 0.1192 [rad] 

Tapered.OuterRaceLandLenght lo 0.0489 [m] 

Tapered.InnerRaceLandLenght li 0.0460 [m] 

Tapered.OuterRaceWidth Lo 0.0670 [m] 

Tapered.InnerRaceWidth Li 0.0794 [m] 

Tapered.InnerRaceLandStart ei 0.0112 [m] 

Tapered.endplay ep 0 If ep <0, preload is 

reported here 

[m] 

Tapered.NumberRows Nrow 2 If NRow<0, face-to-face 

mounting 

 

Tapered.InterRaceSpacing Si 0.0179  If the bearing has two 

rows, Si is used 

[m] 

Tapered.RollerMass mb 0.1460 [kg] 

Tapered.RollerInertia Ib, Ib, Ib [1.2630E-6; 4.0326E-6; 4.0326E-6] [kg m2] 

Tapered.RollerSurfaceRoughness sb 0.0600 [µm] 
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Tapered.InnerRaceMass mi 9.7680 [kg] 

Tapered.InnerRaceInertia Ii, Ii, Ii [6.3070E-3; 6.3070E-3; 5.7590E-3] [kg m2] 

Tapered.InnerRaceSurfaceRoughness si 0.2100 [µm] 

Tapered.OuterRaceMass mo 10.499  [kg] 

Tapered.OuterRaceInertia Io, Io, Io [1.0617E-2; 1.0617E-2; 1.6764E-2] [kg m2] 

Tapered.OuterRaceSurfaceRoughness so 0.2200 [µm] 

 

 
(a) (b) (c) 

Figure 75: Tapered roller bearing: (a) Perspective view; (b) Bearing dimensions; (c) Roller dimensions. 

Record 2b of the input deck: 
RollerDiameterLargeEnd; RollerDiameterSmallEnd; RollerLenght; RollerLandLenght; RollerCrownRadius; 

RollerEndRadiusLargeEnd; RollerEndRadiusSmallEnd 

Record 3b of the input deck: 
OuterRaceSemiConeAngle; InnerRaceSemiConeAngle; OuterRaceLandLenght; InnerRaceLandLenght; 

OuterRaceWidth; InnerRaceWidth; InnerRaceLandStart; endplay; NumberRows; InterRaceSpacing 

Record 4b of the input deck: 
RollerMass; RollerInertia; RollerSurfaceRoughness; InnerRaceMass; InnerRaceInertia; 

InnerRaceSurfaceRoughness; OuterRaceMass; OuterRaceInertia; OuterRaceSurfaceRoughness 

 

 
(a) (b) (c) 

Figure 76: Tapered roller bearing mounting: (a) Back to back with endplay, ep>0 and Nrow=+2; (b) Back to back, ep≤0 and 

Nrow=+2; (c) Face to face, ep≤0 and Nrow=-2. 
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A.4. Race flange geometry 

 Spherical Tapered Units 

Flange.OuterLeftAngle oL Does not apply Does not apply [rad] 

Flange.OuterRightAngle oR Does not apply Does not apply [rad] 

Flange.InnerLeftAngle iL 0.1705 0.4355 [rad] 

Flange.InnerRightAngle iR 0.2377 0.1192 [rad] 

Flange.OuterLeftHeight hoL Does not apply Does not apply [m] 

Flange.OuterRightHeight hoR Does not apply Does not apply [m] 

Flange.InnerLeftHeight hiL 0.0040 0.0018 [m] 

Flange.InnerRightHeight hiR 0.0032 0.0074 [m] 

 

 

(a) (b) (c) 
Figure 77: Flanges in roller bearings: (a) Angle and height definitions; (b) Tapered roller bearing; (c) Detail of the flanges in 

the tapered bearing. 

Record 5 of the input deck: 
OuterLeftAngle;OuterRightAngle; InnerLeftAngle;InnerRightAngle; OuterLeftHeight;OuterRightHeight; 

InnerLeftHeight; InnerRightHeight 

A.5. Cage geometry, surface and mass data 

It is important to notice that some of the data relative to the tapered cage geometry is only 

available when the bearing is fully mounted. This results in some of the data entries of the following 

table to not be available, since these were not measured. Also, the cage of the spherical bearing used has 

a geometry different to the one expected, which is not able to be described with the data predicted in the 

following table. This way, in future studies where the cage of the spherical bearing is considered, this 

table should suffer the appropriate modifications.  

  Spherical Tapered Units 

Cage.Guidance CGuide 0 0  

Cage.OuterDiameter Rou 0.0072 0.0950 [m] 

Cage.InnerDiameter Rin 0.0063 0.0860 [m] 

Cage.Width Wl 0.0013 0.0465 [m] 

Cage.OuterRaceClearance Cou No info. available No info. available [m] 

Cage.InnerRaceClearance Cin No info. available No info. available [m] 

Cage.SemiConeAngle c No info. available 0.15 [rad] 

Cage.GuideLandRadiusRight RgR No info. available 0.0991 [m] 

Cage.GuideLandWidthRight WgR No info. available 0.0086 [m] 

Cage.GuideLandPositionRight LgR No info. available No info. available [m] 

Cage.GuideLandClearanceRight CgR No info. available No info. available [m] 

Cage.GuideLandRadiusLeft RgL No info. available 0.0860 [m] 

Cage.GuideLandWidthLeft WgL No info. available 0.0074 [m] 

Cage.GuideLandPositionLeft LgL No info. available No info. available [m] 

Cage.GuideLandClearanceLeft CgL No info. available No info. available [m] 

iR

hiRiL

hiL

iL

iR

hoL=hoR=0

hiR

hiL

iL iR

oRoL

hoRhoL

hiRhiL
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Cage.PocketShape PType 3 2  

Cage.PocketLenght Pl No info. available 0.0465 [m] 

Cage.PocketWidth Pw No info. available 0.0230 [m] 

Cage.PocketDimension1 P1 No info. available No info. available [m] 

Cage.PocketDimension2 P2 No info. available No info. available [m] 

Cage.PocketDimension3 P3 No info. available No info. available [m] 

Cage.PocketDimension3 P4 No info. available No info. available [m] 

Cage.Mass mc 0.1490 0.2000 [kg] 

Cage.Inertia Ic, Ic, Ic [4.0700E-5;  

8.0500E-5; 

4.0700E-5] 

[5.2172E-5; 

9.4550E-5; 

5.2172E-5] 

[kg m2] 

Cage.PocketSurfaceRoughness sc 0.9000 2.5500 [µm] 

Cage guidance: 
0 No guidance 

1 Outer race guidance 

2 Inner race guidance 

Cage pocket shape: 
1 Cylindrical 

2 Rectangular 

3 Guided Surface 

 

 
(a) (b) 

Figure 78: Cage for roller bearings: (a) Cylindrical, with null semicone angle; (b) Tapered. Note that a cage will not have 

both outer and inner guide lands.  

 
(a) (b) (c) 

Figure 79: Cage pockets types: (a) Cylindrical; (b) Rectangular; (c) Guided surfaces. 

Record 6 of the input deck: 
Guidance;OuterDiameter;InnerDiameter;Width;OuterRaceClearance; InnerRaceClearance; SemiConeAngle 

Record 7 of the input deck: 
GuideLandRadiusRight; GuideLandWidthRight; GuideLandPositionRight; GuideLandClearanceRight; 

GuideLandRadiusLeft; GuideLandWidthLeft; GuideLandPositionLeft; GuideLandClearanceLeft 

Record 8 of the input deck: 
PocketLenght; PocketWidth; PocketDimension1; PocketDimension2; PocketDimension3; PocketDimension3 

Record 9 of the input deck: 
Mass; Inertia; PocketSurfaceRoughness 
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P2
P1 P3

P2
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APPENDIX B – TWO ROW SPHERICAL BEARING INITIALIZATIONS 

For spherical roller bearings with two rows, where >0, the positioning and orientation of the rollers is 

more intricate than for one row, presented in chapter 3.1. First the position of the rollers in the pitch 

circle of each row is shifted along X. Second each roller must be rotated about a vector ub
 in order to 

obtain the orientation shown in Figure 14(a). 

 

(a) (b) 
Figure 80: Rotation of a roller about the tangent to the pitch circle (a) Orientation of the rollers in the cross-section of the 

bearing; (b) Rotation of each roller by b about a vector ub
. 

The position of the rollers in the pitch circle is similar to that of the single row bearing, only 

shifted along X. Defining k=1 for the row of rollers in the negative side of X and k=2 for the rollers in 

the positive, the rollers position are, 
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The orientation of the rollers in the bearings with two rows correspond to a rotation of each roller, equal 

to the tilt angle, about a vector tangent to the pitch circle, as depicted in Figure 80(b). Using the definition 

of the Euler parameters, which are used as rotation coordinates in this formulation, the initial orientation 

of the rollers in the two rows is, 
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APPENDIX C – TWO ROW TAPERED BEARING INITIALIZATIONS 

For double row tapered roller bearings the initial position and orientation of the raceways is coincident 

with the inertia frame, i.e., 
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The cages and rollers positions are shifted along X with respect to those used for the single row 

tapered roller bearing, depending on the size of the spacer and endplay. The orientation of these rolling 

elements in the double row assemblies are similar to that of the single row bearing, exposed in Section 

3.2, but adjusting the sign of the semi-cone angle. 

In the back to back mounting, the position and orientation of the cages is, 
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in which k=1 refers to the left side, or negative X cage, while k=2 is the right side, or positive X, cage. 

The position and orientation of the rollers follows the same logic of the cages, being, 
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In the front to front mounting, the position and orientation of the cages are, 
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in which k=1 refers to the left side, or negative X, cage, while k=2 is the right side, or positive X, cage, 

as before. The position and orientation of the rollers follows the same logic of the cages, being defined 

as, 
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APPENDIX D – EQUIVALENT FRICTION COEFFICIENT CALCULATION 

D.1. Lubricant film thickness 

Being the contacting surface roughness know, either from direct measurement of the rolling elements or 

by published data, the calculation of the lubricant fluid film thickness plays the central role in the 

decision on the lubrication mode experienced by the rolling elements. The lubricant film thickness varies 

along the contact region, being generally of importance its calculation in the center, designated by hc, 

or/and close to the exit of the contact region where it is minimum, hmin, according to the 

elastohydrodynamic lubrication theory (EHL). Figure 81 shows the profile of the lubricant film 

thickness and contact pressure in a general contact. 

 
Figure 81: Lubricant film thickness and pressure profiles for a typical rolling contact case. 

Depending on the temperature and on the supply of lubricant fluid the lubricant film thickness 

may vary. Therefore, the computation of the lubricant film thickness is done by, 

  c iso T Sh h   (D.1) 

where hiso is the isothermal central lubricant fluid thickness for fully flooded lubrication, T is the thermal 

reduction factor and S is the starvation factor, that need to be evaluated independently. 

D.1.1. Adimensional parameters 

Before calculating any of the quantities appearing in Eq. (D.1) let the following dimensionless quantities 

be defined, 
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Material parameter 
1 G E   (D.5) 

where the quantities used to define the dimensionless parameters are the effective radius in the rolling 

direction defined as, 
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the equivalent modulus of elasticity is 'E  and q is the normal compressive load, for point or elliptic 

contact, or the normal load per unit of length, for line contact. 

The average velocity of the contacting surfaces, depicted in Figure 81, is, 

 1 2

1
( )

2
 u u u  (D.7) 

where 𝑢1and 𝑢2are the velocities of each contacting surface in the rolling plane, given by the projection 

of the linear velocity of each contacting point on the rolling plane.  

The lubricant viscosity at reference temperature T0 and reference pressure is denoted by 0 and 

the viscosity-pressure coefficient 1 provide a rheological description of the lubricant fluid viscosity 

described by, 
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being p the pressure in operating conditions, T the temperature and t the viscosity temperature index. 

The viscosity-pressure coefficient, 1, can be found from Gold et. Al [56] as, 

   ts   (D.9) 

where  is the kinematic viscosity of the oil and s and t are experimental constants which are tabulated 

for different oils. 

The viscosity temperature index can be found by several different ways, being the most common 

method known as ASTM D341 [57]. This method is based on the knowledge of two characteristic values 

of temperature and the respective kinematic viscosity for the oil in consideration. Using the relation 

given by norm ASTM D341, 

 loglog( ) log( )   a n m T   (D.10) 

a linear regression is formed with a = 0.7 and the two given points, in order to obtain the correspondent 

values of n and m to be used in, 
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where  is the kinematic viscosity and T is the temperature, in operating conditions.  

D.1.2. Isothermal central lubricant fluid thickness 

Based on experimental work results, Pan and Hamrock [58] obtained a relation by curve fitting the data 

to the film thickness measurements obtained from performing a large number of variations on the 

performance parameters. Pan and Hamrock estimation of the central film thickness for line contact is 

[58], 

 0.166 0.692 0.4702.022 cH W U G   (D.12) 

The isothermal central lubricant film thickness for line contact is given by, 

 iso ch H R   (D.13) 
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In the framework of rolling bearing dynamics, point contacts are observed, for instance, in the 

presence of ball bearings or in contacts of the tapered rollers ends with the raceway flanges or with the 

cage pocket tops. For point, or elliptical, contact, several expressions have been proposed to describe 

the lubricant film thickness.  For instance, Archard and Cowking [59] suggest that the central lubricant 

film thickness for point contact is given by, 

  
0.74 0.0742.04  H GU W   (D.14) 

where   is the modified factor for side-leakage given as, 
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in which  R y xR R , being Rx simply the equivalent curvature radius calculated using Eq.(D.6) and Ry 

the equivalent curvature radius in the Y direction, i.e., 


ay by
y

ay by

r r
R

r r
, while X the rolling direction and 

Y the perpendicular direction. 

Also Cheng [60] proposes a different expression for the central film thickness parameter as, 
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where the constants C, n1 and n2 are constants listed in Table 8 [29] and a, b and max are the major and 

minor semi-axis and the maximum pressure for the case of ellipsoidal, or point, contact in the Hertz 

elastic contact theory. 

a/b C n1 n2 

5 1.625 0.740 -0.220 

2 1.560 0.736 -0.209 

1 1.415 0.725 -0.174 

0.5 1.145 0.688 -0.066 
Table 8: Constants for the Cheng expression for the central film thickness parameter [60] 

Based on a numerical solution for the elastohydrodynamic lubrication for a point contact, 

Hamrock and Dowson suggest that the central film thickness parameter for point contact is written as, 

 0.67 0.53 0.067 0.732.69 (1 0.61 )   kH U G W e   (D.17) 

in which k=a/b. For convenience, the ratio between the major and minor semi-axis of the contact ellipse 

may be written as [29], 
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Under the assumption of the elastohydrodynamic lubrication theory, Chittenden et al. propose 

that the central lubricant film thickness parameter, for point contact, is evaluated as [61], 

 
2

30.68 0.49 0.073 1.234.31 (1 )   k

cH U G W e   (D.19) 

Equation (D.19) is the one used for calculating the central lubricant film thickness parameter in 

this work, as it shows to be accurate for most of the cases. Certainly, depending on the operation mode 
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of the roller bearings and on the materials involved, other authors may suggest alternative expressions 

for the evaluation of this parameter. Regardless of their exact nature, the procedure described here can 

still be applied, provided that the parameters involved in the Eqs. are properly adjusted. 

D.1.3. Thermal reduction factor 

The thermal reduction of the film thickness is important at high rolling speeds and/or high slip velocities 

[62]. Based on the works by Cheng [60] and by Wilson and Sheu [63], Gupta et al. [62] propose a 

thermal reduction factor for line contact given by, 
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where the thermal loading parameter LT and the slip ratio s are given by, 
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being the average velocity of the contacting surfaces, û , evaluated by Eq.(D.7), Kf the thermal 

conductivity, 0 the lubricant viscosity at reference temperature T0 and reference pressure and t the 

viscosity temperature index as used in the rheological Eq. of the lubricant given by Eq.(D.8). 

The thermal reduction factor, given by Eq.(D.20), can be used for elliptical contact also if a/b>5 

[28]. However, for non-elongated contact ellipses different expressions for this factor are available in 

the literature. For elongated contacts, i.e., for a/b>5, the elliptical contact and the line contact share the 

same thermal factors. For non-elongated contacts Eq.(D.20) can still be used. Although in some recent 

research work some alternative Eqs. are being proposed for point contact, the expression for line contact 

is still used for other types of contact as it does not lead to unreasonable errors. 

D.1.4. Starvation factor 

All the calculations of the lubricant film thickness done before assumed that the supply of fluid is enough 

to provide a fully flooded contact and the situation is defined as starvation. As indicated in Figure 82, 

the meniscus of the lubricant film approaches the contact area, ultimately leading to the reduction of the 

film thickness. 

The influence of the starvation on the film thickness has been studied by a large number of 

researchers, among which Wolveridge et al. [64] propose a starvation factor for line contact as, 
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in which, 
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being x0 the distance from the edge of the Hertzian contact zone to the film meniscus, depicted in Figure 

82 or termination, h∞=hisoT the fully flooded film thickness, b the Hertzian contact half-width and R the 

equivalent radius of contact in the rolling direction, as defined in Eq.(D.6). 

For elliptical contact Hamrock and Dowson [41] propose an expression for the starvation factor 

identified experimentally as, 
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in which, 

 

0.58
2

* 1 3.06 

  
    

   

R
m h

b
  (D.26) 

and m̃ is the adimensionalized distance from the center of the contact zone to the film termination, as 

represented in Figure 83. Note that all quantities defined in Figure 83(a) are adimensionalized as x̃=x/b, 

ỹ=y/a and m̃=m/b, leading to the adimensionalized space depicted in Figure 83(b). Note also that 

m=x0+b, defined in Figure 82. 

 

Figure 82: Starved lubrication with the identification of the dimensions required for the definition of the starvation factor. 

Note that the starvation factor proposed by Hamrock and Dowson [41], for point contact, and 

by Wolveridge et al [64], for line contact, are being continuously the focus of new research leading to 

relations for the starvation factors that better fit specific lubricants. In any case, their computational 

implementation follow basically the procedures described here. 
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(a) (b) 
Figure 83: Representation of the contact area and distance to the lubricant fluid free boundary for starved lubrication of point 

contact. 

The equations described in this topic involve geometries that are difficult to be measured in the 

context of this work. Also, in the case in study, starvation is not an important aspect to consider since 

the starvation factor usually results in values of approximately 0.98-1.00 for roller bearings. In this case, 

the starvation factor is used with a value of 1.00, so the bearings are considered to have full lubricating 

conditions during operation.  

D.2. Equivalent friction coefficients 

The evaluation of the tangential forces at contact, using Eq.(5.30), requires the evaluation of the 

equivalent friction coefficient using Eq.(5.32). In order to evaluate the equivalent friction coefficient for 

the specific type of contact it is necessary to evaluate the equivalent friction coefficient for boundary 

lubrication mode, bd, if the lubricant film parameter is <fm and the equivalent friction coefficient for 

full film mode,fm, if the lubricant film parameter is >bd.  

D.2.1. Boundary mode equivalent friction coefficient 

In the lubrication boundary mode the equivalent friction coefficient, bd, relation with the slip ratio is 

proposed by Kragelskii [65] as, 

   181.460.1 0.1 22.28    s

bd s e   (D.27) 

Note that for a slip ratio s=0 the equivalent friction coefficient is bd=0 while for very large slip 

ratios it tends to bd→0.1. 

D.2.2. Full film mode equivalent friction coefficient 

The evaluation of the full film equivalent friction mode the Muraki formula, reported by Harada and 

Sakaguchi [38] is used, i.e., 
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where 0 is the lubricant characteristic stress, avg is the mean normal stress in the contact area for 

Hertzian elastic contact and S  is the mean dimensionless shear stress that needs to be calculated. In 

order to calculate the mean dimensionless shear stress let the following parameters be defined: the 

dimensionless shear velocity of the lubricant is, 
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the Debroah number is, 
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and the dimensionless length of the EHL contact area is, 
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Finally, the mean dimensionless shear parameter is written as a dependency of the dimensionless 

length of the EHL contact area as, 
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Alternatively, Smith et al. [66], based on measured tractions in an elastohydrodynamic rolling 

disk test rig, proposed a relation for the traction coefficient, or full film equivalent friction coefficient. 

Also Gupta [62] based on experimental identification of different lubricant rheological behaviour 

proposed a traction model that is adopted here.  

Consider that the lubricant rheological model relating the viscosity to the pressure and 

temperature is given by, 

 
 * *

0 1* *

0

 
 

  
 

p T T
e   (D.33) 

where *  is the viscosity and *
0, 

* and * are constants to be identified experimentally for the lubricant 

used. By calculating and integrating the shear stress on the contact area leads to the traction coefficient 

written as [28], 

      
* *

max max

*
2

0 /2 /21

* 2 * *

max max

83 2
sinh

   


   
     

            

f

fm

K
e e

h
  (D.34) 

where the dimensionless parameter  is given by, 
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and function () is defined as, 
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In the computer applications the integral in Eq.(D.36) can be tabulated and being that table 

interpolated during the dynamic analysis. 

Gupta found the values for the lubricant rheological constitutive Eq., given in Eq.(D.34) as [28], 
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where T is the temperature, in Kelvin, and u is the rolling velocity, in m/s. The values for the constants 

involved in Eqs.(D.37) and (D.38) are depicted in Table 9. 

Table 9: Regression coefficients for Gupta Type I traction model [28] 

  

Lubricant 

* 

1/Pa × 109 

V1 

Pa s × 10 

V2 

1/K × 102 

V3 

s/m × 102 

B1 

1/K × 10 B2 

B3 

× 10 

MIL-L-

23699 

5.8015 2.6529 3.6358 1.7054 3.3398 1.3075 -3.9353 

MIL-L-

27502 

5.8015 2.1655 3.9221 0.6441 3.2577 1.0723 -2.7538 

MIL-L-

7808 

5.2214 1.1431 3.3723 2.4079 4.1745 0.6087 -4.7828 

Santotrac 

30 

9.4275 4.0063 5.0459 1.5590 3.4104 1.0930 -2.5647 

Mobil DTE 7.2519 2.8407 2.3743 4.5016 2.8939 2.1402 -5.2909 
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APPENDIX E – BEARDYN USER MANUAL 

The computational tool BearDyn was developed in MATLAB® language, with the use of text files to 

introduce certain distinct parameters to be used in the calculations. The user should introduce 4 different 

text files in a folder named “Data” among the MATLAB® files which constitute the program, with the 

names: 

 Entries.txt. This file introduces different specific data to be used throughout the integration 

process. The structure and values used for every simulation presented in Chapter 7 are presented 

in E.1. Entries.txt structure and values, except for the values in the 4th record, since they depended 

on the simulation performed. 

 Geometry.txt. The values to introduce in this file are relative to the geometric data of the roller 

bearing. The structure of this file should follow the structure presented in Appendix A - Input Data 

for Bearing Model. 

 Lubricant.txt. In this file should be introduced the rheological characteristic values of the lubricant 

which are required to calculate the tangential contact forces between the bodies. The structure of 

this file is shown in E.2. Lubricant.txt structure and values. 

 External_Forces.txt. This file is required to provide information on load value resulting from 

external wheel-rail contact forces, as well as its direction and point of application at different time 

steps. The structure to be followed to complete the file is shown in E.3. External_Forces.txt 

structure, where the number of rows of the file can be variable. Since at this point of the project 

no wheel-rail contact forces are considered, this file is simply used to introduce the load of the 

train upon the inner raceway. It is important to notice then that the values introduced in Table 12 

are the ones used in the project for this purpose. When wheel-rail contact forces are introduced, 

proper modifications of these values are required.  

E.1. Entries.txt structure and values 

Name Symbol  Value Description/Application Units 

winner ’0 inner 30 Inner raceway initial angular velocity [rad/s] 

wouter ’0 outer 0 Outer raceway initial angular velocity [rad/s] 

Nsl Nsl 6 Number of roller slices  

Young1  2.0E11 Material 1 Young modulus [Pa] 

Poisson1 1 0.3 Material 1 Poisson ratio  

Young2 E2 1.4E9 Material 2 Young modulus [Pa] 

Poisson2 2 0.3 Material 2 Poisson ratio  

t0 t0 0 Starting integration time [s] 

tstep tstep 1E-3 Integration time step [s] 

tend tend 0.1 Final integration time [s] 

tol tol 1E-5 Tolerance for Newton-Raphson method  

itermax itermax 20 Maximum iterations for Newton-Raphson method  

err err 1E5 Initial error value for Newton-Raphson method  
Table 10: Values in Entries.txt file 
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Structure of Entries.txt file: 

Record 1 of the input deck: 
winner; wouter 

Record 2 of the input deck: 
Nsl 

Record 3 of the input deck: 
Young1; Poisson1; Young2; Poisson2 

Record 4 of the input deck: 
t0; tstep; tend 

Record 5 of the input deck: 
tol; itermax; err 

E.2. Lubricant.txt structure and values 

Name Symbol  Value Description/Application Units 

Lubricant.alpha α* 9.4275E-9 

Regression coefficients for Gupta Type I 

traction model [28] 

[1/Pa] 

Lubricant.V1 V1
 4.0063E-1 [Pa s] 

Lubricant.V2 V2 5.0459E-2 [1/K] 

Lubricant.V3 V3 1.5590E-2 [s/m] 

Lubricant.B1 B1 3.4104E-1 [1/K] 

Lubricant.B2 B2 1.0930  

Lubricant.B3 B3 2.5647E-1  

Lubricant.T T 3.7315E2 Temperature in operating conditions [K] 

Lubricant.T0 T0 3.5315E2 Reference temperature [K] 

Lubricant.Kf1 Kf1 1.4870 Thermal conductivity of material 1 [W/(m K)] 

Lubricant.Kf2 Kf2 14870 Thermal conductivity of material 2 [W/(m K)] 

Lubricant.P P 1.0000E9 Pressure in operating conditions [Pa] 

Lubricant.P0 P0 2.0000E8 Reference pressure [Pa] 

Lubricant.Visco  44.2300 Viscosity in operating conditions [cSt] 

Lubricant.s s 0.9904 Experimental constants for Gold et. Al [56] 

expression 

 

Lubricant.t t 0.1390  

Lubricant.Visco1 1 319.2200 
2 points of known temperature and kinematic 

viscosity for the use of norm ASTM D341 

[57]. 

[cSt] 

Lubricant.T1 T1 313.0000 [K] 

Lubricant.Visco2 2 65.2800 [cSt] 

Lubricant.T2 T2 343.0000 [K] 
Table 11: Values in Lubricant.txt file 

Structure of Lubricant.txt file: 

Record 1 of the input deck: 
Lubricant.alpha; Lubricant.V1; Lubricant.V2; Lubricant.V3; Lubricant.B1; Lubricant.B2; Lubricant.B3 

Record 2 of the input deck: 
Lubricant.T; Lubricant.T0; Lubricant.Kf1; Lubricant.Kf2 

Record 3 of the input deck: 
Lubricant.P; Lubricant.P0; Lubricant.Visco; Lubricant.s; Lubricant.t 

Record 4 of the input deck: 
Lubricant.Visco1; Lubricant.T1; Lubricant.Visco2; Lubricant.T2 

E.3. External_Forces.txt structure 

Time 

[s] Force vector applied [N] 

Local coordinates of point of 

application [m] Inner raceway Euler parameters 

t fx  fy fz  ξ   η   ζ  e0 e1 e2 e3 

0 0 0 -50000 0 0 0 1 0 0 0 

1 0 0 -50000 0 0 0 1 0 0 0 

…           
Table 12: Values and structure of External_Forces.txt file 


