Quantum Finance: Path Integrals and Hamiltonians for Options and Interest Rates: E. Baaquie2004Cambridge Univ. Press
An introduction to stochastic differential equations: C. Evans2013Version 1.2, UC Berkeley
Introduction to Random Time and Quantum Randomness: K.L.Chung, J.C. Zambrini.2003Monographs of the Portuguese Mathematical Society, V. 1, World Scientific
Quantum Physics: A. Jaffe Glimm1987Springer
Probability and stochastic processes with applications: Oliver Knill2009Overseas Press
Aspects of the connections between path integrals, quantum field theory, topology and geometry: JC Mourão2003Proceedings of the XII Fall Workshop on Geometry and Physics, Coimbra
Stochastic differential equations, An introduction with applications: B. Oksendal2003Springer
Stochastic processes and applications. Diffusion processes, the Fokker- Planck and Langevin equations: G.A. Pavliotis2014Springer
Feynman diagrams for pedestrians and mathematicians: M. Polyak2004arXiv:0406251
From Perturbative to Constructive Renormalization: V. Rivasseau2014Princeton Univ Press
Probability with Martingales: D. Williams1991Cambridge Univ. Press
Measures on infinite dimensional spaces: Y. Yamasaki1985World Scientific
Secundária
A Manifestly gauge invariant approach to quantum theories of gauge fields: A. Ashtekar, J. Lewandowski, D. Marolf, J. Mourão and T. Thiemann1994Cambridge, Proceedings, Geometry of constrained dynamical systems, pp. 60-86
One-Parameter Semigroups for Linear Evolution Equations: K.-J. Engel and R. Nagel1999Springer
Probability theory: P. Gonçalves2016IST
Norm convergence of the Lie--Trotter-Kato product formula and imaginary time path integral,: T. Ichinose2001J. Korean Math. Soc. 38, 337
Monte Carlo Methods in Finance: P. Jaeckel2002John Wiley
Notes on probability: G. Lawler2016University of Chicago
Path integral quantization and stochastic quantization: M. Masujima2009Springer
Path integrals in quantum mechanics: B. Mckay2001Utah Math Department
Feynman’s Path Integral Formulation: H. Murayama2001Berkeley 221A Lecture Notes
Path integral approach to quantum physic: G. Roepstorff1994Springer
Brownian motion. An introduction to stochastic processes: R. Schilling, L. Partzsch2012Gruyter
Advanced Probability II or Almost None of Stochastic Processe: C. Shalizi2006Springer