Disciplina

Área

Área Científica de Controlo, Automação e Informática Industrial > Controlo, Automação e Robótica

Activa nos planos curriculares

MEAer 2017 > MEAer 2017 > 2º Ciclo > Especializações > Aeronaves > Opções > Opções 9º Semestre > Sistemas Inteligentes

MEMec 2006 > MEMec 2006 > 2º Ciclo > Áreas de Especialização > Sistemas > Sistemas Inteligentes

Nível

Exame final (50%) e trabalho prático (50%). Exame oral obrigatório para notas superiores a 17 valores e sempre que haja dúvidas.

Tipo

Não Estruturante

Regime

Semestral

Carga Horária

1º Semestre

3.0 h/semana

1.5 h/semana

105.0 h/semestre

Objectivos

Formar os alunos nos fundamentos da teoria dos sistemas inteligentes. Fornecer os princípios básicos da lógica vaga (fuzzy) e da sua aplicação à modelação, controlo e decisão qualitativas. Introdução dos formalismos da modelação e controlo por redes neuronais, assim como da teoria subjacente aos sistemas neuro‐fuzzy.

Programa

Introdução a ?soft computing?. Introdução à teoria dos conjuntos vagos (fuzzy). Operações, relações e composição fuzzy relacional. Inferência e sistemas fuzzy. Modelos fuzzy baseados em regras. Modelo linguístico (Mamdani) e Takagi‐Sugeno. Representação de sistemas dinâmicos. Identificação usando ?fuzzy clustering?. Interpretabilidade de modelos fuzzy. Redes neuronais: definições, arquitecturas básicas; aprendizagem. Redes neuronais multi‐camada directa. Redes neuronais baseadas em funções radiais. Aprendizagem em redes com funções radiais. Redes recorrentes. Modelação dinâmica com redes neuronais. Redes neuro‐fuzzy: sinergias da combinação das duas metodologias de modelação. Controlo fuzzy clássico. Controlo baseado em modelos. Controlo preditivo. Controlo por modelo interno linear e não linear. Controlo fuzzy inverso. Controlo com funções objectivo fuzzy. Formulação na perspectiva da teoria da decisão fuzzy. Algoritmo de branch‐and‐bound aplicado a controlo preditivo. Filtros preditivos fuzzy. Controlo com redes neuronais. Aplicações a problemas de decisão e controlo em engenharia.

Metodologia de avaliação

Exame final (50%) e trabalho prático (50%). Exame oral obrigatório para notas superiores a 17 valores e sempre que haja dúvidas.

Bibliografia

Principal

Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence.

J.-S. Jang, C.-T. Sun and E. Mizutani.

1997

Prentice Hall, New Jersey, 1997.


Fuzzy Decision Making in Modeling and Control

J.M.C. Sousa and U. Kaymak

2002

World Scientific Pub. Co


Secundária

Artificial Intelligence: A Guide to Intelligent Systems

Negnevitsky, M.

2005

2nd ed. Addison Wesley


Soft Computing and Intelligent Systems Design: Theory,Tools and Applications

Fakhreddine O. Karray and Clarence W De Silva

2004

Addison Wesley.


Computational Intelligence: An Introduction

Andries P. Engelbrecht.

2003

John Wiley and Sons