Disciplina
Biologia Computacional
Área
Área Científica de Metodologia e Tecnologias da Programação > Algoritmos
Activa nos planos curriculares
MECD2019 > MECD2019 > 2º Ciclo > Opções > Biologia Computacional
MBMRP 2021 > MBMRP 2021 > 2º Ciclo > Área Principal > Tronco Comum > Biologia Computacional
MEIC-T 2025 > MEIC-T 2025 > 2º Ciclo > Área Principal > Agrupamentos > Bioinformática e Biologia Computacional > Biologia Computacional
MEIC-A 2025 > MEIC-A 2025 > 2º Ciclo > Área Principal > Agrupamentos > Bioinformática e Biologia Computacional > Biologia Computacional
MEIC-T 2021 > MEIC-T 2021 > 2º Ciclo > Área Principal > Agrupamentos > Bioinformática e Biologia Computacional > Biologia Computacional
MEBiom 2021 > MEBiom 2021 > 2º Ciclo > Área Principal > Tronco Comum > Biologia Computacional
MEIC-T 2015 > MEIC-T 2015 > 2º Ciclo > Agrupamentos > Bioinformática e Biologia Computacional > Biologia Computacional
MEIC-A 2021 > MEIC-A 2021 > 2º Ciclo > Area Principal > Agrupamentos > Bioinformática e Biologia Computacional > Biologia Computacional
MEIC-A 2015 > MEIC-A 2015 > 2º Ciclo > Agrupamentos > Bioinformática e Biologia Computacional > Biologia Computacional
MBioNano2006 > MBioNano2006 > 2º Ciclo > Ciências de Especialidade > Biologia Computacional
MBiotec 2008 > MBiotec 2008 > 2º Ciclo > Opções > Biologia Computacional
DEABiotec2006 > DEABiotec2006 > 3º Ciclo > Unidades Curriculares do Mestrado > Biologia Computacional
DEAEBiom2006 > DEAEBiom2006 > 3º Ciclo > Unidades Tipo M > Biotecnologia e Bioinformática > Biologia Computacional
MEEC 2006 > MEEC 2006 > 2º Ciclo > Área de Especialização > Área de Especialização Secundária > Biologia Computacional > Biologia Computacional
MEBiol 2006 > MEBiol 2006 > 2º Ciclo > Opções > Minor > Bioinformatica e Biologia de Sistemas > Biologia Computacional
MEIC-A 2006 > MEIC-A 2006 > 2º Ciclo > Área Aplicacional > Biologia Computacional > Biologia Computacional
MEBiom 2006 > MEBiom 2006 > 2º Ciclo > Tronco Comum > Biologia Computacional
Nível
Avaliação Prática (40%, relatórios laboratoriais) e Avaliação Teórica (60%, exame final).
Tipo
Não Estruturante
Regime
Semestral
Carga Horária
1º Semestre
2.0 h/semana
1.5 h/semana
119.0 h/semestre
Objectivos
A Biologia Computacional visa desenvolver métodos e algoritmos computacionais para processar dados biológicos e usar modelação matemática e estatística para gerar hipóteses testáveis relacionadas com elementos e processos biológicos. O objectivo desta UC é introduzir conceitos e técnicas que suportam o desenvolvimento e investigação nesta área, fortalecento a capacidade de avaliar criticamente publicações científicas neste campo. Os trabalhos práticos durante o curso têm como objectivo fortalecer a capacidade de desenvolver software para aplicações bioinformáticas.
Programa
Introdução à Biologia Computacional. Primers em biologia molecular e algoritmos. Alinhamento de sequências: pares e múltipla. Modelos probabilísticos: cadeiras de Markov e modelos de Markov ocultos. Bioestatística e métodos de aprendizagem supervisionada: análise e mineração de dados, modelos lineares generalizados (regressão linear múltipla, regressão logística), análise de sobrevivência (regressão de Cox); aplicações de otimização com regularização para dados ómicos (Lasso, Ridge, Elastic Net). Aprendizagem não supervisionada: análise de agrupamentos (k-médias, clustering hierárquico), Análise de Componentes Principais (PCA); aplicações à Filogenética Molecular e Transcriptómica (análise de microarranjos e RNA-seq). Análise integrativa de dados biológicos e clínicos, interacções genótipo-fenótipo. Seminário de bioética.
Metodologia de avaliação
Avaliação Prática (40%, relatórios laboratoriais) e Avaliação Teórica (60%, exame final).
Pré-requisitos
Conhecimentos de programação, álgebra linear, e probabilidade e estatística.
Componente Laboratorial
Prática na implementação de algoritmos, e resolução de exercícios teóricos e práticos. Apoio durante a execução e desenvolvimento dos relatórios. Apresentação pública e discussão de relatórios seleccionados.
Princípios Éticos
Todos os membros de um grupo são responsáveis pelo trabalho do grupo. Em qualquer avaliação, todo aluno deve divulgar honestamente qualquer ajuda recebida e fontes usadas. Numa avaliação oral, todo aluno deverá ser capaz de apresentar e responder a perguntas sobre toda a avaliação.
Componente de Programação e Computação
Componente prática em torno da implementação de vários algoritmos com aplicação à bioinformática e biologia computacional (linguagem de programação à escolha dos alunos, assegurando,assim, as componentes de Computação e Programação de acordo com o MEPP 2122.
Componente de Competências Transversais
A avaliação inclui a apresentação pública de relatórios, em que os alunos desenvolvem pensamento crítico, estratégias de resolução de problemas e criatividade; competências intrapessoais, como proactividade, espírito de iniciativa, produtividade e gestão do tempo; competências interpessoais, como trabalho de equipa, comunicação oral e liderança; e literacia dos media, como resultado da utilização de ambientes de desenvolvimento e da criação de apresentações por meios digitais. Finalmente, as regras da disciplina criam competências de cidadania global, nomeadamente deontologia profissional e ética, complementadas por um seminário em Bioética, que aborda especificamente estes temas. Estas competências são avaliadas fundamentalmente na realização dos relatórios.
Bibliografia
Principal
Bioinformatics Algorithms: An Active Learning Approach
Phillip Compeau, Pavel Pevzner
Biological Sequence Analysis - Probabilistic models of proteins and nucleic acids
R. Durbin, S. Eddy, A. Krogh, G. Mitchison
An Introduction to Statistical Learning: With Applications in R
G. James, D. Witten, T. Hastie and R. Tibshirani