Disciplina Curricular

Topologia Algébrica TAlg

Mestrado Bolonha em Matemática e Aplicações - MMA 2006

Contextos

Grupo: MMA 2006 > 2º Ciclo > Perfis > Matematica > Álgebra e Topologia

Período:

Peso

7.5 (para cálculo da média)

Objectivos

Saber calcular homologia e cohomologia de espaços usando equivalências de homotopia, sucessões exactas, decomposições celulares e as fórmulas de Kunneth e dos coeficientes universais. Conhecer as aplicações básicas da teoria de homologia à topologia de espaços euclidianos e variedades.

Programa

Noções básicas: Tipo de homotopia. A propriedade da extensão das homotopias e critérios para equivalência de homotopia. Definição e propriedades básicas dos complexos CW. Homologia: Homologia singular e simplicial. Exemplos de cálculo. Invariância de homotopia. Excisão e propriedade de Mayer-Vietoris. Característica de Euler. Relação com o grupo fundamental. Fórmula dos coeficientes universais. Teoremas de separação e invariância de domínio. Aproximação simplicial. O Teorema do ponto fixo de Lefschetz. Cohomologia: O Teorema dos coeficientes universais. Definição e propriedades dos produtos cross e cup. A fórmula de Kunneth para homologia. O produto cap. Variedades e dualidade: Orientações. Cohomologia de suporte compacto. Dualidade de Poincaré. Dualidade de Alexander e Lefschetz. Possíveis tópicos adicionais: (Co)homologia com coeficientes locais; Homologia de H-espaços e grupos de Lie; O Teorema de Leray-Hirsch e aplicações.

Metodologia de avaliação

Avaliação continua e/ou exame final.

Disciplinas Execução

2017/2018 - 2ºSemestre

2016/2017 - 2ºSemestre

2015/2016 - 2º Semestre

2014/2015 - 2º Semestre

2013/2014 - 2 Semestre

2012/2013 - 2 Semestre

2011/2012 - 2 Semestre

2010/2011 - 2 Semestre

2009/2010 - 2 Semestre

2008/2009 - 2 Semestre

2007/2008 - 2 Semestre

2006/2007 - 2 Semestre