Disciplina Curricular

Ciência de Dados CDadosi

Mestrado Bolonha em Engenharia Informática e de Computadores - Taguspark - MEIC-T 2021

Contextos

Grupo: MEIC-T 2021 > 2º Ciclo > Área Principal > Agrupamentos > Sistemas de Informação

Período:

Grupo: MEIC-T 2021 > 2º Ciclo > Área Principal > Agrupamentos > Sistemas Ciberfísicos

Período:

Grupo: MEIC-T 2021 > 2º Ciclo > Área Principal > Agrupamentos > Inteligência Artificial

Período:

Grupo: MEIC-T 2021 > 2º Ciclo > Área Principal > Agrupamentos > Engenharia e Ciência de Dados

Período:

Grupo: MEIC-T 2021 > 2º Ciclo > Área Principal > Agrupamentos > Bioinformática e Biologia Computacional

Período:

Peso

6.0 (para cálculo da média)

Objectivos

Os estudantes devem ser capazes de compreender e aplicar o processo de descoberta de informação a dados tabulares e temporais, em todas as suas etapas. Em particular: 1. na exploração de dados através das técnicas básicas de descrição e visualização, 2. na aplicação de técnicas de aprendizagem de modelos de classificação, segmentação e descoberta de padrões, 3. na escolha das abordagens mais adequadas de preparação de dados de modo a melhorar o desempenho das técnicas de aprendizagem de modelos, 4. na avaliação do desempenho dos modelos e no reconhecimento do impacto de cada escolha efetuada. Ortogonalmente, os estudantes deve ser capazes de: 1. Compreender os desafios subjacentes à descoberta de informação em dados complexos e de grande escala, 2. Identificar dados sensíveis e que possam estar sujeitos a restrições de processamento, nomeadamente anonimização, de modo a garantir a preservação da privacidade da entidades.

Programa

1. Ciência de Dados e o processo de descoberta de informação. Avaliação de desempenho: métricas, estratégias, estimação e o princípio da navalha de Occam. 2. Descrição dos dados e princípios de visualização de informação. 3. Preparação de dados: normalização, redução balanceamento. Valores omissos. Engenharia de variáveis. 4. Classificação: cinco tribos. Combinação de modelos. Sobre-aprendizagem. 5. Regressão: linear, logística e não-paramétrica 6. Prospeção de Padrões: regras de associação e padrões sequenciais. 7. Segmentação: algoritmo hierárquicos e baseados em modelos, densidade ou partição. Biclustering. 8. Deteção de anomalias 9. Análise de dados temporais. Preparação, modelação e previsão de séries temporais. 10. Introdução à análise de redes sociais. 11. Descoberta de informação em dados complexos: espacio-temporais, relacionais e multi-dimensionais. 12. Descoberta de informação em dados em grande escala. 13. Implicações Éticas Legais e Sociais dos dados.

Metodologia de avaliação

A nota final é baseada em três componentes: E: exame, P: projeto e L: laboratórios (opcional) A nota final é dada por 50%E + max(10%L + 40%P, 50%P), sujeita a: E>=9.5 e P>=9.5 Avaliação oral quando P-E>=4

Disciplinas Execução