Dissertação

Adaptive Prediction for Target Tracking Using Switching ARMA Models EVALUATED

Neste trabalho são propostos métodos que visam descrever as dinâmicas do movimento de um alvo numa sequência de imagens e prever a sua trajetória futura. A ideia principal é tratar cada coordenada de uma trajetória como uma série temporal, que pode ser aproximada por um modelo ARIMA ou SARIMA. Esta dissertação usa técnicas de múltiplos modelos supervisionados, tendo em conta uma predição adaptativa. Nesta conjuntura, é necessário a criação de bancos de modelos para cada conjunto de dados de trajetórias diferente. Quando é analisado um novo alvo, é utilizado uma arquitetura de modelos múltiplos que recursivamente escolhe os melhores modelos para prever futuras posições do alvo. Deste modo, a predição é adaptada ao movimento até então descrito. Foram realizadas várias experiências com dados sintéticos e reais. Um conjunto de dados reais obtido pelo projeto SPARSIS é cuidadosamente analisado e é definido um patamar base para a predição de trajetórias nesse conjunto de dados. Um outro conjunto de dados, Stanford Drone Dataset, é testado parcialmente, e os resultados mostram que as técnicas propostas neste trabalho são comparáveis a outras técnicas do estado da arte.
Séries Temporais; Predição; ARMA, Múltiplos Modelos

Novembro 23, 2018, 10:0

Documentos da dissertação ainda não disponíveis publicamente

Orientação

ORIENTADOR

João Manuel Lage de Miranda Lemos

Departamento de Engenharia Electrotécnica e de Computadores (DEEC)

Professor Catedrático

ORIENTADOR

Jorge Dos Santos Salvador Marques

Departamento de Engenharia Electrotécnica e de Computadores (DEEC)

Professor Associado