Dissertação

Automatic Detection of TV Commercials EVALUATED

A detecção automática de anúncios pode permitir satisfazer diversas necessidades: i) dos utilizadores, que tipicamente desejam eliminá-los dos seus programas de TV gravados; ii) dos reguladores, que precisam de verificar se as regras de publicidade são cumpridas; iii) dos anunciantes, que querem verificar se os contratos com as estações emissoras foram cumpridos. Os anúncios de TV são um tipo especial de conteúdo de vídeo, com algumas características bastante específicas que têm sido exploradas em diversos métodos de detecção automática. Após uma revisão das metodologias existentes para a detecção de anúncios em TV, propõe-se uma nova abordagem baseada em Redes Neurais Convolucionais (CNN); a CNN usada foi treinada com milhares de imagens selecionadas manualmente, extraídas de mais de 105 horas de vídeo gravado, de 12 canais de TV diferentes. No entanto, o sistema desenvolvido tem também a capacidade de detectar as situações em que o seu desempenho se deteriora e de iniciar um processo de reaprendizagem, sem intervenção humana. O método proposto foi avaliado com um conjunto de dados de vídeo que inclui sequências extraídas de canais de TV considerados na fase de treino da CNN, bem como de novos canais de TV. Para os canais de TV incluídos na fase de treino, a precisão mínima observada na detecção de anúncios foi de 92%; esse valor diminui quando um novo canal de TV é analisado, mas ainda assim atinge valores de precisão próximos de 90% em diversos casos.
Anúncios de TV, blocos comerciais, detecção automática de publicidade, rede neural convolucional, classificação de conteúdo de TV

Junho 21, 2018, 11:30

Publicação

Obra sujeita a Direitos de Autor

Orientação

ORIENTADOR

António José Castelo Branco Rodrigues

Departamento de Engenharia Electrotécnica e de Computadores (DEEC)

Professor Auxiliar

ORIENTADOR

Maria Paula Dos Santos Queluz Rodrigues

Departamento de Engenharia Electrotécnica e de Computadores (DEEC)

Professor Auxiliar