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Abstract – Power quality, system efficiency and reliability are key 

aspects of distribution systems planning and operation. The 

imbalances in the node voltages and branch currents affect both 

power quality and efficiency. Imbalances cause increased energy 

losses and increased risk of overloads. Thus, the quality and 

energy prices are affected. Phase swapping can economically and 

effectively balance the feeder currents to improve power quality 

and reduce power system operation costs. In this thesis, methods 

are proposed for to solve the phase swapping optimization 

problem in order to minimize losses and swapping effort. A 

greedy algorithm and a genetic algorithm are developed to find a 

Pareto optimal set of solutions leaving up to the network operator 
the selection of the most convenient tradeoff solution. 
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I. INTRODUCTION 

The power distribution system has an extremely important 

role in energy supply, as it provides consumers concentrated in 

cities, suburbs and remote areas. As such, the operation of the 

distribution system seeks to ensure service to all customers 

with quality and reliability. In power distribution systems, 

unbalanced loading is common phenomena. As a result, 

feeders are also unbalanced. The loading is unbalanced 
because it consists mostly of single-phase loads to feed, which 

are not evenly distributed through the phases. On the other 

hand, increased consumption and growth of decentralized 

production linked to low voltage system can emphasize 

imbalances. 

The main problem of imbalanced feeders is the increase of 

energy losses. Besides this problem, the imbalanced feeders 
affects the quality of energy. For example, the unbalanced load 

causes the imbalanced voltages even when voltages in the 

source is balanced. Feeder imbalance describes a situation in 

which the voltages of a three-phase voltage source are not 

identical in magnitude, or the phase differences between them 

are not 120 electrical degrees, or both. It affects motors and 

other devices that depend upon a well-balanced three-phase 

voltage source. Unbalanced systems also increase the risk of 

overloading on a phase line or ground line. Overloading can 

cause overheating of cables and thus damaging them. In 

addition, an unbalanced feeder has a large ground current, 

which may trip the protective devices. Furthermore, in 

unbalanced feeders, the improvement of the utilization factor is 

limited by the capacity of the ground line or one phase line. 

This limitation can lead to investment in new lines to increase 

its capacity, representing huge investments costs. In certain 

situations, these investments can be avoided by phase 

balancing to increase the utilization factor [1, 2, 3]. 

Thus, it is necessary to optimize the distribution systems to 

achieve a phase balancing. A balanced system has a lower 

peak load, lower voltage drop and lower energy losses, 

resulting in increased reliability, power quality and lower 

price. There are two ways for balancing of three phases 

electrical systems. One is feeder’s reconfiguration at system 

level; and the other one is phase swapping at the feeder level. 

The first one has as purpose to balance loads among feeders, 

therefore is not an effective technique to settle the unbalance 
problem. Phase swapping is an effective way to balancing a 

feeder in terms of its phases, which consists of change the 

connection of the loads or lateral branches among the phases 

of the line.  

This thesis aims to develop methods for finding a minimum 

number of phase swapping to be held to minimize losses and 

imbalances of current between phases. The methods to be 

developed must provide a set of optimal solutions in order to 
leave the decision to the distribution system operator. The 

application of these methods will focus on the unbalanced 

networks detected by work of Pedro Gonçalves, under Part I of 

this dissertation. These methods should be as quick as possible. 

 

II. NETWORK FEATURES 

In power distribution system, the feeders are radial. The 

optimization is performed to the peak power of load because at 

this point the losses are greater and the risk of overload is 

greater too. The loads are modeled by current magnitudes [4], 

thus relieved from calculating voltage drop and increased the 

speed of the methods. The power of each load varies according 

to its installed capacity and its utilization factor. It is still used 

a simultaneity factor since the loads are not all the power peak 

at the same time [5]. 
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III. OPTIMIZATION PROBLEM 

A. Phase swapping 

Phase swapping can be classified as nodal phase swapping 

and lateral phase swapping. Lateral phase swapping is to 

switch the laterals to the primary trunk. If lateral phase 

swapping is applied, all the nodes on this lateral will not be 

allowed for nodal phase swapping. Therefore, the lateral can 
be treated as a fictitious node on the primary trunk. It must 

ensure that the sequence of phases is the same for this don’t 

affect the operation of three phase equipment. Thus, 

optimization may not be satisfactory. Nodal phase swapping is 

the load swapping at a node. Only single-phase loads are 

considered. Thus, these loads can be swapped for a certain 

phase independently of the other loads at the same node. 

Phase balancing has several significant benefits, such as 

improving power quality and utilization factor of existing 

facilities, and reducing energy losses and price. However, each 

phase swapping operation is associated with certain costs on 

lineman expenses, maintenance expenses, and considered 

outage duration. The number of phase swapping need to be 

compromised between benefits and costs. Thus, the 

optimization problem is to perform the minimization of power 

losses and minimizing the number of exchanges. The problem 

is a combinatorial optimization problem with two objectives 

(multi-objectives). However, objectives under consideration 

conflict with each other. 

B. Multi-objective optimization 

Consider a decision vector                of dimension 

 , the solution space X. The formulation of the problem of 

multi-objective optimization is defined as the minimization of 

a set of   objective functions,  

     
 

                     (1) 

The solution space X is generally restricted by a series of 

constraints, 

 

                       

                       

                   

(2) 

There are two general approaches to multiple-objective 

optimization. One is to combine the individual objective 

functions into a single composite function. Determination of a 

single objective is possible with methods such as weighted 

sum method, 

     
 

                            (3) 

In practice, it can be very difficult to precisely and 

accurately select these weights, even for someone very familiar 

with the problem domain. Unfortunately, small perturbations 

in the weights can lead to very different solutions. On the other 

hand, there are non-commensurable objectives which do not 

convert to the same extent as other objectives, making it 

impossible to assign a weight [6]. 

The second general approach is to determine an entire 
Pareto optimal solution set or a representative subset. A Pareto 

optimal solutions is a set of solutions that are non-dominated 

with respect to each other [7]. A feasible solution   is said to 

dominate another feasible solution   (   ), if and only if, 

  
                      

                      
  (4) 

A Pareto optimal solution cannot be improved with respect 
to any objective without worsening at least one other objective. 

The set of all feasible non-dominated solutions in X is referred 

to as the Pareto optimal set. The set of all possible Pareto 

optimal solutions constitutes a Pareto frontier in the objective 

space. Fig. 1 shows an example. In this way, a number of 

solutions can be found which provide the decision maker with 

insight into the characteristics of the problem before a final 

solution is chosen. 

 

Fig. 1. Example of Pareto front and these optimal solutions 

C. Mathematical formulation 

Considering the problem to solve in this thesis, the 

minimization of power losses (P) and minimizing the number 

of phase swapping (M) to be made, the problem is defined by a 

set of N single phase loads, or single phase consumers, 

                 . Each load is defined by its installed 
capacity, utilization factor, phase, and the network node that is 

connected. However, only the phase of each load is a decision 

variable due to its restrictions. Thus, the decision vector is 

defined according to: 

             
      

 
      

       
         

         
 (5) 

Where   is the phase of the load   . 

The objective corresponds to minimizing power losses and 

the number of phase swapping: 

    
 

             (6) 

Where: 

               
          

          
          

 

 

   

 (7) 
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 Subject to:  

                 
 

  
 

  

 (9) 
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       (11) 

In the formulation, the equation (7) is the power losses of 

solution  ; the equation (8) determines the number of phase 

swapping of solution  , where     
 

 represents the original 

phase of  -th load and     
 

 represents the phase of  -th load 

of solution  ; equation (9) represents the current in branch   by 

application of Kirchoff’s currents law; equation (10) ensures 

that the load   is linked to only one phase; and equation (11) 

is defined by the decision variable   and determines if the load 

 , in node  , is linked to phase  . 

D. Optimization techniques  

General search and optimization techniques are classified 

into three categories: enumerative, deterministic, and 
stochastic. Although an enumerative search is deterministic a 

distinction is made here as it employs no heuristics. 

Techniques are developed for each category. However, the 

enumerative method is not much interest. Thus only 

deterministic and stochastic techniques are presented. 

1) Greedy algorithm 

The deterministic technique used is the greedy algorithm. 

This sort of myopic behavior is easy and convenient, making it 
an attractive algorithmic strategy. Greedy algorithms build up 

a solution piece by piece, always choosing the next piece that 

offers the most obvious and immediate benefit. 

Since this is a combinatorial problem, application of this 

greedy algorithm reduces significantly the number of 

combinations to compute to find acceptable solutions for each 

phase swapping introduced. This reduction is due to the fact 
that each step of the algorithm, the load that contributes most 

to the reduction of power losses is chosen to be performed a 

phase swapping. In the next stage,  the previous loads are 

considered and  chosen another one load from among the 

possible combinations. Thus, the algorithm proceeds at pace in 

the number of phase swapping. The maximum number of 

combinations to be calculated by the greedy algorithm is given 

(12). This is an upper limit since it corresponds to the worst 

case, i.e., to a situation in which all loads are connected to 

same phase. 

                         

 

   

 (12) 

2) Genetic Algorithm 

Genetic algorithms differ from conventional techniques of 

demand, since they use an initial set of random solutions called 

population. Thus, working with the entire population and not a 
single point which provides for simultaneous searching across 

the solution space. That is, the genetic algorithm based on a 

stochastic technique. 

The theoretical background of genetic algorithms were 

developed by Holland, in the beginning of the 70s, with the 

idea of imitating the evolutionary process which takes place 

within biological organisms in nature. It may be understood as 

a process of “intelligent” probabilistic search, which could be 
applied in a series of combinatory optimization problems. In 

the first place, it is known that evolution takes place by means 

of chromosomes, which store the genetic code that defines 

individual characteristics. Through a process of natural 

selection, individuals that are better fitted to the environment 

are able to reproduce with more frequency, transmitting their 

genetic traits to their descendants. Reproduction is the key 

point, in which evolution takes place. The recombination of the 

genetic code of the ancestors generates new chromosomes, 

which eventually undergo a process called mutation. With this 

process, descendants may present traits that are different from 
their ancestors, and eventually these traits will allow the 

individual to possess greater ability to adapt to the 

environment [8].  

The genetic algorithm can be represented by pseudo code:  

t=0 

Generating an initial population P(t); 

Assessing the fitness of the individuals in this population P(t) 

Repeat 

t = t + 1; 

Select the fittest from P(t-1) to build P(t)  

Cross P(t) 

Mutate some solution from P(t)  

Evaluate P(t)  

Until stopping criterion 

 
Within this perspective, the relevant aspects to be discussed 

are: representation of the chromosome, fitness evaluation and 

processes of natural selection, crossover and mutation. 

Chromosome representation and population initialization 

Every possible solution within a search space, or population, 

is represented as a sequence of elements where each element is 

called a gene, and each of these sequences formed by genes are 

the chromosomes. Thus, each solution is coded by a different 

sequence of genes. 

In this thesis, each chromosome is represented by a listing 

and encoding is performed so that each gene represents the 

phase of each load. The possible values that can take these 

phases corresponds to  1, 2 or 3 that are connected in phase a, 

b or c, Fig. 2 shows an example. 

 

Fig. 2. Chromosome representation 

To use the genetic algorithm is necessary to create a set of 

solutions, called population, from which will develop the 
entire evolutionary process. Typically, the population is 

generated randomly. In this case, the optimal solution is not 
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unique and can be obtained by various combinations. Thus, the 
population is randomly generated but around the initial 

configuration of the phases to minimize the number of phase 

swapping. 

The optimum size of a population depends on the type of 

problem to solve and the complexity of it. However, according 

to [9] the optimal size is between N and 2N, where N is the 

number of genes in the chromosome. 

Selection 

The selection is based in a binary tournament. The idea is to 

select (at random) two solutions from the population and 

choose the solution with better fitness for the next generation 

(new population to be crossed). This process is repeated until 

the number of selected solutions matches the size of the 

population. 

Crossover 

The crossover operator is responsible for the exchange of 

genetic material between chromosomes. The recombination 

takes place between chromosomes chosen at random and 

occurs with a given probability. In this work the single point 

crossover is considered, which consists in choosing a random 

sectioning point (locus) in the structure of the ancestral 

chromosomes, and combining the left section of an ancestor 

with the right section of another ancestor. This operation 
allows two new descendants to be generated for each pair of 

ancestors selected. In Fig. 3 an example of application of this 

operator is presented. 

 

Fig. 3. Application of the single point crossover 

 

Mutation 

The mutation allows the introduction and maintenance of 

genetic diversity in the population. This operator is applied 

after the crossover and occurs with a given probability of 

mutation, typically less than the probability of crossover. The 

mutation consists of changing the value of a gene chosen 

randomly from a chromosome. In this thesis is used a ternary 

coding, the gene mutated assumes a randomly value within 

possible values, as depicted in Fig. 4. 

 

Fig. 4. Example of mutation 

 

Fitness Function and Objective Function 

The objective function, or evaluation function, provides a 

measure of performance with respect to a particular set of 

parameters. The fitness function transforms that measure of 

performance into an allocation of reproductive opportunities. 

In this thesis, there are two objectives and therefore two 

objective functions [10]. 

The merit function can be considered mono-objective 
considering only one objective function or combining the 

objective functions through a weighted sum as in equation (3).  

The merit function can also be considered multi-objective to 

determine the Pareto optimal set. In these cases the merit 

function assigns the merits of each solution based on its 

dominance. One of these cases, in the ε-constraint technique 

[6, 11] is developed a selection scheme based on a tournament 
where the winning solution has to dominate another solution 

with a tolerance ε, such that: 

  
                                      

                        
  (13) 

 

IV. RESULTS AND COMPARISON OF METHODS 

The presented algorithms are now applied and compared. 

The main objective lies in obtaining the Pareto optimal set. 

The networks used have all imbalances in the feeder in order 

of 50% between phases with higher and lower amplitudes. The 

networks were obtained using D-Plan 2 software [12]. First, 

both algorithms are applied to an urban network with 53 nodes 

and 100 single-phase loads. After only the best method is 

applied to a large network and methods are presented to assist 

in choosing a solution. 

A. Greedy algorithm 

The results obtained by the greedy algorithm are present in 

the Fig. 5 and Table I. In Fig. 5, presents all the solutions 

determined in the course of the algorithm. Are still represented 
the solutions of the Pareto optimal set. The value of these 

solutions are shown in Table I. 
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Fig. 5 - Representation of the solutions determined by the greedy algorithm 

 

TABLE I 

SOLUTIONS OF THE PARETO OPTIMAL SET 

Runtime [ ] 12997,82 (3h 36m 38s) 

Nº of Solutions 736929 

Peak Power [kW] 74,5050 

Swapped 

phases 

Power Losses 

W p.u. 
   

     

  
 

    [%] 

0 2346,01 0,0315 0 

1 2274,99 0,0305 -3,03 

2 2222,98 0,0298 -5,24 

3 2185,20 0,0293 -6,85 

4 2162,51 0,0290 -7,82 

5 2143,72 0,0288 -8,62 

6 2134,10 0,0286 -9,03 

7 2129,79 0,0286 -9,22 

8 2129,14 0,0286 -9,24 

9 2128,26 0,0286 -9,28 

10 2127,73 0,0286 -9,30 

11 2126,79 0,0285 -9,34 

12 2126,65 0,0285 -9,35 

 

The results are very good, however the Pareto optimal set is 

not completely defined. To be fully determined it was needed a 

bigger number of swapped phases, but the number of solutions 

increases exponentially with the number of swapped phases. In 

this case, solutions for up to 12 swapped phases, 736929 

solutions were determined. This number of solutions are very 

high which makes the algorithm too slow. Thus, it is 
unfeasible to make more load swapping since the algorithm is 

already too slow. 

B. Genetic algorithm 

Genetic algorithm is used with two different merit functions. 

In the first case the merit function only minimizes power 

losses, i.e., find the solution that corresponds to the global 

minimum power losses without put any objection to the 

number of swapped phases. In the second case the merit 

function is multi-purpose and attributes the merit of each 

solution depending on their losses and the number of swapped 

phases. 

1) Mono-objective genetic algorithm 

For the case of single-objective genetic algorithm, the 
results are presented in Fig. 6 and Table III. It is expected that 

in the last generation the entire population has converged to 

the solution with the lowest losses. Thus, in order to determine 

the Pareto optimal set, the best solutions for each swapped 

phase are stored, without any interference in the AG. 

The genetic parameters used in the process are presented in 

Table II. 

TABLE II 

PARAMETERS USED IN GENETIC ALGORITHM 

Population dimension 150 

Number of Generations 100 

Probability of Crossover 0,7 

Probability of Mutation 0,1 

 

The number of solutions determined by the genetic 

algorithm is given by the population size times the number of 

generations. Thus, 15000 solutions are determined. 

 

Fig. 6. Representation of the solutions determined by the mono-objective 

genetic algorithm 

 

TABLE III 

SOLUTIONS OF THE PARETO OPTIMAL SET 

Runtime [ ] 13,62 

Peak Power [kW] 74,5050 

Swapped 

phases 
Generation 

Power Losses 

W p.u. 

   
     

  
     

[%] 

0 0 2346,01 0,0315 0 

1 1 2274,99 0,0305 -3,03 

2 4 2222,98 0,0298 -5,24 

3 7 2185,20 0,0293 -6,85 

4 11 2162,51 0,0290 -7,82 

5 10 2155,16 0,0289 -8,14 

6 15 2146,58 0,0288 -8,50 

7 31 2137,71 0,0287 -8,88 

8 28 2129,79 0,0286 -9,22 

9 28 2129,15 0,0286 -9,24 

10 32 2127,90 0,0286 -9,30 

11 31 2127,57 0,0286 -9,31 

12 42 2127,22 0,0286 -9,33 

13 47 2126,79 0,0285 -9,34 

14 60 2126,65 0,0285 -9,35 

15 68 2126,60 0,0285 -9,35 
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The solutions of the Pareto optimal set are determined as the 
genetic algorithm evolves to minimize losses, as shown in 

column Generation of Table III. As expected, the surface 

formed by these solutions, the Pareto surface, is similar to an 

exponential function,     , where the first swapped phases 

produce a significant reduction of losses and other swapped 

phases cause an negligible reduction. 

On the Table IV are compared the results with the greedy 
algorithm and the mono-objective genetic algorithm. 

TABLE IV 

COMPARISON OF RESULTS BETWEEN THE GREEDY ALGORITHM AND GENETIC 

ALGORITHM 

Swapped 

phases 

Power Losses [W] 
Error 

[%] Greedy Algorithm 
Genetic 

Algorithm 

1 2274,99 2274,99 0 

2 2222,98 2222,98 0 

3 2185,20 2185,20 0 

4 2162,51 2162,51 0 

5 2143,72 2155,16 0,534 

6 2134,10 2146,58 0,585 

7 2129,79 2137,71 0,372 

8 2129,14 2129,79 0,031 

9 2128,26 2129,15 0,042 

10 2127,73 2127,90 0,008 

11 2126,79 2127,57 0,037 

12 2126,65 2127,22 0,027 

13 - 2126,79 - 

14 - 2126,65 - 

15 - 2126,60 - 

 

The error of the genetic algorithm over the greedy algorithm 

is less than 1%. This error is negligible, since comparing these 

values with respect to peak power, i.e., values per unit, the 
results are the same. The solution with 15 swapped phases of 

all Pareto optimal set by the genetic algorithm has a power 

losses smaller than the last solution found by the greedy 

algorithm. However we cannot say that this solution 

corresponds to the global minimum power losses. The genetic 

algorithm does not guarantee that the final population 

converges to the global minimum due to its randomness. 

2) Multi-objective genetic algorithm 

In multi-objective genetic algorithm, it is expected that the 

solutions of last generation are dispersed along the Pareto 

surface. The selection is made in a tournament where the non 

dominated solutions win with ε-tolerance. That is, the solution 

x dominates solution y (x   y) if and only if: 

  
         

               
  (14) 

The  -tolerance value was obtained experimentally. It was 

found that there is a range of   that is between 1% and 4% of 

the power losses of the solution to compare. 

The results obtained with this method are present in Fig. 7 
and Table V, using ε equal to 0.025 and the parameters of table 

2. 

 

Fig. 7. Representation of the solutions determined by the multi-objective 

genetic algorithm 

 

As expected, the solutions of the latest generation of multi-

objective genetic algorithm are scattered in the area of the 

Pareto surface. However, this operation does not determine the 

entire surface as in the previous situation. The solutions along 

the 100 generations only focus on the area where the variation 

of power losses is higher. This is positive, since the solutions 

with practical significance are in this part of the Pareto surface, 

and thus it is possible to find the best solutions in this part of 
the Pareto surface in greater detail. These solutions are slightly 

better than the solutions of the case mono-objective genetic 

algorithm, however the surface of the Pareto set may be 

insufficient. 

TABLE V 

SOLUTIONS OF THE PARETO OPTIMAL SET 

Runtime [ ] 13,57 

Peak Power [kW] 74,5050 

Swapped 

phases 
Generation 

Power Losses 

W p.u. 

   
     

  
     

[%] 

0 0 2346,01 0,0315 0 

1 1 2274,99 0,0305 -3,03 

2 6 2222,98 0,0298 -5,24 

3 8 2185,20 0,0293 -6,85 

4 26 2162,51 0,0290 -7,82 

5 27 2143,72 0,0288 -8,62 

6 76 2139,79 0,0287 -8,79 

7 77 2138,91 0,0287 -8,83 

 

 

Fig. 8 is represented the evolution of the average of power 

losses and the average of number of swapped phases. Observe 

that this situation of operation of genetic algorithm is 

oscillatory and never converges to a solution to the previous 

case. This can be explained by the existence of complex 

conjugate poles. There is also, as expected, that the number of 

operations varies inversely with power losses.  
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Fig. 8. Representation of evolution of the average of power losses and the 

average of number of swapped phases 

 

C. Comparison of  used methods 

The solutions of the Pareto optimal set determined by the 

greedy algorithm are better than solutions of genetic algorithm. 

However, the runtime of the greedy algorithm is very large and 

only it is possible to apply in networks with lesser loads. The 

solutions of the Pareto optimal set of genetic algorithm (single-
objective and multi-purpose) in both cases are slightly worse 

than the solutions of the greedy algorithm. However, the error 

is negligible (lesser than 1%) and runtime is extremely fast. 

The difference between the mono-objective and multi-

objective genetic algorithm relates to the Pareto surface. 

Mono-objective genetic algorithm determines entire Pareto 

surface while the multi-objective genetic algorithm determines 

only the area with the greatest variation in losses. In some 
cases this surface may be insufficient. 

 

D. Application to large rural network 

Typically, the networks with higher losses and higher 

imbalances are rural networks, because of their size and 

dispersion of the loads. Thus, the optimization is presented to a 

rural network with 18 nodes and 176 single-phase loads with 

mono-objective genetic algorithm. 

The population size is adjusted to ensure it is within the 

limits given earlier. The number of generations is also 

increased to ensure the convergence of the algorithm. The 

parameters used are in the table 6. 

TABLE VI 

PARAMETERS USED IN GENETIC ALGORITHM 

Population dimension 300 

Number of Generations 120 

Probability of Crossover 0,7 

Probability of Mutation 0,1 

 

 

 

Fig. 9. Representation of the solutions determined by the mono-objective 

genetic algorithm 

Initial losses of this network (0.1337 per unit) are much 

larger than the previous network (0.0315 per unit) due to 
greater extension of the network. The Pareto surface obtained 

for this network is identical to that obtained in previous 

network. The difference relates to the scale factor. Thus, we 

conclude that the number of operations is dependent only on 

the number of loads and power losses was mainly dependent 

on the type of network. 

E. Helper methods for choosing a solution 

The choice of a solution of Pareto optimal set depends of the 

decision of operator's network. To facilitate this choice, two 

helper methods are presented, one based on normalization of 

the power losses and the number of swapped phases and the 

other based on the level of improvement introduced by the 

number of swapped phases. 

1) Normalization and H-square norm 

The normalization should be based on costs associated with 

phase swapping and the reduction of losses. However these 

values are not available, and normalization is done based on 

the variation of losses and the maximum number of swapped 

phases in accordance with (15). 

 

        
       

         

 

        
  

    

 

(15) 

Performed normalization proceeds to the verification of the 

solution that minimizes the H-square norm. 

 

        

                
 
          

 
 

 
 
 

(16) 

Where   represents solutions of Pareto optimal set and 

                    . 

The results are shown in Fig. 10. 
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Fig.10. Representation of the solutions of Pareto optimal set and the 

minimum solution under H-square norm 

The best solution is a solution of the Pareto optimal set with 

12 swapped phases. 

2) Level improvement introduced by each swapped 

phase 

The introduction of each swapped phase has a different 

weight in reducing power losses. Thus, it is possible to have 

the solutions according to their impact in reducing power 

losses. Is considered that the solution with lower power losses, 

and consequently more swapped phases, corresponds to the 
global minimum and corresponds to optimizing the network to 

100% in terms of power losses. In contrast, the initial 

configuration of the network, with any swapped phase and the 

highest power losses corresponds to 0% optimization. 

The accumulated level of improvement in the number of 

swapped phases  , until a maximum of M, is given by: 

      
     
     

      (17) 

And the level of improvement associated with each swapped 

phase can be obtained from: 

                  (18) 

Applying this method to the case of the previous network, 

we obtain the following results presented in Table 7. 

TABLE VII 

REPRESENTATION OF THE LEVEL IMPROVEMENT INTRODUCED BY EACH 

SWAPPED PHASE IN REDUCING POWER LOSSES 

Nº de 

Manobras 

Potência de 

Perdas 

[W] 

     [%] 
     
[%] 

0 14320 0 0 

1 13916 12,70 12,70 

2 13603 22,54 9,84 

3 13415 28,44 5,90 

4 13118 37,78 9,34 

5 12916 44,12 6,34 

6 12698 50,96 6,84 

7 12513 56,78 5,82 

8 12347 61,98 5,20 

9 12205 66,45 4,47 

10 12126 68,92 2,47 

11 11984 73,40 4,48 

12 11861 77,25 3,85 

13 11775 79,95 2,70 

14 11691 82,61 2,66 

15 11623 84,75 2,14 

16 11547 87,12 2,37 

17 11540 87,35 0,24 

18 11436 90,60 3,25 

19 11366 92,82 2,22 

20 11306 94,69 1,87 

22 11263 96,05 1,36 

23 11225 97,24 1,19 

24 11216 97,51 0,27 

25 11206 97,82 0,31 

26 11204 97,90 0,08 

27 11194 98,20 0,29 

28 11190 98,35 0,15 

29 11186 98,47 0,12 

30 11178 98,70 0,23 

31 11172 98,89 0,19 

32 11167 99,05 0,16 

33 11165 99,11 0,06 

34 11162 99,22 0,11 

35 11156 99,40 0,18 

36 11153 99,51 0,11 

37 11151 99,55 0,04 

38 11149 99,63 0,08 

39 11146 99,71 0,08 

40 11145 99,76 0,05 

41 11143 99,83 0,07 

42 11142 99,85 0,02 

43 11140 99,92 0,07 

44 11139 99,95 0,03 

45 11137 99,99 0,04 

46 11137 100,00 0,01 

 

 

Note that in only 6 of 46 swapped phases is made more than 

50% reduction of maximum power losses. 
 

 

V. CONCLUSIONS 

In this thesis, optimization methods have been proposed to 

reduce energy losses and improve quality of service in strongly 

unbalanced low-voltage networks. The optimization is based 

on the phase swapping, i.e., single-phase load switching 

between phases, in order to balance the most important 
branches currents. 

The objective of the optimization methods developed has 

been set to minimize the number of swapped phases and power 

losses. These objectives are conflicting, which makes the 

simultaneous minimization a difficult task. Therefore, methods 

have been developed to determine a Pareto optimal set, leaving 

up to the network operator the selection of the best tradeoff 

between losses reduction and number of phase swapping 

operations. 

A greedy algorithm and a genetic algorithm have been 

developed to find the Pareto set. The greedy algorithm has 
shown to perform better but with very high runtimes for real 

sized networks. The genetic algorithm has shown to perform 

slightly worse than the greedy algorithm (solutions’ errors 

below 1%) but with very small runtimes when compared to the 

greedy.  
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